Lab Stewardship in the Era of Genomic Testing – American Association for Clinical Chemistry (AACC)
Posted: April 6, 2020 at 10:50 pm
This is a very exciting era in laboratory medicine as virtually every day new genetic tests and emerging laboratory technologies enter the market. With these advancements also comes the (fun) challenge of distinguishing clinical testing from research testing. Making this distinction matters in two key ways. First, from a regulatory standpoint, it would be financially irresponsible to bill patients and insurers for research testing. Second, in terms of clinical implications, we have to demonstrate the value of classifying variants (clinical validity), then show that variant classification impacts patient clinical outcomes (clinical utility). Laboratory test stewardship programs provide an important foundation for striking an appropriate balance between implementing new genetic tests and meeting standards for clinical validity and utility, paying particular attention to the size of genetic panels.
Since the 1980s, identification of genetic markers has supported tailored clinical diagnoses and therapies, and as such, genetic testing has become an attractive diagnostic tool. Single gene testing has progressed to more expansive gene panels, exome, and even genome sequencing. While novel technologies provide the potential for increased efficiency, more comprehensive analysis, and reduced invasive testing to guide clinical care, the financial impact and potential secondary findings of these methods necessitate a balanced approach to responsibly implement precision medicine in clinical practice.
To be good laboratory testing stewards, we must address questions about the value of new and emerging technologies. Simply defined, value is the quality of a test divided by its cost. While mathematical equations are straightforward precisely because they are objective, the perspective of value varies for each stakeholder (patients, providers, laboratorians, and payers), and these perspectives often have competing interests.
A crucial consideration is the timeline in which novel technologies are implemented clinically and, perhaps even more challenging, the elements that distinguish research testing from clinical testing. Clinical testing (for all laboratory tests) encompasses analytical validity, clinical validity, and demonstrated clinical utility. In some cases, genetic tests are Food and Drug Administration (FDA)-cleared for specific clinical applications. Patients and insurers typically are responsible for the cost of clinical testing. As new assays appear on the market, they might demonstrate analytical validity, but lack evidence establishing clinical validity and utility.
Requiring patients or insurers to cover the cost of building this evidence for a new assay is contrary to laboratory stewardship principles. Lab stewards have the difficult task of distinguishing true research from ancillary testing. Advancing research and providing evidence of clinical validity and clinical utility remain critical for enhancing our overall understanding of genetic testing. One approach to balancing both needs is to find alternative funding for clinical research in order to achieve alignment with insurers while also supporting patients.
It goes without saying that strict standards for validation and documentation exist for clinical testing, and although only a minority of tests are FDA-cleared, all laboratory developed tests must adhere to CLIA regulations. This is a minimum standard; even laboratories that perform research-use only testing and return results to participants must have a CLIA license. Compliance with CLIA regulations is not the only factor in assessing a laboratorys or tests quality. Evaluating a laboratorys comprehensive services also matters, including its result reporting processes, adherence to professional society guidelines, report formatting, test billing, and sample coordination logistics.
When adopting new genetic tests, a second consideration is the size of a panel. A bigger panel with more genes or genetic markers does not necessarily improve diagnostic clarity. With an increased number of assayed genes comes greater potential for variants of uncertain significance (VUS). These variants can be particularly challenging because genomics is still relatively new and we collectively lack sufficient data to confidently classify variants as pathogenic or benign. In the absence of evidence supporting these classifications, laboratories assign variants to a VUS holding cell category. Once sufficient evidence arises, variants originally classified as VUS will be upgraded (to pathogenic or likely pathogenic) or downgraded (to benign or likely benign).
One would predict that approximately half of all VUS would be upgraded and half downgraded. However, in what is termed the VUS paradox, there is significant discordance between the expected and observed reclassification of variants. It is much more common for VUS to be reclassified as benign or likely benign (downgraded) than to be upgraded (1). Given the large body of evidence demonstrating that VUS can cause patient harm, labs act irresponsibly if they inappropriately classify variants as VUS. As laboratory stewards, we need to ensure that any gene panel ordered is the best fit for the clinical question at hand instead of using an inappropriately large gene panel likely to result in challenging VUS.
From the perspectives of patients and insurers, it is critical to demonstrate how outcomes will improve as a result of using this new technology. Are these new tests preforming better than current standard of care? In many cases, additional evidence is needed before a test is offered broadly. The following examples in cancer and prenatal settings highlight the promise of novel technologies and questions that should be considered before adopting/implementing more broadly.
Cell-free DNA screening was launched in 2012 and meta-analyses have demonstrated superior performance for detecting chromosomal aneuploidies such as Down syndrome relative to existing maternal serum screening tests like the combined and fully integrated screening tests. Since then, cell-free DNA prenatal screening has expanded rapidly, including the recent ability to detect all aneuploidies and even sub-chromosomal copy number alterations such as microdeletions and microduplications.
From a consumer perspective, cell-free DNA prenatal screening is appealingits less invasive than diagnostic testing like amniocentesis and can reveal a babys sex in the first trimester of pregnancy. However, this new modality remains a screening test and actually can complicate decision-making when used as a diagnostic test. This is because it tests both maternal and fetal cell-free DNA and uncovers findings that can be difficult to interpret.
For example, numerous cases have been reported of detecting unknown maternal cancer, which is called occult maternal malignancy. If a cell-free DNA prenatal screen identifies a potential maternal cancer, the affected patient necessarily will embark on a diagnostic hunt for a tumor during an already difficult period of pregnancy. This can be challenging from an insurers perspective as well because finding a tumor based on cell-free DNA prenatal screening results might necessitate expensive imaging studies.
While there is great promise in expanding the technology of cell-free DNA to detect single-gene Mendelian disorders, the American College of Obstetricians and Gynecologists has issued a practice advisory that, there has not been sufficient information regarding accuracy and positive and negative predictive value ... [and thus,] single-gene cell-free DNA screening is not currently recommended in pregnancy (2).
The pace at which new technology is being developed and implemented in clinical settings will undoubtedly stay in the fast lane. As such, laboratorians need to consider how to best integrate novel technologies into clinical practice (or not), striking a responsible balance between true clinical research and ancillary testing.
Using alternate funding sources for clinical research, including risk-sharing partnerships with insurers, has proven successful and may pave the way for clinical research to become true clinical testing. Practice guidelines are extremely valuable but often lag behind advances in technology precisely because they require a high burden of published evidence. An institutional approach utilizing an oversight committee, such as a laboratory stewardship committee, is an effective vehicle for evaluating implementation of new technologies and shifting appropriately from research to clinical testing when sufficient evidence exists for clinical validity and utility.
The genomic testing era is very exciting, and responsibly implementing a collaborative stewardship program is critical for ensuring that we offer the right test to the right patient at the right time.
Tina Lockwood, PhD, DABCC, DABMGG, is an associate professor in the department of laboratory medicine and director of the genetics and solid tumor diagnostics laboratory at the University of Washington in Seattle.+Email: tinalock@uw.edu
Read the rest here:
Lab Stewardship in the Era of Genomic Testing - American Association for Clinical Chemistry (AACC)
- A New Price Tag for Breast Cancer Genetic Testing - Video [Last Updated On: May 4th, 2015] [Originally Added On: May 4th, 2015]
- Genetic testing technologies - Video [Last Updated On: May 4th, 2015] [Originally Added On: May 4th, 2015]
- Prostate Cancer Genetic testing - Video [Last Updated On: May 4th, 2015] [Originally Added On: May 4th, 2015]
- Genetic Testing - Video [Last Updated On: May 4th, 2015] [Originally Added On: May 4th, 2015]
- Genetic Testing - One of the Best Things to Happen to Me - littlemamauk - Video [Last Updated On: May 4th, 2015] [Originally Added On: May 4th, 2015]
- BowelGene - genetic testing - Video [Last Updated On: May 4th, 2015] [Originally Added On: May 4th, 2015]
- Genetic Testing Fact Sheet - National Cancer Institute [Last Updated On: May 22nd, 2015] [Originally Added On: May 22nd, 2015]
- Genetic Testing - Genetics Home Reference [Last Updated On: May 22nd, 2015] [Originally Added On: May 22nd, 2015]
- FAQ About Genetic Testing - Genome.gov [Last Updated On: May 31st, 2015] [Originally Added On: May 31st, 2015]
- Regulation of Genetic Tests [Last Updated On: June 9th, 2015] [Originally Added On: June 9th, 2015]
- Types of Genetic Testing - Genetics Home Reference [Last Updated On: June 29th, 2015] [Originally Added On: June 29th, 2015]
- Genetic Testing: What You Should Know - FamilyDoctor.org [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- Genetic Testing - BRCA1 & BRCA2 Mutations | Susan G. Komen [Last Updated On: July 6th, 2015] [Originally Added On: July 6th, 2015]
- What is genetic testing? - Genetics Home Reference [Last Updated On: July 6th, 2015] [Originally Added On: July 6th, 2015]
- Genomics |Genetic Testing [Last Updated On: August 24th, 2015] [Originally Added On: August 24th, 2015]
- What is genetic testing? - American Cancer Society [Last Updated On: August 24th, 2015] [Originally Added On: August 24th, 2015]
- Genetic testing - WebMD [Last Updated On: September 2nd, 2015] [Originally Added On: September 2nd, 2015]
- Genetic Testing and Screening | Florida Hospital [Last Updated On: September 2nd, 2015] [Originally Added On: September 2nd, 2015]
- Genetic Testing Toledo OH - DNA Diagnostics Center [Last Updated On: September 29th, 2015] [Originally Added On: September 29th, 2015]
- Genetics - Genetic testing and counselling - NHS Choices [Last Updated On: October 25th, 2015] [Originally Added On: October 25th, 2015]
- Genetic Testing Germantown MD - DNA Diagnostics Center [Last Updated On: February 18th, 2016] [Originally Added On: February 18th, 2016]
- GeneDx | Genetic Testing Company | The DNA Diagnostic Experts [Last Updated On: February 18th, 2016] [Originally Added On: February 18th, 2016]
- Genetic Testing - kidshealth.org [Last Updated On: February 24th, 2016] [Originally Added On: February 24th, 2016]
- BRCA1 and BRCA2: Cancer Risk and Genetic Testing [Last Updated On: February 29th, 2016] [Originally Added On: February 29th, 2016]
- Genetic Testing - Breastcancer.org - Breast Cancer ... [Last Updated On: April 4th, 2016] [Originally Added On: April 4th, 2016]
- Frequently Asked Questions About Genetic Testing - Genome.gov [Last Updated On: April 10th, 2016] [Originally Added On: April 10th, 2016]
- Pregnancy & Prenatal Testing: Genetic Testing for Inherited ... [Last Updated On: April 19th, 2016] [Originally Added On: April 19th, 2016]
- Genetic Testing | Family Caregiver Alliance [Last Updated On: April 19th, 2016] [Originally Added On: April 19th, 2016]
- Genetic Testing - American Medical Association [Last Updated On: April 19th, 2016] [Originally Added On: April 19th, 2016]
- Genetic Testing - Cancer Treatment | CTCA [Last Updated On: April 19th, 2016] [Originally Added On: April 19th, 2016]
- genome.gov - FAQ About Genetic Testing [Last Updated On: April 27th, 2016] [Originally Added On: April 27th, 2016]
- Family Cancer Genetics Program at UC San Diego Moores ... [Last Updated On: May 2nd, 2016] [Originally Added On: May 2nd, 2016]
- Genetic Testing - Benefits, costs, and risks of genetic testing [Last Updated On: May 13th, 2016] [Originally Added On: May 13th, 2016]
- Myriad Genetics | Healthcare Professionals | About Genetic ... [Last Updated On: May 13th, 2016] [Originally Added On: May 13th, 2016]
- Genetic Testing | Gluten-Free Society [Last Updated On: May 13th, 2016] [Originally Added On: May 13th, 2016]
- Genetic testing - Canadian Cancer Society [Last Updated On: May 13th, 2016] [Originally Added On: May 13th, 2016]
- Genetic Testing and Molecular Biomarkers [Last Updated On: May 13th, 2016] [Originally Added On: May 13th, 2016]
- genetic testing | Britannica.com [Last Updated On: May 13th, 2016] [Originally Added On: May 13th, 2016]
- Genetic Testing: Best Defense Against Breast Cancer? [Last Updated On: May 13th, 2016] [Originally Added On: May 13th, 2016]
- Genetic Testing | Issue List [Last Updated On: May 13th, 2016] [Originally Added On: May 13th, 2016]
- Jewish Genetics, Part 1: Jewish Populations (Ashkenazim ... [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- What Is Genetic Testing -- Information About Genetic Testing [Last Updated On: June 23rd, 2016] [Originally Added On: June 23rd, 2016]
- Genetic Testing Report - genome.gov [Last Updated On: June 23rd, 2016] [Originally Added On: June 23rd, 2016]
- Good Laboratory Practices for Molecular Genetic Testing ... [Last Updated On: June 26th, 2016] [Originally Added On: June 26th, 2016]
- Genetics and Cancer | American Cancer Society [Last Updated On: July 18th, 2016] [Originally Added On: July 18th, 2016]
- Genetic testing - FSH Society [Last Updated On: September 22nd, 2016] [Originally Added On: September 22nd, 2016]
- Myriad Genetics | Patients & Families | Genetic Testing 101 [Last Updated On: September 22nd, 2016] [Originally Added On: September 22nd, 2016]
- BRCA1 and BRCA2: Cancer Risk and Genetic Testing Fact Sheet ... [Last Updated On: September 22nd, 2016] [Originally Added On: September 22nd, 2016]
- FAQ About Genetic Testing - National Human Genome Research ... [Last Updated On: September 22nd, 2016] [Originally Added On: September 22nd, 2016]
- Genetic testing - Wikipedia [Last Updated On: November 1st, 2016] [Originally Added On: November 1st, 2016]
- Genetic Testing for Cancer Risk | Cancer.Net [Last Updated On: November 25th, 2016] [Originally Added On: November 25th, 2016]
- Cancer Genetics Risk Assessment and Counseling (PDQ ... [Last Updated On: December 20th, 2016] [Originally Added On: December 20th, 2016]
- Patients Who Tested Positive For Genetic Mutations Fear Bias ... - NPR - NPR [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Genetic Testing for the Healthy - Harvard Medical School (registration) [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Genetic testing Overview - Mayo Clinic [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- The real reason why all women should get their DNA tested - Quartz [Last Updated On: July 4th, 2017] [Originally Added On: July 4th, 2017]
- DNA insurance: Why genetic testing could revolutionise the industry - Verdict [Last Updated On: July 4th, 2017] [Originally Added On: July 4th, 2017]
- Everything you need to know about the Government plan for genetic testing to treat cancer patients - BreakingNews.ie [Last Updated On: July 4th, 2017] [Originally Added On: July 4th, 2017]
- Greater access to genetic testing needed for cancer diagnosis and treatment - Cancer Research UK [Last Updated On: July 5th, 2017] [Originally Added On: July 5th, 2017]
- Chief medical officer calls for gene testing revolution - BBC News - BBC News [Last Updated On: July 5th, 2017] [Originally Added On: July 5th, 2017]
- Genetic Testing Facilities and Cost - Breastcancer.org [Last Updated On: July 5th, 2017] [Originally Added On: July 5th, 2017]
- Greater access to genetic testing needed for cancer diagnosis and ... - Medical Xpress [Last Updated On: July 7th, 2017] [Originally Added On: July 7th, 2017]
- Global Breast Cancer Predictive Genetic Testing Market Outlook 2022 - PR Newswire (press release) [Last Updated On: July 7th, 2017] [Originally Added On: July 7th, 2017]
- Invitae: Growth in Genetic Testing - Moneyshow.com (registration) [Last Updated On: July 7th, 2017] [Originally Added On: July 7th, 2017]
- Cystic Fibrosis Among Asians: Why Ethnicity-Based Genetic Testing is Obsolete - PLoS Blogs (blog) [Last Updated On: July 7th, 2017] [Originally Added On: July 7th, 2017]
- Hospital gets cardiac genetic test service created in memory of broadcaster's son - Belfast Telegraph [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- David Frost cardiac genetic testing service opens - BBC News - BBC News [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- UK's chief medical officer calls for gene testing revolution in cancer treatment - Daily Nation [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- Konica Minolta buys US genetic test maker in $1B deal - BioPharma Dive [Last Updated On: July 10th, 2017] [Originally Added On: July 10th, 2017]
- Checking the cost of a genetic test - Chicago Tribune - Chicago Tribune [Last Updated On: July 11th, 2017] [Originally Added On: July 11th, 2017]
- Genomic Testing in Oncology: From Single Genes to Whole Genomes - Labiotech.eu (blog) [Last Updated On: July 12th, 2017] [Originally Added On: July 12th, 2017]
- Direct-To-Consumer Genetic Testing Can Be a Trip Down the Rabbit Hole - Newswise (press release) [Last Updated On: July 12th, 2017] [Originally Added On: July 12th, 2017]
- DNA Diagnostics Center brings four genetic testing options to retail - Drug Store News [Last Updated On: July 12th, 2017] [Originally Added On: July 12th, 2017]
- Jeans for Genes Day stall at Taree City Centre - Gloucester Advocate [Last Updated On: July 31st, 2017] [Originally Added On: July 31st, 2017]
- She thought she was Irish until a DNA test opened a 100-year-old mystery - Chicago Tribune [Last Updated On: July 31st, 2017] [Originally Added On: July 31st, 2017]
- Genetic testing: The new way to identify and train elite athletes? - USA TODAY High School Sports [Last Updated On: July 31st, 2017] [Originally Added On: July 31st, 2017]
- Mail order genetic tests for health risks. How much do you want to ... - KOMO News [Last Updated On: July 31st, 2017] [Originally Added On: July 31st, 2017]
- Genetic Testing: Finding the cause of your infertility ... [Last Updated On: July 31st, 2017] [Originally Added On: July 31st, 2017]
- SF's Invitae to acquire two prenatal genetic screening firms - SFGate [Last Updated On: August 1st, 2017] [Originally Added On: August 1st, 2017]
- For Indian doctors, it's written in the genes not stars - Economic Times [Last Updated On: August 1st, 2017] [Originally Added On: August 1st, 2017]