Induced pluripotent stem cell therapy – Wikipedia, the …
Posted: May 19, 2015 at 11:44 pm
In 2006, Shinya Yamanaka of Kyoto University in Japan was the first to disprove the previous notion that reversible cell differentiation of mammals was impossible. He reprogrammed a fully differentiated mouse cell into a pluripotent stem cell by introducing four genes, Oct-4, SOX2, KLF4, and Myc, into the mouse fibroblast through gene-carrying viruses. With this method, he and his coworkers created induced pluripotent stem cells (iPS cells), the key component in this experiment.[1] Scientists have been able to conduct experiments that show the ability of iPS cells to treat and even cure diseases. In this experiment, tests were run on mice with inherited sickle cell anemia.Skin cells were turned into cells containing genes that transformed the cells into iPS cells. These replaced the diseased sickled cells, curing the test mice. The reprogramming of the pluripotent stem cells in mice was successfully duplicated with human pluripotent stem cells within about a year of the experiment on the mice.
Sickle cell anemia is a disease in which the body produces abnormally shaped red blood cells. Red blood cells are flexible and round, moving easily through the blood vessels. Infected cells are shaped like a crescent or sickle (the namesake of the disease). As a result of this disorder the hemoglobin protein in red blood cells is faulty. Normal hemoglobin bonds to oxygen, then releases it into cells that need it. The blood cell retains its original form and is cycled back to the lungs and re-oxygenated.
Sickle cell hemoglobin, however, after giving up oxygen, cling together and make the red blood cell stiff. The sickle shape also makes it difficult for the red blood cell to navigate arteries and causes blockages.[2] This can cause intense pain and organ damage. The sickled red blood cells are fragile and prone to rupture. When the number of red blood cells decreases from rupture (hemolysis), anemia is the result. Sickle cells also die in 1020 days as opposed to the traditional 120-day lifespan of a normal red blood cell.
Sickle cell anemia is inherited as an autosomal (meaning that the gene is not linked to a sex chromosome) recessive condition.[2] This means that the gene can be passed on from a carrier to his or her children. In order for sickle cell anemia to affect a person, the gene must be inherited from both the mother and the father, so that the child has two recessive sickle cell genes (a homozygous inheritance). People who inherit one sickle cell gene from one parent and one normal gene from the other parent, i.e. heterozygous patients, have a condition called sickle cell trait. Their bodies make both sickle hemoglobin and normal hemoglobin. They may pass the trait on to their children.
The effects of sickle cell anemia vary from person to person. People who have the disease suffer from varying degrees of chronic pain and fatigue. With proper care and treatment, the quality of health of most patients will improve. Doctors have learned a great deal about sickle cell anemia since its discovery in 1979. They know its causes, its effects on the body, and possible treatments for complications. Sickle cell anemia has no widely available cure. A bone marrow transplant is the only treatment method currently recognized to be able to cure the disease, though it does not work for every patient. Finding a donor is difficult and the procedure could potentially do more harm than good. Treatments for sickle cell anemia are generally aimed at avoiding crises, relieving symptoms, and preventing complications. Such treatments may include medications, blood transfusions, and supplemental oxygen.
During the first step of the experiment, skin cells (also known as fibroblasts) were collected from infected test mice and put in a culture. The fibroblasts were reprogrammed by infecting them with retroviruses that contained genes common to embryonic stem cells. These genes were the same four used by Yamanaka (Oct-4, SOX2, KLF4, and Myc) in his earlier study. The investigators were trying to produce cells with the potential to differentiate into any type of cell needed (i.e. pluripotent stem cells). As the experiment continued, the fibroblasts multiplied into identical copies of iPS cells. The cells were then treated to form the mutation needed to reverse the anemia in the mice. This was accomplished by restructuring the DNA containing the defective globin gene into DNA with the normal gene through the process of homologous recombination. The iPS cells then differentiated into blood stem cells, or hematopoietic stem cells. The hematopoietic cells were injected back into the infected mice, where they proliferate and differentiate into normal blood cells, curing the mice of the disease.[3][4][verification needed]
To determine whether the mice were cured from the disease, the scientists checked for the usual symptoms of sickle cell disease. They examined the blood for mean corpuscular volume (MCV) and red cell distribution width (RDW) and urine concentration defects. They also checked for sickled red blood cells. They examined the DNA through gel electrophoresis, checking for bands that display an allele that causes sickling. Compared to the untreated mice with the disease, which they used as a control, the treated animals had marked increases in RBC counts, healthy hemoglobin, and packed cell volume levels.[5]
Researchers examined the urine concentration defect, which results from RBC sickling in renal tubules and consequent reduction in renal medullary blood flow, and the general deteriorated systemic condition reflected by lower body weight and increased breathing.[5] They were able to see that these parts of the body of the mice had healed or improved. This indicated that all hematological and systemic parameters of sickle cell anemia improved substantially and were comparable to those in control mice.[5] They cannot say if this will work in humans because a safe way to inject the genes for the induced pluripotent cells is still needed.[citation needed]
The reprogramming of the induced pluripotent stem cells in mice was successfully duplicated in humans within a year of the successful experiment on the mice. This reprogramming was done in several labs and it was shown that the iPS cells in humans were almost identical to original embryonic stem cells (ES cells) that are responsible for the creation of all structures in a fetus.[1] An important feature of iPS cells is that they can be generated with cells taken from an adult, which would circumvent many of the ethical problems associated with working with ES cells. These iPS cells also have potential in creating and examining new disease models and developing more efficient drug treatments.[6] Another feature of these cells is that they provide researchers with a human cell sample, as opposed to simply using an animal with similar DNA, for drug testing.
One major problem with iPS cells is the way in which the cells are reprogrammed. Using gene-carrying viruses has the potential to cause iPS cells to develop into cancerous cells.[1] Also, an implant made using undifferentiated iPS cells, could cause a teratoma to form. Any implant that is generated from using these iPS cells would only be viable for transplant into the original subject that the cells were taken from. In order for these iPS cells to become viable in therapeutic use, there are still many steps that must be taken.[5][7]
Read the rest here:
Induced pluripotent stem cell therapy - Wikipedia, the ...
- Ying Liu discusses IPS cell therapy for ALS [Last Updated On: August 6th, 2011] [Originally Added On: August 6th, 2011]
- IPs cells Part 1 [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Stem Cell Implications for ALS (Amyotrophic Lateral Sclerosis) [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- A Century of Stem Cells - Johns Hopkins Medicine [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Myelin Repair Foundation on Stem Cell Research [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- Jeanne Loring talks about stem cells, part 2 [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- IPs Cells Part 4 [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- Embryonic Stem Cells From Skin: Making Old Cells Young [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- National Medical Report [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- National Medical Report [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- Jeanne Loring talks about stem cells, part 3 [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- Kristopher Nazor 2 [Last Updated On: September 9th, 2011] [Originally Added On: September 9th, 2011]
- Myelin Repair Foundation on Stem Cell Research [Last Updated On: September 9th, 2011] [Originally Added On: September 9th, 2011]
- Dr. Oz to Oprah and Michael J Fox: "The stem cell debate is dead." [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- Dr. Oz to Oprah and Michael J Fox: "The stem cell debate is dead." [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- Andalusian Stem Cell Bank [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- IPs cells Part3 [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- Andalusian Stem Cell Bank [Last Updated On: September 11th, 2011] [Originally Added On: September 11th, 2011]
- IPs Cells Part 4 [Last Updated On: September 11th, 2011] [Originally Added On: September 11th, 2011]
- iPS Stem Cell-Based Treatment of Epidermolysis Bullosa [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- Jeanne Loring talks about stem cells, part 1 [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- Jeanne Loring talks about stem cells, part 2 [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- Jeanne Loring talks about stem cells, part 3 [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- Kristopher Nazor 2 [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- Stem Cell Implications for ALS (Amyotrophic Lateral Sclerosis) [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- IPs cells Part 2 [Last Updated On: September 13th, 2011] [Originally Added On: September 13th, 2011]
- Cellular Reprogramming Stem Cell Domain Name For Sale! - CellularReprogramming.com [Last Updated On: September 14th, 2011] [Originally Added On: September 14th, 2011]
- Cellular Reprogramming Stem Cell Domain Name For Sale! - CellularReprogramming.com [Last Updated On: September 19th, 2011] [Originally Added On: September 19th, 2011]
- IPs cells Part 2 [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Healthy Body = Functional Body. Hollywood Look Side Effect: Healthy Function [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Hollywood, Smith [Last Updated On: October 1st, 2011] [Originally Added On: October 1st, 2011]
- Manning, Owens Try Stem Cell Therapy [Last Updated On: October 4th, 2011] [Originally Added On: October 4th, 2011]
- Epidermolysis Bullosa: Corrected iPS Stem Cell-Based Therapy - Video [Last Updated On: October 13th, 2011] [Originally Added On: October 13th, 2011]
- Spinal Cord Injury - Embryonic Stem Cells - Dr. Keirstead - Video [Last Updated On: October 15th, 2011] [Originally Added On: October 15th, 2011]
- Introduction to Stem Cells - Video [Last Updated On: October 15th, 2011] [Originally Added On: October 15th, 2011]
- Parkinson's Disease: Progress and Promise in Stem Cell Research - Video [Last Updated On: October 16th, 2011] [Originally Added On: October 16th, 2011]
- Visions Episode 92: Stem Cells Discovery - Video [Last Updated On: October 16th, 2011] [Originally Added On: October 16th, 2011]
- James Bond Sam Botta Roger Moore I Married A Beautiful Woman - Video [Last Updated On: October 17th, 2011] [Originally Added On: October 17th, 2011]
- James Bond Sam Botta Roger Moore I Married A Beautiful Woman - Video [Last Updated On: October 18th, 2011] [Originally Added On: October 18th, 2011]
- induced pluripotent stem (iPS) cells: Part 2 - Video [Last Updated On: October 25th, 2011] [Originally Added On: October 25th, 2011]
- TEACHERS OWN CALPERS/GID Managed Apartments, Teachers EVICTING Paraplegic - Video [Last Updated On: November 5th, 2011] [Originally Added On: November 5th, 2011]
- TEACHERS OWN CALPERS/GID Managed Apartments, Teachers EVICTING Paraplegic - Video [Last Updated On: November 6th, 2011] [Originally Added On: November 6th, 2011]
- Stem Cells Could Repair Heart [11-14-2011] - Video [Last Updated On: November 21st, 2011] [Originally Added On: November 21st, 2011]
- Advantages Seroquel - Video [Last Updated On: December 6th, 2011] [Originally Added On: December 6th, 2011]
- induced pluripotent stem (iPS) cells: Part 2 - Video [Last Updated On: December 6th, 2011] [Originally Added On: December 6th, 2011]
- Advantages Seroquel - Video [Last Updated On: December 6th, 2011] [Originally Added On: December 6th, 2011]
- stem cell research - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- Ian Wilmut discusses stem cell and direct cellular transformation therapy - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- Lec 22 | MIT 16.885J Aircraft Systems Engineering, Fall 2005 - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- Paralyzed rat walks with own stem cells in 11 wks. - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- Lec 22 | MIT 16.885J Aircraft Systems Engineering, Fall 2005 - Video [Last Updated On: December 8th, 2011] [Originally Added On: December 8th, 2011]
- Jeff Bluestone: Immune rejection of stem cell transplants - Video [Last Updated On: December 8th, 2011] [Originally Added On: December 8th, 2011]
- Advances in Stem Cell Research: Shinya Yamanaka - Video [Last Updated On: December 10th, 2011] [Originally Added On: December 10th, 2011]
- 2011 Summit: Stem Cells, Reprogramming and Personalized Medicine, Rudolf Jaenisch, MD - Video [Last Updated On: December 14th, 2011] [Originally Added On: December 14th, 2011]
- Parkinson's Disease: Advancing Stem Cell Therapies - 2011 CIRM Grantee Meeting - Video [Last Updated On: January 19th, 2012] [Originally Added On: January 19th, 2012]
- Parkinson's Disease: Advancing Stem Cell Therapies - 2011 CIRM Grantee Meeting - Video [Last Updated On: January 20th, 2012] [Originally Added On: January 20th, 2012]
- Professor Alan Trounson - World focus on stem cell research - Video [Last Updated On: January 26th, 2012] [Originally Added On: January 26th, 2012]
- Professor Alan Trounson - World focus on stem cell research - Video [Last Updated On: January 26th, 2012] [Originally Added On: January 26th, 2012]
- Researchers turn skin cells into neural precusors, bypassing stem-cell stage [Last Updated On: January 31st, 2012] [Originally Added On: January 31st, 2012]
- Skin cells turned into neural precusors, bypassing stem-cell stage [Last Updated On: February 1st, 2012] [Originally Added On: February 1st, 2012]
- “Wide-ranging applications for pluripotent stem cells” [Last Updated On: February 2nd, 2012] [Originally Added On: February 2nd, 2012]
- New era of medicine in the offing, says scientist [Last Updated On: February 5th, 2012] [Originally Added On: February 5th, 2012]
- EC transfers Basti Commissioner to pacify agitating IPS officers [Last Updated On: February 7th, 2012] [Originally Added On: February 7th, 2012]
- Radiation treatment transforms breast cancer cells into cancer stem cells [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- Radiation treatment generates cancer stem cells from less aggressive breast cancer cells, study suggests [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- Radiation Treatment Generates Cancer Stem Cells from Less Aggressive Breast Cancer Cells [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- Life Technologies Scientist Uma Lakshmipathy presents, "Solving Challenges in the Generation of Induced Pluripotent ... [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- Radiation therapy transforms breast cancer cells into cancer stem cells [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- Radiation treatment transforms breast cancer cells into cancer stem cells [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- Radiation treatment generates cancer stem cells from less aggressive breast cancer cells, study suggests [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- Life Technologies Scientist Uma Lakshmipathy presents, "Solving Challenges in the Generation of Induced Pluripotent ... [Last Updated On: February 15th, 2012] [Originally Added On: February 15th, 2012]
- Radiation Treatment Generates Cancer Stem Cells from Less Aggressive Breast Cancer Cells [Last Updated On: February 15th, 2012] [Originally Added On: February 15th, 2012]
- Horizon in new super-cell elite [Last Updated On: February 16th, 2012] [Originally Added On: February 16th, 2012]
- albuterol adverse effects - Video [Last Updated On: February 21st, 2012] [Originally Added On: February 21st, 2012]
- Presentations at the Society of Toxicology Annual Meeting Demonstrate Superior Predictivity of Cellular Dynamics ... [Last Updated On: March 8th, 2012] [Originally Added On: March 8th, 2012]
- A new approach to treating type I diabetes? Gut cells transformed into insulin factories [Last Updated On: March 11th, 2012] [Originally Added On: March 11th, 2012]
- New approach to treating type 1 diabetes? Transforming gut cells into insulin factories [Last Updated On: March 11th, 2012] [Originally Added On: March 11th, 2012]
- New approach to treating type 1 diabetes? Transforming gut cells into insulin factories [Last Updated On: March 11th, 2012] [Originally Added On: March 11th, 2012]
- A new approach to treating type I diabetes? Gut cells transformed into insulin factories [Last Updated On: March 11th, 2012] [Originally Added On: March 11th, 2012]
- Gut cells transformed into insulin factories 'could help to treat type I diabetes' [Last Updated On: March 12th, 2012] [Originally Added On: March 12th, 2012]