Robotic fish designed to perform escape maneuvers described in Soft Robotics journal

Posted: March 14, 2014 at 4:42 am

PUBLIC RELEASE DATE:

13-Mar-2014

Contact: Kathryn Ruehle kruehle@liebertpub.com 914-740-2100 Mary Ann Liebert, Inc./Genetic Engineering News

New Rochelle, NY, March 13, 2014A soft-bodied, self-contained robotic fish with a flexible spine that allows it to mimic the swimming motion of a real fish also has the built-in agility to perform escape maneuvers. The innovative design and capabilities of this complex, autonomous robot is described in Soft Robotics (SoRo), a new peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the Soft Robotics website at http://www.liebertpub.com/soro.

Andrew Marchese, Cagdas Onal, and Daniela Rus, from MIT (Cambridge, MA) and Worcester Polytechnic Institute (Worcester, MA), describe the design, modeling, fabrication, and control mechanisms of the robotic fish in the article "Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators". A novel fluidic actuation system, embedded muscle-like actuators, and an onboard control system give the fish autonomy and the ability to perform continuous forward swimming motion and rapid accelerations.

"This innovative work highlights two important aspects of our emerging field; first it is inspired and informed by animal studies (biomimetics), and second it exploits novel soft actuators to achieve life-like robot movements and controls," says Editor-in-Chief Barry A. Trimmer, PhD, who directs the Neuromechanics and Biomimetic Devices Laboratory at Tufts University (Medford, MA).

###

About the Journal

Soft Robotics (SoRo), a peer-reviewed journal published quarterly online with Open Access options and in print, combines advances in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering to present new approaches to the creation of robotic technology and devices that can undergo dramatic changes in shape and size in order to adapt to various environments. Led by Editor-in-Chief Barry A. Trimmer, PhD and a distinguished team of Associate Editors, the Journal provides the latest research and developments on topics such as soft material creation, characterization, and modeling; flexible and degradable electronics; soft actuators and sensors; control and simulation of highly deformable structures; biomechanics and control of soft animals and tissues; biohybrid devices and living machines; and design and fabrication of conformable machines. Complete information is available on the SoRo website at http://www.liebertpub.com/soro.

About the Publisher

See the rest here:
Robotic fish designed to perform escape maneuvers described in Soft Robotics journal


Comments are closed.

Archives