U.S. Food and Drug Administration Accepts for Priority Review Applications for OPDIVO (nivolumab) in Combination with CABOMETYX (cabozantinib) in…
Posted: October 23, 2020 at 1:53 pm
PRINCETON, N.J. & ALAMEDA, Calif.--(BUSINESS WIRE)--Oct 19, 2020--
Bristol Myers Squibb (NYSE: BMY) and Exelixis, Inc. (NASDAQ: EXEL) today announced that the U.S. Food and Drug Administration (FDA) has accepted the supplemental Biologics License Application (sBLA) and supplemental New Drug Application (sNDA), respectively, for OPDIVO (nivolumab) in combination with CABOMETYX (cabozantinib) for patients with advanced renal cell carcinoma (RCC). The FDA granted Priority Review to both applications and assigned a Prescription Drug User Fee Act (PDUFA) goal date, or target action date, of February 20, 2021.
These filings were based on results from the Phase 3 CheckMate -9ER trial, which evaluated OPDIVO in combination with CABOMETYX in patients with previously untreated advanced RCC versus sunitinib. In CheckMate -9ER, OPDIVO in combination with CABOMETYX demonstrated significant improvements across all efficacy endpoints, including overall survival (OS), progression-free survival (PFS) and objective response rate (ORR), versus the comparator, sunitinib.
We have witnessed practice-changing advancements in the treatment of renal cell carcinoma in recent years, but we recognize the importance of providing patients and physicians with additional options that can help them take control of the disease, said Mark Rutstein, vice president, development program lead, OPDIVO, Bristol Myers Squibb. In the CheckMate -9ER trial, combining OPDIVO and CABOMETYX, two proven agents with strong clinical legacies in advanced renal cell carcinoma, led to superior efficacy across all endpoints. We look forward to working with the FDA to bring this potential treatment option to physicians and their patients who choose an immunotherapy plus tyrosine kinase inhibitor regimen.
With their complementary mechanisms of action and evidence that CABOMETYX may promote a more immune-permissive environment, we believe there is opportunity for additive or synergistic effects with this potential combination regimen, said Gisela Schwab, M.D., president, product development and medical affairs and chief medical officer, Exelixis. Based on strong supporting data from CheckMate -9ER, the acceptance of our application is important progress in our efforts to make CABOMETYX in combination with OPDIVO available to patients with advanced kidney cancer who need additional treatment options. We look forward to working with the FDA throughout the ongoing review process.
The combination of OPDIVO plus CABOMETYX was well tolerated, with a low rate of treatment-related discontinuations, and reflected the known safety profiles of the immunotherapy and tyrosine kinase inhibitor components in patients with previously untreated advanced RCC. In addition, patient-reported outcomes data from CheckMate -9ER showed that OPDIVO in combination with CABOMETYX was associated with statistically significant improvements in health-related quality of life at most time points versus sunitinib. On September 19, 2020, results from the trial were presented as a Proffered Paper during a Presidential Symposium at the European Society for Medical Oncology (ESMO) Virtual Congress 2020.
Bristol Myers Squibb and Exelixis thank the patients and investigators who were involved in the CheckMate -9ER clinical trial.
About CheckMate -9ER
CheckMate -9ER is an open-label, randomized, multi-national Phase 3 trial evaluating patients with previously untreated advanced or metastatic renal cell carcinoma (RCC). A total of 651 patients (23% favorable risk, 58% intermediate risk, 20% poor risk; 25% PD-L11%) were randomized to receive OPDIVO plus CABOMETYX (n=323) vs. sunitinib (n=328). The primary endpoint is progression-free survival (PFS). Secondary endpoints include overall survival (OS) and objective response rate (ORR). The primary efficacy analysis is comparing the doublet combination vs. sunitinib in all randomized patients. The trial is sponsored by Bristol Myers Squibb and Ono Pharmaceutical Co and co-funded by Exelixis, Ipsen and Takeda Pharmaceutical Company Limited.
About Renal Cell Carcinoma
Renal cell carcinoma (RCC) is the most common type of kidney cancer in adults, accounting for more than 140,000 deaths worldwide each year. RCC is approximately twice as common in men as in women, with the highest rates of the disease in North America and Europe. The five-year survival rate for those diagnosed with metastatic, or advanced, kidney cancer is 12.1%.
Bristol Myers Squibb: Advancing Cancer Research
At Bristol Myers Squibb, patients are at the center of everything we do. The goal of our cancer research is to increase patients quality of life, long-term survival and make cure a possibility. We harness our deep scientific experience, cutting-edge technologies and discovery platforms to discover, develop and deliver novel treatments for patients.
Building upon our transformative work and legacy in hematology and Immuno-Oncology that has changed survival expectations for many cancers, our researchers are advancing a deep and diverse pipeline across multiple modalities. In the field of immune cell therapy, this includes registrational CAR T cell agents for numerous diseases, and a growing early-stage pipeline that expands cell and gene therapy targets, and technologies. We are developing cancer treatments directed at key biological pathways using our protein homeostasis platform, a research capability that has been the basis of our approved therapies for multiple myeloma and several promising compounds in early- to mid-stage development. Our scientists are targeting different immune system pathways to address interactions between tumors, the microenvironment and the immune system to further expand upon the progress we have made and help more patients respond to treatment. Combining these approaches is key to delivering potential new options for the treatment of cancer and addressing the growing issue of resistance to immunotherapy. We source innovation internally, and in collaboration with academia, government, advocacy groups and biotechnology companies, to help make the promise of transformational medicines a reality for patients.
About Opdivo
Opdivo is a programmed death-1 (PD-1) immune checkpoint inhibitor that is designed to uniquely harness the bodys own immune system to help restore anti-tumor immune response. By harnessing the bodys own immune system to fight cancer, Opdivo has become an important treatment option across multiple cancers.
Opdivo s leading global development program is based on Bristol Myers Squibbs scientific expertise in the field of Immuno-Oncology and includes a broad range of clinical trials across all phases, including Phase 3, in a variety of tumor types. To date, the Opdivo clinical development program has treated more than 35,000 patients. The Opdivo trials have contributed to gaining a deeper understanding of the potential role of biomarkers in patient care, particularly regarding how patients may benefit from Opdivo across the continuum of PD-L1 expression.
In July 2014, Opdivo was the first PD-1 immune checkpoint inhibitor to receive regulatory approval anywhere in the world. Opdivo is currently approved in more than 65 countries, including the United States, the European Union, Japan and China. In October 2015, the Companys Opdivo and Yervoy combination regimen was the first Immuno-Oncology combination to receive regulatory approval for the treatment of metastatic melanoma and is currently approved in more than 50 countries, including the United States and the European Union.
About CABOMETYX
In the U.S., CABOMETYX tablets are approved for the treatment of patients with advanced RCC and for the treatment of patients with HCC who have been previously treated with sorafenib. CABOMETYX tablets have also received regulatory approvals in the European Union, Japan and additional countries and regions worldwide. In 2016, Exelixis granted Ipsen exclusive rights for the commercialization and further clinical development of cabozantinib outside of the United States and Japan. In 2017, Exelixis granted exclusive rights to Takeda Pharmaceutical Company Limited for the commercialization and further clinical development of cabozantinib for all future indications in Japan. Exelixis holds the exclusive rights to develop and commercialize cabozantinib in the United States.
OPDIVO INDICATIONS
OPDIVO (nivolumab), as a single agent, is indicated for the treatment of patients with unresectable or metastatic melanoma.
OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with unresectable or metastatic melanoma.
OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of adult patients with metastatic non-small cell lung cancer (NSCLC) whose tumors express PD-L1 (1%) as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations.
OPDIVO (nivolumab), in combination with YERVOY (ipilimumab) and 2 cycles of platinum-doublet chemotherapy, is indicated for the first-line treatment of adult patients with metastatic or recurrent non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.
OPDIVO (nivolumab) is indicated for the treatment of patients with metastatic non-small cell lung cancer (NSCLC) with progression on or after platinum-based chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving OPDIVO.
OPDIVO (nivolumab) is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with progression after platinum-based chemotherapy and at least one other line of therapy. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of adult patients with unresectable malignant pleural mesothelioma (MPM).
OPDIVO (nivolumab) is indicated for the treatment of patients with advanced renal cell carcinoma (RCC) who have received prior anti-angiogenic therapy.
OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with intermediate or poor risk, previously untreated advanced renal cell carcinoma (RCC).
OPDIVO (nivolumab) is indicated for the treatment of adult patients with classical Hodgkin lymphoma (cHL) that has relapsed or progressed after autologous hematopoietic stem cell transplantation (HSCT) and brentuximab vedotin or after 3 or more lines of systemic therapy that includes autologous HSCT. This indication is approved under accelerated approval based on overall response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
OPDIVO (nivolumab) is indicated for the treatment of patients with recurrent or metastatic squamous cell carcinoma of the head and neck (SCCHN) with disease progression on or after platinum-based therapy.
OPDIVO (nivolumab) is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma who have disease progression during or following platinum-containing chemotherapy or have disease progression within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
OPDIVO (nivolumab), as a single agent, is indicated for the treatment of adult and pediatric (12 years and older) patients with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer (CRC) that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of adults and pediatric patients 12 years and older with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer (CRC) that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
OPDIVO (nivolumab) is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
OPDIVO (nivolumab) is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph nodes or metastatic disease who have undergone complete resection.
OPDIVO (nivolumab) is indicated for the treatment of patients with unresectable advanced, recurrent or metastatic esophageal squamous cell carcinoma (ESCC) after prior fluoropyrimidine- and platinum-based chemotherapy.
OPDIVO IMPORTANT SAFETY INFORMATION
Severe and Fatal Immune-Mediated Adverse Reactions
Immune-mediated adverse reactions listed herein may not be inclusive of all possible severe and fatal immune-mediated adverse reactions.
Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue. While immune-mediated adverse reactions usually manifest during treatment, they can also occur at any time after starting or discontinuing YERVOY. Early identification and management are essential to ensure safe use of YERVOY. Monitor for signs and symptoms that may be clinical manifestations of underlying immune-mediated adverse reactions. Evaluate clinical chemistries including liver enzymes, creatinine, adrenocorticotropic hormone (ACTH) level, and thyroid function at baseline and before each dose. Institute medical management promptly, including specialty consultation as appropriate.
Withhold or permanently discontinue YERVOY depending on severity. In general, if YERVOY requires interruption or discontinuation, administer systemic corticosteroid therapy (1 to 2 mg/kg/day prednisone or equivalent) until improvement to Grade 1 or less followed by corticosteroid taper for at least 1 month. Consider administration of other systemic immunosuppressants in patients whose immune-mediated adverse reaction is not controlled with corticosteroid therapy. Institute hormone replacement therapy for endocrinopathies as warranted.
Immune-Mediated Pneumonitis
OPDIVO can cause immune-mediated pneumonitis. Fatal cases have been reported. Monitor patients for signs with radiographic imaging and for symptoms of pneumonitis. Administer corticosteroids for Grade 2 or more severe pneumonitis. Permanently discontinue for Grade 3 or 4 and withhold until resolution for Grade 2. In patients receiving OPDIVO monotherapy, fatal cases of immune-mediated pneumonitis have occurred. Immune-mediated pneumonitis occurred in 3.1% (61/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated pneumonitis occurred in 6% (25/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated pneumonitis occurred in 10% (5/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated pneumonitis occurred in 4.4% (24/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated pneumonitis occurred in 1.7% (2/119) of patients. In NSCLC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated pneumonitis occurred in 9% (50/576) of patients, including Grade 4 (0.5%), Grade 3 (3.5%), and Grade 2 (4.0%) immune-mediated pneumonitis. Four patients (0.7%) died due to pneumonitis. The incidence and severity of immune-mediated pneumonitis in patients with NSCLC treated with OPDIVO 360 mg every 3 weeks in combination with YERVOY 1 mg/kg every 6 weeks and 2 cycles of platinum-doublet chemotherapy were comparable to treatment with OPDIVO in combination with YERVOY only. The incidence and severity of immune-mediated pneumonitis in patients with malignant pleural mesothelioma treated with OPDIVO 3 mg/kg every 2 weeks with YERVOY 1 mg/kg every 6 weeks were similar to those occurring in NSCLC.
In Checkmate 205 and 039, pneumonitis, including interstitial lung disease, occurred in 6.0% (16/266) of patients receiving OPDIVO. Immune-mediated pneumonitis occurred in 4.9% (13/266) of patients receiving OPDIVO: Grade 3 (n=1) and Grade 2 (n=12).
Immune-Mediated Colitis
OPDIVO can cause immune-mediated colitis. Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 (of more than 5 days duration), 3, or 4 colitis. Withhold OPDIVO monotherapy for Grade 2 or 3 and permanently discontinue for Grade 4 or recurrent colitis upon re-initiation of OPDIVO. When administered with YERVOY, withhold OPDIVO and YERVOY for Grade 2 and permanently discontinue for Grade 3 or 4 or recurrent colitis. In patients receiving OPDIVO monotherapy, immune-mediated colitis occurred in 2.9% (58/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated colitis occurred in 26% (107/407) of patients including three fatal cases. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated colitis occurred in 10% (5/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated colitis occurred in 10% (52/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated colitis occurred in 7% (8/119) of patients.
In a separate Phase 3 trial of YERVOY 3 mg/kg, immune-mediated diarrhea/colitis occurred in 12% (62/511) of patients, including Grade 3-5 (7%).
Cytomegalovirus (CMV) infection/reactivation has been reported in patients with corticosteroid-refractory immune-mediated colitis. In cases of corticosteroid-refractory colitis, consider repeating infectious workup to exclude alternative etiologies. Addition of an alternative immunosuppressive agent to the corticosteroid therapy, or replacement of the corticosteroid therapy, should be considered in corticosteroid-refractory immune-mediated colitis if other causes are excluded.
Immune-Mediated Hepatitis
OPDIVO can cause immune-mediated hepatitis. Monitor patients for abnormal liver tests prior to and periodically during treatment. Administer corticosteroids for Grade 2 or greater transaminase elevations. For patients without HCC, withhold OPDIVO for Grade 2 and permanently discontinue OPDIVO for Grade 3 or 4. For patients with HCC, withhold OPDIVO and administer corticosteroids if AST/ALT is within normal limits at baseline and increases to >3 and up to 5 times the upper limit of normal (ULN), if AST/ALT is >1 and up to 3 times ULN at baseline and increases to >5 and up to 10 times the ULN, and if AST/ALT is >3 and up to 5 times ULN at baseline and increases to >8 and up to 10 times the ULN. Permanently discontinue OPDIVO and administer corticosteroids if AST or ALT increases to >10 times the ULN or total bilirubin increases >3 times the ULN. In patients receiving OPDIVO monotherapy, immune-mediated hepatitis occurred in 1.8% (35/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated hepatitis occurred in 13% (51/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated hepatitis occurred in 20% (10/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated hepatitis occurred in 7% (38/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated hepatitis occurred in 8% (10/119) of patients.
In Checkmate 040, immune-mediated hepatitis requiring systemic corticosteroids occurred in 5% (8/154) of patients receiving OPDIVO.
In a separate Phase 3 trial of YERVOY 3 mg/kg, immune-mediated hepatitis occurred in 4.1% (21/511) of patients, including Grade 3-5 (1.6%).
Immune-Mediated Endocrinopathies
OPDIVO can cause immune-mediated hypophysitis, immune-mediated adrenal insufficiency, autoimmune thyroid disorders, and Type 1 diabetes mellitus. Monitor patients for signs and symptoms of hypophysitis, signs and symptoms of adrenal insufficiency, thyroid function prior to and periodically during treatment, and hyperglycemia. Withhold for Grades 2, 3, or 4 endocrinopathies if not clinically stable. Administer hormone replacement as clinically indicated and corticosteroids for Grade 2 or greater hypophysitis. Withhold for Grade 2 or 3 and permanently discontinue for Grade 4 hypophysitis. Administer corticosteroids for Grade 3 or 4 adrenal insufficiency. Withhold for Grade 2 and permanently discontinue for Grade 3 or 4 adrenal insufficiency. Administer hormone-replacement therapy for hypothyroidism. Initiate medical management for control of hyperthyroidism. Withhold OPDIVO for Grade 3 and permanently discontinue for Grade 4 hyperglycemia.
In patients receiving OPDIVO monotherapy, hypophysitis occurred in 0.6% (12/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, hypophysitis occurred in 9% (36/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, hypophysitis occurred in 4% (2/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, hypophysitis occurred in 4.6% (25/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated hypophysitis occurred in 3.4% (4/119) of patients. In patients receiving OPDIVO monotherapy, adrenal insufficiency occurred in 1% (20/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, adrenal insufficiency occurred in 5% (21/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, adrenal insufficiency occurred in 18% (9/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, adrenal insufficiency occurred in 7% (41/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, adrenal insufficiency occurred in 5.9% (7/119) of patients. In patients receiving OPDIVO monotherapy, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 9% (171/1994) of patients. Hyperthyroidism occurred in 2.7% (54/1994) of patients receiving OPDIVO monotherapy. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 22% (89/407) of patients. Hyperthyroidism occurred in 8% (34/407) of patients receiving this dose of OPDIVO with YERVOY. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 22% (11/49) of patients. Hyperthyroidism occurred in 10% (5/49) of patients receiving this dose of OPDIVO with YERVOY. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 22% (119/547) of patients. Hyperthyroidism occurred in 12% (66/547) of patients receiving this dose of OPDIVO with YERVOY. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 15% (18/119) of patients. Hyperthyroidism occurred in 12% (14/119) of patients. In patients receiving OPDIVO monotherapy, diabetes occurred in 0.9% (17/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, diabetes occurred in 1.5% (6/407) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, diabetes occurred in 2.7% (15/547) of patients.
In a separate Phase 3 trial of YERVOY 3 mg/kg, severe to life-threatening endocrinopathies occurred in 9 (1.8%) patients. All 9patients had hypopituitarism, and some had additional concomitant endocrinopathies such as adrenal insufficiency, hypogonadism, and hypothyroidism. Six of the 9 patients were hospitalized for severe endocrinopathies.
Immune-Mediated Nephritis and Renal Dysfunction
OPDIVO can cause immune-mediated nephritis. Monitor patients for elevated serum creatinine prior to and periodically during treatment. Administer corticosteroids for Grades 2-4 increased serum creatinine. Withhold OPDIVO for Grade 2 or 3 and permanently discontinue for Grade 4 increased serum creatinine. In patients receiving OPDIVO monotherapy, immune-mediated nephritis and renal dysfunction occurred in 1.2% (23/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated nephritis and renal dysfunction occurred in 2.2% (9/407) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated nephritis and renal dysfunction occurred in 4.6% (25/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated nephritis and renal dysfunction occurred in 1.7% (2/119) of patients.
Immune-Mediated Skin and Dermatologic Adverse Reactions
OPDIVO can cause immune-mediated rash, including Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), some cases with fatal outcome. Administer corticosteroids for Grade 3 or 4 rash. Withhold for Grade 3 and permanently discontinue for Grade 4 rash. For symptoms or signs of SJS or TEN, withhold OPDIVO and refer the patient for specialized care for assessment and treatment; if confirmed, permanently discontinue. In patients receiving OPDIVO monotherapy, immune-mediated rash occurred in 9% (171/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated rash occurred in 22.6% (92/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated rash occurred in 35% (17/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated rash occurred in 16% (90/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated rash occurred in 14% (17/119) of patients.
YERVOY can cause immune-mediated rash or dermatitis, including bullous and exfoliative dermatitis, Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate non-bullous exfoliative rashes. Withhold YERVOY until specialist assessment for Grade 2 and permanently discontinue for Grade 3 or 4 exfoliative or bullous dermatologic conditions.
In a separate Phase 3 trial of YERVOY 3 mg/kg, immune-mediated rash occurred in 15% (76/511) of patients, including Grade 3-5 (2.5%).
Immune-Mediated Encephalitis
OPDIVO can cause immune-mediated encephalitis. Fatal cases have been reported. Evaluation of patients with neurologic symptoms may include, but not be limited to, consultation with a neurologist, brain MRI, and lumbar puncture. Withhold OPDIVO in patients with new-onset moderate to severe neurologic signs or symptoms and evaluate to rule out other causes. If other etiologies are ruled out, administer corticosteroids and permanently discontinue OPDIVO for immune-mediated encephalitis. In patients receiving OPDIVO monotherapy, encephalitis occurred in 0.2% (3/1994) of patients. Fatal limbic encephalitis occurred in one patient after 7.2 months of exposure despite discontinuation of OPDIVO and administration of corticosteroids. Encephalitis occurred in one melanoma patient receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg (0.2%) after 1.7 months of exposure. Encephalitis occurred in one RCC patient receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg (0.2%) after approximately 4 months of exposure. Encephalitis occurred in one MSI-H/dMMR mCRC patient (0.8%) receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg after 15 days of exposure.
Other Immune-Mediated Adverse Reactions
Based on the severity of the adverse reaction, permanently discontinue or withhold OPDIVO, administer high-dose corticosteroids, and, if appropriate, initiate hormone-replacement therapy. Dose modifications for YERVOY for adverse reactions that require management different from these general guidelines are summarized as follows. Withhold for Grade 2 and permanently discontinue YERVOY for Grade 3 or 4 neurological toxicities. Withhold for Grade 2 and permanently discontinue YERVOY for Grade 3 or 4 myocarditis. Permanently discontinue YERVOY for Grade 2, 3, or 4 ophthalmologic adverse reactions that do not improve to Grade 1 within 2 weeks while receiving topical therapy OR that require systemic therapy. Across clinical trials of OPDIVO monotherapy or in combination with YERVOY , the following clinically significant immune-mediated adverse reactions, some with fatal outcome, occurred in <1.0% of patients receiving OPDIVO: myocarditis, rhabdomyolysis, myositis, uveitis, iritis, pancreatitis, facial and abducens nerve paresis, demyelination, polymyalgia rheumatica, autoimmune neuropathy, Guillain-Barr syndrome, hypopituitarism, systemic inflammatory response syndrome, gastritis, duodenitis, sarcoidosis, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), motor dysfunction, vasculitis, aplastic anemia, pericarditis, myasthenic syndrome, hemophagocytic lymphohistiocytosis (HLH), and autoimmune hemolytic anemia. In addition to the immune-mediated adverse reactions listed above, across clinical trials of YERVOY monotherapy or in combination with OPDIVO, the following clinically significant immune-mediated adverse reactions, some with fatal outcome, occurred in <1% of patients unless otherwise specified: autoimmune neuropathy (2%), meningitis, encephalitis, myelitis and demyelination, myasthenic syndrome/myasthenia gravis, nerve paresis, angiopathy, temporal arteritis, pancreatitis (1.3%), arthritis, polymyositis, conjunctivitis, cytopenias (2.5%), eosinophilia (2.1%), erythema multiforme, hypersensitivity vasculitis, neurosensory hypoacusis, psoriasis, blepharitis, episcleritis, orbital myositis, scleritis, and solid organ transplant rejection. Some cases of ocular IMARs have been associated with retinal detachment.
If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Harada-like syndrome, which has been observed in patients receiving OPDIVO and YERVOY and may require treatment with systemic steroids to reduce the risk of permanent vision loss.
Infusion-Related Reactions
OPDIVO can cause severe infusion-related reactions, which have been reported in <1.0% of patients in clinical trials. Discontinue OPDIVO in patients with Grade 3 or 4 infusion-related reactions. Interrupt or slow the rate of infusion in patients with Grade 1 or 2. Severe infusion-related reactions can also occur with YERVOY. Discontinue YERVOY in patients with severe or life-threatening infusion reactions and interrupt or slow the rate of infusion in patients with mild or moderate infusion reactions. In patients receiving OPDIVO monotherapy as a 60-minute infusion,infusion-relatedreactions occurred in 6.4%(127/1994) of patients. In a separate trial in which patients received OPDIVO monotherapy as a 60-minute infusion or a 30-minute infusion, infusion-related reactions occurred in 2.2% (8/368) and 2.7% (10/369) of patients, respectively. Additionally, 0.5% (2/368) and 1.4% (5/369) of patients, respectively, experienced adverse reactions within 48 hours of infusion that led to dose delay, permanent discontinuation or withholding of OPDIVO. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, infusion-related reactions occurred in 2.5% (10/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, infusion-related reactions occurred in 8% (4/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, infusion-related reactions occurred in 5.1% (28/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, infusion-related reactions occurred in 4.2% (5/119) of patients. In MPM patients receiving OPDIVO 3 mg/kg every 2 weeks with YERVOY 1 mg/kg every 6 weeks, infusion-related reactions occurred in 12% (37/300) of patients.
In separate Phase 3 trials of YERVOY 3 mg/kg and 10 mg/kg, infusion-related reactions occurred in 2.9% (28/982).
Complications of Allogeneic Hematopoietic Stem Cell Transplantation
Fatal and other serious complications can occur in patients who receive allogeneic hematopoietic stem cell transplantation (HSCT) before or after being treated with a PD-1 receptor blocking antibody or YERVOY. Transplant-related complications include hyperacute graft-versus-host-disease (GVHD), acute GVHD, chronic GVHD, hepatic veno-occlusive disease (VOD) after reduced intensity conditioning, and steroid-requiring febrile syndrome (without an identified infectious cause). These complications may occur despite intervening therapy between PD-1 or CTLA-4 receptor blockade and allogeneic HSCT.
Follow patients closely for evidence of transplant-related complications and intervene promptly. Consider the benefit versus risks of treatment with a PD-1 receptor blocking antibody or YERVOY prior to or after an allogeneic HSCT.
Embryo-Fetal Toxicity
Based on mechanism of action, OPDIVO and YERVOY can cause fetal harm when administered to a pregnant woman. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment with OPDIVO or YERVOY and for at least 5 months after the last dose.
Increased Mortality in Patients with Multiple Myeloma when OPDIVO is Added to a Thalidomide Analogue and Dexamethasone
In clinical trials in patients with multiple myeloma, the addition of OPDIVO to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of patients with multiple myeloma with a PD-1 or PD-L1 blocking antibody in combination with a thalidomide analogue plus dexamethasone is not recommended outside of controlled clinical trials.
Lactation
It is not known whether OPDIVO or YERVOY is present in human milk. Because many drugs, including antibodies, are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from OPDIVO or YERVOY, advise women not to breastfeed during treatment and for at least 5 months after the last dose.
Serious Adverse Reactions
In Checkmate 037, serious adverse reactions occurred in 41% of patients receiving OPDIVO (n=268). Grade 3 and 4 adverse reactions occurred in 42% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse drug reactions reported in 2% to <5% of patients receiving OPDIVO were abdominal pain, hyponatremia, increased aspartate aminotransferase, and increased lipase. In Checkmate 066, serious adverse reactions occurred in 36% of patients receiving OPDIVO (n=206). Grade 3 and 4 adverse reactions occurred in 41% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse reactions reported in 2% of patients receiving OPDIVO were gamma-glutamyltransferase increase (3.9%) and diarrhea (3.4%). In Checkmate 067, serious adverse reactions (74% and 44%), adverse reactions leading to permanent discontinuation (47% and 18%) or to dosing delays (58% and 36%), and Grade 3 or 4 adverse reactions (72% and 51%) all occurred more frequently in the OPDIVO plus YERVOY arm (n=313) relative to the OPDIVO arm (n=313). The most frequent (10%) serious adverse reactions in the OPDIVO plus YERVOY arm and the OPDIVO arm, respectively, were diarrhea (13% and 2.2%), colitis (10% and 1.9%), and pyrexia (10% and 1.0%). In Checkmate 227, serious adverse reactions occurred in 58% of patients (n=576). The most frequent (2%) serious adverse reactions were pneumonia, diarrhea/colitis, pneumonitis, hepatitis, pulmonary embolism, adrenal insufficiency, and hypophysitis. Fatal adverse reactions occurred in 1.7% of patients; these included events of pneumonitis (4 patients), myocarditis, acute kidney injury, shock, hyperglycemia, multi-system organ failure, and renal failure. In Checkmate 9LA, serious adverse reactions occurred in 57% of patients (n=358). The most frequent (>2%) serious adverse reactions were pneumonia, diarrhea, febrile neutropenia, anemia, acute kidney injury, musculoskeletal pain, dyspnea, pneumonitis, and respiratory failure. Fatal adverse reactions occurred in 7 (2%) patients, and included hepatic toxicity, acute renal failure, sepsis, pneumonitis, diarrhea with hypokalemia, and massive hemoptysis in the setting of thrombocytopenia. In Checkmate 017 and 057, serious adverse reactions occurred in 46% of patients receiving OPDIVO (n=418). The most frequent serious adverse reactions reported in 2% of patients receiving OPDIVO were pneumonia, pulmonary embolism, dyspnea, pyrexia, pleural effusion, pneumonitis, and respiratory failure. In Checkmate 032, serious adverse reactions occurred in 45% of patients receiving OPDIVO (n=245). The most frequent serious adverse reactions reported in 2% of patients receiving OPDIVO were pneumonia, dyspnea, pneumonitis, pleural effusion, and dehydration. In Checkmate 743, serious adverse reactions occurred in 54% of patients receiving OPDIVO plus YERVOY. The most frequent serious adverse reactions reported in 2% of patients were pneumonia, pyrexia, diarrhea, pneumonitis, pleural effusion, dyspnea, acute kidney injury, infusion-related reaction, musculoskeletal pain, and pulmonary embolism. Fatal adverse reactions occurred in 4 (1.3%) patients and included pneumonitis, acute heart failure, sepsis, and encephalitis. In Checkmate 025, serious adverse reactions occurred in 47% of patients receiving OPDIVO (n=406). The most frequent serious adverse reactions reported in 2% of patients were acute kidney injury, pleural effusion, pneumonia, diarrhea, and hypercalcemia. In Checkmate 214, serious adverse reactions occurred in 59% of patients receiving OPDIVO plus YERVOY. The most frequent serious adverse reactions reported in 2% of patients were diarrhea, pyrexia, pneumonia, pneumonitis, hypophysitis, acute kidney injury, dyspnea, adrenal insufficiency, and colitis. In Checkmate 205 and 039, adverse reactions leading to discontinuation occurred in 7% and dose delays due to adverse reactions occurred in 34% of patients (n=266). Serious adverse reactions occurred in 26% of patients. The most frequent serious adverse reactions reported in 1% of patients were pneumonia, infusion-related reaction, pyrexia, colitis or diarrhea, pleural effusion, pneumonitis, and rash. Eleven patients died from causes other than disease progression: 3 from adverse reactions within 30 days of the last OPDIVO dose, 2 from infection 8 to 9 months after completing OPDIVO, and 6 from complications of allogeneic HSCT. In Checkmate 141, serious adverse reactions occurred in 49% of patients receiving OPDIVO (n=236). The most frequent serious adverse reactions reported in 2% of patients receiving OPDIVO were pneumonia, dyspnea, respiratory failure, respiratory tract infection, and sepsis. In Checkmate 275, serious adverse reactions occurred in 54% of patients receiving OPDIVO (n=270). The most frequent serious adverse reactions reported in 2% of patients receiving OPDIVO were urinary tract infection, sepsis, diarrhea, small intestine obstruction, and general physical health deterioration. In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO with YERVOY, serious adverse reactions occurred in 47% of patients. The most frequent serious adverse reactions reported in 2% of patients were colitis/diarrhea, hepatic events, abdominal pain, acute kidney injury, pyrexia, and dehydration. In Checkmate 040, serious adverse reactions occurred in 49% of patients receiving OPDIVO (n=154). The most frequent serious adverse reactions reported in 2% of patients were pyrexia, ascites, back pain, general physical health deterioration, abdominal pain, pneumonia, and anemia. In Checkmate 040, serious adverse reactions occurred in 59% of patients receiving OPDIVO with YERVOY (n=49). Serious adverse reactions reported in 4% of patients were pyrexia, diarrhea, anemia, increased AST, adrenal insufficiency, ascites, esophageal varices hemorrhage, hyponatremia, increased blood bilirubin, and pneumonitis. In Checkmate 238, Grade 3 or 4 adverse reactions occurred in 25% of OPDIVO-treated patients (n=452). The most frequent Grade 3 and 4 adverse reactions reported in 2% of OPDIVO-treated patients were diarrhea and increased lipase and amylase. Serious adverse reactions occurred in 18% of OPDIVO-treated patients. In Attraction-3, serious adverse reactions occurred in 38% of patients receiving OPDIVO (n=209). Serious adverse reactions reported in 2% of patients who received OPDIVO were pneumonia, esophageal fistula, interstitial lung disease and pyrexia. The following fatal adverse reactions occurred in patients who received OPDIVO: interstitial lung disease or pneumonitis (1.4%), pneumonia (1.0%), septic shock (0.5%), esophageal fistula (0.5%), gastrointestinal hemorrhage (0.5%), pulmonary embolism (0.5%), and sudden death (0.5%).
Common Adverse Reactions
In Checkmate 037, the most common adverse reaction (20%) reported with OPDIVO (n=268) was rash (21%). In Checkmate 066, the most common adverse reactions (20%) reported with OPDIVO (n=206) vs dacarbazine (n=205) were fatigue (49% vs 39%), musculoskeletal pain (32% vs 25%), rash (28% vs 12%), and pruritus (23% vs 12%). In Checkmate 067, the most common (20%) adverse reactions in the OPDIVO plus YERVOY arm (n=313) were fatigue (62%), diarrhea (54%), rash (53%), nausea (44%), pyrexia (40%), pruritus (39%), musculoskeletal pain (32%), vomiting (31%), decreased appetite (29%), cough (27%), headache (26%), dyspnea (24%), upper respiratory tract infection (23%), arthralgia (21%), and increased transaminases (25%). In Checkmate 067, the most common (20%) adverse reactions in the OPDIVO arm (n=313) were fatigue (59%), rash (40%), musculoskeletal pain (42%), diarrhea (36%), nausea (30%), cough (28%), pruritus (27%), upper respiratory tract infection (22%), decreased appetite (22%), headache (22%), constipation (21%), arthralgia (21%), and vomiting (20%). In Checkmate 227, the most common (20%) adverse reactions were fatigue (44%), rash (34%), decreased appetite (31%), musculoskeletal pain (27%), diarrhea/colitis (26%), dyspnea (26%), cough (23%), hepatitis (21%), nausea (21%), and pruritus (21%). In Checkmate 9LA, the most common (>20%) adverse reactions were fatigue (49%), musculoskeletal pain (39%), nausea (32%), diarrhea (31%), rash (30%), decreased appetite (28%), constipation (21%), and pruritus (21%). In Checkmate 017 and 057, the most common adverse reactions (20%) in patients receiving OPDIVO (n=418) were fatigue, musculoskeletal pain, cough, dyspnea, and decreased appetite. In Checkmate 032, the most common adverse reactions (20%) in patients receiving OPDIVO (n=245) were fatigue (45%), decreased appetite (27%), musculoskeletal pain (25%), dyspnea (22%), nausea (22%), diarrhea (21%), constipation (20%), and cough (20%). In Checkmate 743, the most common adverse reactions (20%) in patients receiving OPDIVO and YERVOY were fatigue (43%), musculoskeletal pain (38%), rash (34%), diarrhea (32%), dyspnea (27%), nausea (24%), decreased appetite (24%), cough (23%), and pruritus (21%). In Checkmate 025, the most common adverse reactions (20%) reported in patients receiving OPDIVO (n=406) vs everolimus (n=397) were fatigue (56% vs 57%), cough (34% vs 38%), nausea (28% vs 29%), rash (28% vs 36%), dyspnea (27% vs 31%), diarrhea (25% vs 32%), constipation (23% vs 18%), decreased appetite (23% vs 30%), back pain (21% vs 16%), and arthralgia (20% vs 14%). In Checkmate 214, the most common adverse reactions (20%) reported in patients treated with OPDIVO plus YERVOY (n=547) were fatigue (58%), rash (39%), diarrhea (38%), musculoskeletal pain (37%), pruritus (33%), nausea (30%), cough (28%), pyrexia (25%), arthralgia (23%), decreased appetite (21%), dyspnea (20%), and vomiting (20%). In Checkmate 205 and 039, the most common adverse reactions (20%) reported in patients receiving OPDIVO (n=266) were upper respiratory tract infection (44%), fatigue (39%), cough (36%), diarrhea (33%), pyrexia (29%), musculoskeletal pain (26%), rash (24%), nausea (20%) and pruritus (20%). In Checkmate 141, the most common adverse reactions (10%) in patients receiving OPDIVO (n=236) were cough and dyspnea at a higher incidence than investigators choice. In Checkmate 275, the most common adverse reactions (20%) reported in patients receiving OPDIVO (n=270) were fatigue (46%), musculoskeletal pain (30%), nausea (22%), and decreased appetite (22%). In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO as a single agent, the most common adverse reactions (20%) were fatigue (54%), diarrhea (43%), abdominal pain (34%), nausea (34%), vomiting (28%), musculoskeletal pain (28%), cough (26%), pyrexia (24%), rash (23%), constipation (20%), and upper respiratory tract infection (20%). In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO with YERVOY, the most common adverse reactions (20%) were fatigue (49%), diarrhea (45%), pyrexia (36%), musculoskeletal pain (36%), abdominal pain (30%), pruritus (28%), nausea (26%), rash (25%), decreased appetite (20%), and vomiting (20%). In Checkmate 040, the most common adverse reactions (20%) in patients receiving OPDIVO (n=154) were fatigue (38%), musculoskeletal pain (36%), abdominal pain (34%), pruritus (27%), diarrhea (27%), rash (26%), cough (23%), and decreased appetite (22%). In Checkmate 040, the most common adverse reactions (20%) in patients receiving OPDIVO with YERVOY (n=49), were rash (53%), pruritus (53%), musculoskeletal pain (41%), diarrhea (39%), cough (37%), decreased appetite (35%), fatigue (27%), pyrexia (27%), abdominal pain (22%), headache (22%), nausea (20%), dizziness (20%), hypothyroidism (20%), and weight decreased (20%). In Checkmate 238, the most common adverse reactions (20%) reported in OPDIVO-treated patients (n=452) vs ipilimumab-treated patients (n=453) were fatigue (57% vs 55%), diarrhea (37% vs 55%), rash (35% vs 47%), musculoskeletal pain (32% vs 27%), pruritus (28% vs 37%), headache (23% vs 31%), nausea (23% vs 28%), upper respiratory infection (22% vs 15%), and abdominal pain (21% vs 23%). The most common immune-mediated adverse reactions were rash (16%), diarrhea/colitis (6%), and hepatitis (3%). In Attraction-3, the most common adverse reactions occurring in 20% of OPDIVO-treated patients (n=209) were rash (22%) and decreased appetite (21%).
In a separate Phase 3 trial of YERVOY 3 mg/kg, the most common adverse reactions (5%) in patients who received YERVOY at 3 mg/kg were fatigue (41%), diarrhea (32%), pruritus (31%), rash (29%), and colitis (8%).
Please see U.S. Full Prescribing Information for OPDIVO and YERVOY.
Checkmate Trials and Patient Populations
Checkmate 037previously treated metastatic melanoma; Checkmate 066previously untreated metastatic melanoma; Checkmate 067previously untreated metastatic melanoma, as a single agent or in combination with YERVOY; Checkmate 227previously untreated metastatic non-small cell lung cancer, in combination with YERVOY; Checkmate 9LApreviously untreated recurrent or metastatic non-small cell lung cancer in combination with YERVOY and 2 cycles of platinum-doublet chemotherapy by histology; Checkmate 017second-line treatment of metastatic squamous non-small cell lung cancer; Checkmate 057second-line treatment of metastatic non-squamous non-small cell lung cancer; Checkmate 032small cell lung cancer; Checkmate 743 previously untreated unresectable malignant pleural mesothelioma, in combination with YERVOY; Checkmate 025previously treated renal cell carcinoma; Checkmate 214previously untreated renal cell carcinoma, in combination with YERVOY; Checkmate 205/039classical Hodgkin lymphoma; Checkmate 141recurrent or metastatic squamous cell carcinoma of the head and neck; Checkmate 275urothelial carcinoma; Checkmate 142MSI-H or dMMR metastatic colorectal cancer, as a single agent or in combination with YERVOY; Checkmate 040hepatocellular carcinoma, as a single agent or in combination with YERVOY; Checkmate 238adjuvant treatment of melanoma; Attraction-3esophageal squamous cell carcinoma
CABOMETYX Important Safety Information
Warnings and Precautions
Hemorrhage: Severe and fatal hemorrhages occurred with CABOMETYX. The incidence of Grade 3 to 5 hemorrhagic events was 5% in CABOMETYX patients in RCC and HCC studies. Discontinue CABOMETYX for Grade 3 or 4 hemorrhage. Do not administer CABOMETYX to patients who have a recent history of hemorrhage, including hemoptysis, hematemesis, or melena.
Perforations and Fistulas: Gastrointestinal (GI) perforations, including fatal cases, occurred in 1% of CABOMETYX patients. Fistulas, including fatal cases, occurred in 1% of CABOMETYX patients. Monitor patients for signs and symptoms of perforations and fistulas, including abscess and sepsis. Discontinue CABOMETYX in patients who experience a Grade 4 fistula or a GI perforation.
Thrombotic Events: CABOMETYX increased the risk of thrombotic events. Venous thromboembolism occurred in 7% (including 4% pulmonary embolism) and arterial thromboembolism in 2% of CABOMETYX patients. Fatal thrombotic events occurred in CABOMETYX patients. Discontinue CABOMETYX in patients who develop an acute myocardial infarction or serious arterial or venous thromboembolic event requiring medical intervention.
Hypertension and Hypertensive Crisis: CABOMETYX can cause hypertension, including hypertensive crisis. Hypertension occurred in 36% (17% Grade 3 and <1% Grade 4) of CABOMETYX patients. Do not initiate CABOMETYX in patients with uncontrolled hypertension. Monitor blood pressure regularly during CABOMETYX treatment. Withhold CABOMETYX for hypertension that is not adequately controlled with medical management; when controlled, resume at a reduced dose. Discontinue CABOMETYX for severe hypertension that cannot be controlled with anti-hypertensive therapy or for hypertensive crisis.
Diarrhea: Diarrhea occurred in 63% of CABOMETYX patients. Grade 3 diarrhea occurred in 11% of CABOMETYX patients. Withhold CABOMETYX until improvement to Grade 1 and resume at a reduced dose for intolerable Grade 2 diarrhea, Grade 3 diarrhea that cannot be managed with standard antidiarrheal treatments, or Grade 4 diarrhea.
Palmar-Plantar Erythrodysesthesia (PPE): PPE occurred in 44% of CABOMETYX patients. Grade 3 PPE occurred in 13% of CABOMETYX patients. Withhold CABOMETYX until improvement to Grade 1 and resume at a reduced dose for intolerable Grade 2 PPE or Grade 3 PPE.
Proteinuria: Proteinuria occurred in 7% of CABOMETYX patients. Monitor urine protein regularly during CABOMETYX treatment. Discontinue CABOMETYX in patients who develop nephrotic syndrome.
Osteonecrosis of the Jaw (ONJ): ONJ occurred in <1% of CABOMETYX patients. ONJ can manifest as jaw pain, osteomyelitis, osteitis, bone erosion, tooth or periodontal infection, toothache, gingival ulceration or erosion, persistent jaw pain, or slow healing of the mouth or jaw after dental surgery. Perform an oral examination prior to CABOMETYX initiation and periodically during treatment. Advise patients regarding good oral hygiene practices. Withhold CABOMETYX for at least 3 weeks prior to scheduled dental surgery or invasive dental procedures, if possible. Withhold CABOMETYX for development of ONJ until complete resolution.
- Frequently asked HYPOPITUITARY questions....and their ... [Last Updated On: May 4th, 2015] [Originally Added On: May 4th, 2015]
- Hypopituitarism: Causes, Symptoms, & Treatment [Last Updated On: May 4th, 2015] [Originally Added On: May 4th, 2015]
- Hypopituitarism | University of Maryland Medical Center [Last Updated On: May 4th, 2015] [Originally Added On: May 4th, 2015]
- Hypopituitarism - Wikipedia, the free encyclopedia [Last Updated On: May 4th, 2015] [Originally Added On: May 4th, 2015]
- Hypopituitary: Learn Hypopituitarism Causes and Symptoms [Last Updated On: May 27th, 2015] [Originally Added On: May 27th, 2015]
- Hypopituitarism in Children: Get Information About Symptoms [Last Updated On: May 27th, 2015] [Originally Added On: May 27th, 2015]
- Pituitary Network Association - Disorders - Hypopituitarism [Last Updated On: May 30th, 2015] [Originally Added On: May 30th, 2015]
- Hypopituitarism and Hypopituitarism Resources - What is ... [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- Hypopituitarism - Symptoms, Diagnosis, Treatment and ... [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- Hypopituitarism | Johns Hopkins Medicine Health Library [Last Updated On: July 8th, 2015] [Originally Added On: July 8th, 2015]
- Hypopituitarism Symptoms and Treatment | Hormone Health ... [Last Updated On: August 17th, 2015] [Originally Added On: August 17th, 2015]
- Clinically Non-Functioning Pituitary Adenomas | UCLA ... [Last Updated On: February 1st, 2016] [Originally Added On: February 1st, 2016]
- Hypopituitarism | The Pituitary Foundation [Last Updated On: February 19th, 2016] [Originally Added On: February 19th, 2016]
- Hypopituitarism: Check Your Symptoms and Signs [Last Updated On: February 27th, 2016] [Originally Added On: February 27th, 2016]
- Hypopituitarism - Symptoms, Diagnosis and Treatment [Last Updated On: February 27th, 2016] [Originally Added On: February 27th, 2016]
- Hypopituitarism Hypopituitarism Hypopituitarism [Last Updated On: February 27th, 2016] [Originally Added On: February 27th, 2016]
- What Is Hypopituitarism (Dwarfism)? - Child Growth and ... [Last Updated On: March 3rd, 2016] [Originally Added On: March 3rd, 2016]
- Hypopituitarism | Boston Children's Hospital [Last Updated On: March 4th, 2016] [Originally Added On: March 4th, 2016]
- Symptoms and causes - Hypopituitarism - Mayo Clinic [Last Updated On: May 8th, 2016] [Originally Added On: May 8th, 2016]
- Hypopituitarism - RightDiagnosis.com [Last Updated On: May 24th, 2016] [Originally Added On: May 24th, 2016]
- Hypopituitarism - Hormonal and Metabolic Disorders - Merck ... [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- Hypopituitarism. [Last Updated On: August 20th, 2016] [Originally Added On: August 20th, 2016]
- Symptoms of Hypopituitarism - RightDiagnosis.com [Last Updated On: August 31st, 2016] [Originally Added On: August 31st, 2016]
- Hypopituitary: Pituitary Gland Disorder Causes & Treatments [Last Updated On: August 31st, 2016] [Originally Added On: August 31st, 2016]
- Panhypopituitarism: Background, Pathophysiology, Epidemiology [Last Updated On: August 31st, 2016] [Originally Added On: August 31st, 2016]
- Hypopituitarism Hypopituitarism [Last Updated On: August 31st, 2016] [Originally Added On: August 31st, 2016]
- Hypopituitarism - Wikipedia [Last Updated On: October 21st, 2016] [Originally Added On: October 21st, 2016]
- Suzy's story - hypopituitarism | The Pituitary Foundation [Last Updated On: November 17th, 2016] [Originally Added On: November 17th, 2016]
- Hypopituitarism (Panhypopituitarism): Background ... [Last Updated On: November 28th, 2016] [Originally Added On: November 28th, 2016]
- Hypopituitarism-Panhypopituitarism [Last Updated On: November 29th, 2016] [Originally Added On: November 29th, 2016]
- Hypopituitarism in Children Causes, Symptoms, Treatment ... [Last Updated On: December 7th, 2016] [Originally Added On: December 7th, 2016]
- What is Hypopituitarism, Pituitary Insufficiency | Hormone.org [Last Updated On: December 7th, 2016] [Originally Added On: December 7th, 2016]
- Evaluation of ICD-10 algorithms to identify hypopituitary patients in the Danish National Patient Registry - Dove Medical Press [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Yeovil Hospital sorry for charges of over 400 wrongly sent to stressed mum of disabled girl - Somerset Live [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Hyperprolactinaemia: diagnosis and management - GP online [Last Updated On: February 16th, 2017] [Originally Added On: February 16th, 2017]
- Hopsital apologises to mother for parking fines caused by faulty system - View News [Last Updated On: February 24th, 2017] [Originally Added On: February 24th, 2017]
- Fundraiser Sunday to benefit Creek infant - Daily Union [Last Updated On: February 24th, 2017] [Originally Added On: February 24th, 2017]
- New autoimmune disease triggered by thymomas - Science Daily [Last Updated On: March 2nd, 2017] [Originally Added On: March 2nd, 2017]
- Hypopituitarism - familydoctor.org [Last Updated On: March 8th, 2017] [Originally Added On: March 8th, 2017]
- Joanna Lane:: Brain injury can cause treatable pituitary disorder - Madison.com [Last Updated On: March 10th, 2017] [Originally Added On: March 10th, 2017]
- Hypopituatarism - a lesser-known effect of traumatic brain injury - Lexology (registration) [Last Updated On: March 10th, 2017] [Originally Added On: March 10th, 2017]
- Cold Springs FCCLA brings home state awards - Cullman Times Online [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- Thymomas Trigger Newly Described Autoimmune Endocrine Disease - Oncology Nurse Advisor [Last Updated On: March 21st, 2017] [Originally Added On: March 21st, 2017]
- Fighting Cancer With Fundraising: Meet Milwaukee's Dr. John Hanson - Milwaukee Magazine [Last Updated On: March 24th, 2017] [Originally Added On: March 24th, 2017]
- Penn Medicine Researchers Receive Distinguished Investigator Awards - Newswise (press release) [Last Updated On: March 28th, 2017] [Originally Added On: March 28th, 2017]
- Hypopituitarism Symptoms, Causes & 8 Natural Remedies [Last Updated On: March 31st, 2017] [Originally Added On: March 31st, 2017]
- Growth Hormone Deficiency Following Complicated Mild Traumatic Brain Injury - Lexology (registration) [Last Updated On: April 9th, 2017] [Originally Added On: April 9th, 2017]
- Shannen's illnesslife-threatening or not? - Trinidad & Tobago Express [Last Updated On: April 18th, 2017] [Originally Added On: April 18th, 2017]
- Hypopituitarism. Medical information about Hypopituitarism ... [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- FDA Grants BAVENCIO (avelumab) Approval for a Common Type of Advanced Bladder Cancer - PR Newswire (press release) [Last Updated On: May 10th, 2017] [Originally Added On: May 10th, 2017]
- Clinton child battles rare genetic disorder - Utica Observer Dispatch [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Treatment of hypopituitarism - uptodate.com [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Male Hypogonadism Market Deep Research Study with Forecast by 2025 - Digital Journal [Last Updated On: July 12th, 2017] [Originally Added On: July 12th, 2017]
- Hormone Replacement Therapy Market: Global Industry Analysis, Size, Share, Growth, Trends, and Forecasts 2016 ... - Digital Journal [Last Updated On: July 31st, 2017] [Originally Added On: July 31st, 2017]
- Hormone Replacement Therapy Market: Industry Players to Show High Growth Rate by 2024 - Monotone Critic [Last Updated On: July 31st, 2017] [Originally Added On: July 31st, 2017]
- What Is Hypopituitarism (Dwarfism)? - Verywell [Last Updated On: August 4th, 2017] [Originally Added On: August 4th, 2017]
- The Pituitary Society | Glossary of Terms Related to ... [Last Updated On: August 14th, 2017] [Originally Added On: August 14th, 2017]
- Hypopituitarism | You and Your Hormones from the Society ... [Last Updated On: August 21st, 2017] [Originally Added On: August 21st, 2017]
- Severe hyponatremia due to hypopituitarism with adrenal ... [Last Updated On: September 20th, 2017] [Originally Added On: September 20th, 2017]
- Pituitary Disorders - labtestsonline.org [Last Updated On: January 7th, 2018] [Originally Added On: January 7th, 2018]
- Prevalence of Hypopituitarism in Veterans 42% A NEW ... [Last Updated On: February 7th, 2018] [Originally Added On: February 7th, 2018]
- LABOKLIN (UK)| Genetic Diseases | Dogs| Dwarfism ... [Last Updated On: February 8th, 2018] [Originally Added On: February 8th, 2018]
- Hypopituitarism: Causes, Symptoms, and Treatment [Last Updated On: February 28th, 2018] [Originally Added On: February 28th, 2018]
- Hypopituitarism - Symptoms and causes - Mayo Clinic [Last Updated On: February 28th, 2018] [Originally Added On: February 28th, 2018]
- Generalized Hypopituitarism - Endocrine and Metabolic ... [Last Updated On: March 5th, 2018] [Originally Added On: March 5th, 2018]
- Hypopituitary: Hypopituitarism Causes, Symptoms & Treatment [Last Updated On: March 26th, 2018] [Originally Added On: March 26th, 2018]
- Hypopituitarism - Symptoms, Causes, Diagnosis and Treatment - Prime Health Channel [Last Updated On: April 8th, 2018] [Originally Added On: April 8th, 2018]
- Hypopituitarism | Hormone Health Network [Last Updated On: April 24th, 2018] [Originally Added On: April 24th, 2018]
- Hypopituitarism in Kids: Definition, Symptoms, Treatment [Last Updated On: May 11th, 2018] [Originally Added On: May 11th, 2018]
- Hypopituitarism - Diagnosis and treatment - Mayo Clinic [Last Updated On: June 4th, 2018] [Originally Added On: June 4th, 2018]
- What is hypopituitarism? | The Pituitary Foundation [Last Updated On: July 12th, 2018] [Originally Added On: July 12th, 2018]
- Hypopituitarism in Children | Children's Hospital of Philadelphia [Last Updated On: July 12th, 2018] [Originally Added On: July 12th, 2018]
- OMIM Entry - # 146510 - PALLISTER-HALL SYNDROME; PHS [Last Updated On: July 26th, 2018] [Originally Added On: July 26th, 2018]
- Hypopituitarism | Lifespan [Last Updated On: August 23rd, 2018] [Originally Added On: August 23rd, 2018]
- Panhypopituitarism: Practice Essentials, Pathophysiology ... [Last Updated On: August 23rd, 2018] [Originally Added On: August 23rd, 2018]
- Hypopituitarism | You and Your Hormones from the Society for ... [Last Updated On: August 23rd, 2018] [Originally Added On: August 23rd, 2018]
- Hypopituitarism Treatment & Causes | Lurie Children's [Last Updated On: October 3rd, 2018] [Originally Added On: October 3rd, 2018]
- Hypopituitarism Disease Reference Guide - Drugs.com [Last Updated On: October 3rd, 2018] [Originally Added On: October 3rd, 2018]
- Hypopituitarism | UCLA Health [Last Updated On: October 7th, 2018] [Originally Added On: October 7th, 2018]
- Steroid Replacement Doses for Hypopituitary Patients ... [Last Updated On: January 24th, 2019] [Originally Added On: January 24th, 2019]