Stroke and Stem Cell Therapy

Posted: December 18, 2013 at 9:42 pm

Gypenosides pre-treatment protects the brain against cerebral ischemia and increases neural stem cells/progenitors in the subventricular zone.

Gypenosides pre-treatment protects the brain against cerebral ischemia and increases neural stem cells/progenitors in the subventricular zone.

Int J Dev Neurosci. 2013 Dec 12;

Authors: Wang XJ, Sun T, Kong L, Shang ZH, Yang KQ, Zhang QY, Jing FM, Dong L, Xu XF, Liu JX, Xin H, Chen ZY

Abstract Gypenosides (GPs) have been reported to have neuroprotective effects in addition to other bioactivities. The protective activity of GPs during stroke and their effects on neural stem cells (NSCs) in the ischemic brain have not been fully elucidated. Here, we test the effects of GPs during stroke and on the NSCs within the subventricular zone (SVZ) of middle cerebral artery occlusion (MCAO) rats. Our results show that pre-treatment with GPs can reduce infarct volume and improve motor function following MCAO. Pre-treatment with GPs significantly increased the number of BrdU-positive cells in the ipsilateral and contralateral SVZ of MCAO rats. The proliferating cells in both sides of the SVZ were glial fibrillary acidic protein (GFAP)/nestin-positive type B cells and Doublecortin (DCX)/nestin-positive type A cells. Our data indicate that GPs have neuroprotective effects during stroke which might be mediated through the enhancement of neurogenesis within the SVZ. These findings provide new evidence for a potential therapy involving GPs for the treatment of stroke.

PMID: 24334222 [PubMed - as supplied by publisher]

Cell based therapies for ischemic stroke: from basic science to bedside.

Prog Neurobiol. 2013 Dec 12;

Authors: Liu X, Ye R, Yan T, Yu SP, Wei L, Xu G, Fan X, Jiang Y, Stetler RA, Chen J

Abstract Cell therapy is emerging as a viable therapy to restore neurological function after stroke. Many types of stem/progenitor cells from different sources have been explored for their feasibility and efficacy for the treatment of stroke. Transplanted cells not only have the potential to replace the lost circuitry, but also produce growth and trophic factors, or stimulate the release of such factors from host brain cells, thereby enhancing endogenous brain repair processes. Although stem/progenitor cells have shown a promising role in ischemic stroke in experimental studies as well as initial clinical pilot studies, cellular therapy is still at an early stage in humans. Many critical issues need to be addressed including the therapeutic time window, cell type selection, delivery route, and in vivo monitoring of their migration pattern. This review attempts to provide a comprehensive synopsis of preclinical evidence and clinical experience of various donor cell types, their restorative mechanisms, delivery routes, imaging strategies, future prospects and challenges for translating cell therapies as a neurorestorative regimen in clinical applications.

See the rest here:
Stroke and Stem Cell Therapy

Related Posts

Comments are closed.

Archives