Researchers write languages to design synthetic living systems
Posted: March 17, 2014 at 4:45 am
Researchers at Virginia Tech and the Massachusetts Institute of Technology have used a computer-aided design tool to create genetic languages to guide the design of biological systems.
Known as GenoCAD, the open-source software was developed by researchers at the Virginia Bioinformatics Institute at Virginia Tech to help synthetic biologists capture biological rules to engineer organisms that produce useful products or health-care solutions from inexpensive, renewable materials.
GenoCAD helps researchers in the design of protein expression vectors, artificial gene networks, and other genetic constructs, essentially combining engineering approaches with biology.
Synthetic biologists have an increasingly large library of naturally derived and synthetic parts at their disposal to design and build living systems. These parts are the words of a DNA language and the "grammar" a set of design rules governing the language.
It has to be expressive enough to allow scientists to generate a broad range of constructs, but it has to be focused enough to limit the possibilities of designing faulty constructs.
MIT's Oliver Purcell, a postdoctoral associate, and Timothy Lu, an associate professor in the Department of Electrical Engineering and Computer Science, have developed a language detailed in ACS Synthetic Biology describing how to design a broad range of synthetic transcription factors for animals, plants, and other organisms with cells that contain a nucleus.
Meanwhile, Sakiko Okumoto, an assistant professor of plant pathology, physiology, and weed science at the Virginia Tech College of Agriculture and Life Sciences, and Amanda Wilson, a software engineer with the Synthetic Biology Group at the Virginia Bioinformatics Institute, developed a language describing design rules for expressing genes in the chloroplast of microalgae Their work was published in the Jan. 15 issue of Bioinformatics.
"Just like software engineers need different languages like HTML, SQL, or Java to develop different kinds of software applications, synthetic biologists need languages for different biological applications," said Jean Peccoud, an associate professor at the Virginia Bioinformatics Institute, and principal investigator of the GenoCAD project.
"From its inception, we envisioned GenoCAD as a framework allowing users to capture their expertise of a particular domain in languages that they could use themselves or share with others."
The researchers said encapsulating current knowledge by defining standards will become increasingly important as the number and complexity of components engineered by synthetic biologists increases.
Read more:
Researchers write languages to design synthetic living systems