Newfound gene may help bacteria survive in extreme environments

Posted: July 25, 2012 at 3:12 pm

Public release date: 25-Jul-2012 [ | E-mail | Share ]

Contact: Caroline McCall cmccall5@mit.edu Massachusetts Institute of Technology

CAMBRIDGE, Mass. -- In the days following the 2010 Deepwater Horizon oil spill, methane-eating bacteria bloomed in the Gulf of Mexico, feasting on the methane that gushed, along with oil, from the damaged well. The sudden influx of microbes was a scientific curiosity: Prior to the oil spill, scientists had observed relatively few signs of methane-eating microbes in the area.

Now researchers at MIT have discovered a bacterial gene that may explain this sudden influx of methane-eating bacteria. This gene enables bacteria to survive in extreme, oxygen-depleted environments, lying dormant until food such as methane from an oil spill, and the oxygen needed to metabolize it become available. The gene codes for a protein, named HpnR, that is responsible for producing bacterial lipids known as 3-methylhopanoids. The researchers say producing these lipids may better prepare nutrient-starved microbes to make a sudden appearance in nature when conditions are favorable, such as after the Deepwater Horizon accident.

The lipid produced by the HpnR protein may also be used as a biomarker, or a signature in rock layers, to identify dramatic changes in oxygen levels over the course of geologic history.

"The thing that interests us is that this could be a window into the geologic past," says MIT postdoc Paula Welander, who led the research. "In the geologic record, many millions of years ago, we see a number of mass extinction events where there is also evidence of oxygen depletion in the ocean. It's at these key events, and immediately afterward, where we also see increases in all these biomarkers as well as indicators of climate disturbance. It seems to be part of a syndrome of warming, ocean deoxygenation and biotic extinction. The ultimate causes are unknown."

Welander and Roger Summons, a professor of Earth, atmospheric and planetary sciences, have published their results this week in the Proceedings of the National Academy of Sciences.

A sign in the rocks

Earth's rocky layers hold remnants of life's evolution, from the very ancient traces of single-celled organisms to the recent fossils of vertebrates. One of the key biomarkers geologists have used to identify the earliest forms of life is a class of lipids called hopanoids, whose sturdy molecular structure has preserved them in sediment for billions of years. Hopanoids have also been identified in modern bacteria, and geologists studying the lipids in ancient rocks have used them as signs of the presence of similar bacteria billions of years ago.

But Welander says hopanoids may be used to identify more than early life forms: The molecular fossils may be biomarkers for environmental phenomena such as, for instance, periods of very low oxygen.

Go here to see the original:
Newfound gene may help bacteria survive in extreme environments

Related Posts

Comments are closed.

Archives