Waiting to Reprogram Your Cells? Don’t Hold Your Breath – Scientific American
Posted: March 15, 2017 at 7:47 pm
Guiding a recent tour of a Kyoto University lab, a staff member holds up a transparent container. Inside are tiny pale spheres, no bigger than peas, floating in a clear liquid. This is cartilage, explains the guide, Hiroyuki Wadahama. It was made here from human iPS cells.
A monitor attached to a nearby microscope shows a mass of pink and purple dots. This is the stuff from which the cartilage was grown: induced pluripotent stem cells, often called iPS cells. Scientists can create these seemingly magical cells from any cell in the body by introducing four genes, in essence turning back the cellular clock to an immature, nonspecialized state. The term pluripotent refers to the fact iPS cells can be reprogrammed to become any type of cell, from skin to liver to nerve cells. In this way they act like embryonic stem cells and share their revolutionary therapeutic potentialand as such, they could eliminate the need for using and then destroying human embryos. Also, iPS cells can proliferate infinitely.
They can also give rise, however, to potentially dangerous mutations, possibly including ones that lead to cancerous tumors. Thus, iPS cells are a double-edged swordtheir great promise is tempered by risk. Another problem is the high cost of treating a patient with his or her own newly reprogrammed cells. But now Japanese researchers are trying a different approach.
When Kyoto University researcher Shinya Yamanaka announced in 2006 that his lab had created iPS cells from mouse skin cells for the first time, biologists were stunned. In 2007, along with James Thomson of the University of WisconsinMadison, Yamanaka repeated the feat with human skin cells. Many hailed the opening of an entirely new field of personalized regenerative medicine. Need new liver cells? No problem. Patients could benefit from having their own cells reprogrammed into ones that could help treat disease, potentially eliminating the prospect of immune rejection. In 2012 Yamanaka shared the Nobel Prize in Physiology or Medicine with John Gurdon for discovering that mature cells can be converted to stem cells. By reprogramming human cells, scientists have created new opportunities to study diseases and develop methods for diagnosis and therapy, the Nobel judges wrote. To capitalize on the discovery, Kyoto University set up the $40-million Center for iPS Cell Research and Application (CiRA), which Yamanaka directs.
A decade after the Yamanaka teams groundbreaking discoveries, however, iPS cells have retreated from the headlines; to the layperson, progress seems scant. There has only been one clinical trial involving iPS cells, and it was halted after a transplant operation on just one patienta Japanese woman in her 70s with macular degeneration, a condition that can lead to blurry vision or partial blindness. Doctors at Kobe City Medical Center General Hospital used her skin cells to grow iPS cells, which were reprogrammed into retinal cells and implanted in her eye. The treatment stopped the degeneration but the trial was halted in 2015 because genetic mutations were detected in another batch of iPS cells intended for another patient. Regulatory changes, under which the Japanese government allowed the distribution of iPS cells for clinical use, also prompted researchers to switch the study to a more efficient process of using cells from third-party donors instead of using a patients own cells. The Japanese government has a lot of incentives to considerwere developing a new science, a new technology and also a new economic market, says CiRA spokesperson Peter Karagiannis. So theres the ethical issues, but theres also money to be made. How do we balance the two?
The Kobe clinical trial had a lot riding on it. And the setback followed a major stem cell scandal in which biologist Haruko Obokata of the Riken Center for Developmental Biology was found to have falsified data in studies, published in 2014, that claimed a new method of achieving pluripotency. Then, earlier this year, Yamanaka had to apologize at a news conference after it was discovered that a reagent used to create iPS cells at CiRA was mislabeled, which could mean the wrong reagent was used. Although the mix-up is being examined, the center has halted supplies of some of its iPS cells to researchers across Japan; the error also set back by a few years a CiRA project to produce clinical-grade platelets from iPS cells.
But Yamanaka says he remains focused on the bigger picture of iPS cells and is still optimistic they can not only help researchers but may be key to transformative clinical therapies. CiRA still has a bank of tens of millions of iPS cells that have already been reset and checked for safety, so they can be used in patient applications. In terms of regenerative medicine, things have gone quicker than I expected, Yamanaka says, adding, iPS cells have exceeded expectations because of their potential for disease modeling, which allows us to elucidate unknown disease mechanisms, and drug discovery.
Those hoping for quick clinical success should remember it takes time for revolutionary treatments to go from lab bench to bedside, says Andras Nagy, a stem cell researcher at Mount Sinai Hospitals LunenfeldTanenbaum Research Institute in Toronto, who has not been directly involved in Yamanakas work. If you fully appreciate the paradigm-shifting nature of iPS cells, tremendous progress has in fact been made over the past 10 years, says Nagy, who in 2009 established a method of creating stem cells without using viruses (which had initially been used to deliver reprogramming genes into targeted cells). By comparison, penicillin was discovered as an antibiotic in 1928, but it was not available in the clinic until the early 1940s.
Researchers in Japan are meanwhile using iPS cell technology to pave the way to better drugs. For instance, CiRAs Kohei Yamamizu recently reported developing a cellular model of the bloodbrain barrier made entirely from human iPS cells. It could become a useful tool for testing drugs for brain diseases.
All eyes, however, are back on Kobe City Medical Center General Hospital, which is resuming its retina trialthis time with iPS cells from donors instead of cells from patients themselves. Using CiRAs bank of iPS cells, there are significant time and cost savingsit could be one fifth the cost of cell preparation and patient transplant or less. The initial study, with its personalized approach, reportedly cost about $875,000 for just one patient. We plan to evaluate the efficacy of transplanting the [donor] cells and consider the feasibility of using this method as a routine treatment in the future, accessible to the wider society, study co-leader Masayo Takahashi of the RIKEN Center for Developmental Biology said at a February press conference in Kobe. Her husband Jun Takahashi, a researcher at CiRA, is also planning to use donor-derived iPS cells for a clinical applicationto help treat patients with Parkinsons disease.
Nagy admits the promise of personalized cell regeneration is probably too costly for mainstream use, and he believes genomic editingin which DNA is inserted or deletedis key to safe iPS cell implants. For his part, Yamanaka is cautiously optimistic about iPS cells as a therapeutic tool.
Regenerative medicine and drug discovery are the two key applications for iPS cells, Yamanaka says. With the use of iPS cell stock, we are now able to work quicker and cheaper, so thats the challenge going forward.
Read the original post:
Waiting to Reprogram Your Cells? Don't Hold Your Breath - Scientific American
- Ying Liu discusses IPS cell therapy for ALS [Last Updated On: August 6th, 2011] [Originally Added On: August 6th, 2011]
- IPs cells Part 1 [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Stem Cell Implications for ALS (Amyotrophic Lateral Sclerosis) [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- A Century of Stem Cells - Johns Hopkins Medicine [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Myelin Repair Foundation on Stem Cell Research [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- Jeanne Loring talks about stem cells, part 2 [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- IPs Cells Part 4 [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- Embryonic Stem Cells From Skin: Making Old Cells Young [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- National Medical Report [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- National Medical Report [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- Jeanne Loring talks about stem cells, part 3 [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- Kristopher Nazor 2 [Last Updated On: September 9th, 2011] [Originally Added On: September 9th, 2011]
- Myelin Repair Foundation on Stem Cell Research [Last Updated On: September 9th, 2011] [Originally Added On: September 9th, 2011]
- Dr. Oz to Oprah and Michael J Fox: "The stem cell debate is dead." [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- Dr. Oz to Oprah and Michael J Fox: "The stem cell debate is dead." [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- Andalusian Stem Cell Bank [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- IPs cells Part3 [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- Andalusian Stem Cell Bank [Last Updated On: September 11th, 2011] [Originally Added On: September 11th, 2011]
- IPs Cells Part 4 [Last Updated On: September 11th, 2011] [Originally Added On: September 11th, 2011]
- iPS Stem Cell-Based Treatment of Epidermolysis Bullosa [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- Jeanne Loring talks about stem cells, part 1 [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- Jeanne Loring talks about stem cells, part 2 [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- Jeanne Loring talks about stem cells, part 3 [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- Kristopher Nazor 2 [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- Stem Cell Implications for ALS (Amyotrophic Lateral Sclerosis) [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- IPs cells Part 2 [Last Updated On: September 13th, 2011] [Originally Added On: September 13th, 2011]
- Cellular Reprogramming Stem Cell Domain Name For Sale! - CellularReprogramming.com [Last Updated On: September 14th, 2011] [Originally Added On: September 14th, 2011]
- Cellular Reprogramming Stem Cell Domain Name For Sale! - CellularReprogramming.com [Last Updated On: September 19th, 2011] [Originally Added On: September 19th, 2011]
- IPs cells Part 2 [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Healthy Body = Functional Body. Hollywood Look Side Effect: Healthy Function [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Hollywood, Smith [Last Updated On: October 1st, 2011] [Originally Added On: October 1st, 2011]
- Manning, Owens Try Stem Cell Therapy [Last Updated On: October 4th, 2011] [Originally Added On: October 4th, 2011]
- Epidermolysis Bullosa: Corrected iPS Stem Cell-Based Therapy - Video [Last Updated On: October 13th, 2011] [Originally Added On: October 13th, 2011]
- Spinal Cord Injury - Embryonic Stem Cells - Dr. Keirstead - Video [Last Updated On: October 15th, 2011] [Originally Added On: October 15th, 2011]
- Introduction to Stem Cells - Video [Last Updated On: October 15th, 2011] [Originally Added On: October 15th, 2011]
- Parkinson's Disease: Progress and Promise in Stem Cell Research - Video [Last Updated On: October 16th, 2011] [Originally Added On: October 16th, 2011]
- Visions Episode 92: Stem Cells Discovery - Video [Last Updated On: October 16th, 2011] [Originally Added On: October 16th, 2011]
- James Bond Sam Botta Roger Moore I Married A Beautiful Woman - Video [Last Updated On: October 17th, 2011] [Originally Added On: October 17th, 2011]
- James Bond Sam Botta Roger Moore I Married A Beautiful Woman - Video [Last Updated On: October 18th, 2011] [Originally Added On: October 18th, 2011]
- induced pluripotent stem (iPS) cells: Part 2 - Video [Last Updated On: October 25th, 2011] [Originally Added On: October 25th, 2011]
- TEACHERS OWN CALPERS/GID Managed Apartments, Teachers EVICTING Paraplegic - Video [Last Updated On: November 5th, 2011] [Originally Added On: November 5th, 2011]
- TEACHERS OWN CALPERS/GID Managed Apartments, Teachers EVICTING Paraplegic - Video [Last Updated On: November 6th, 2011] [Originally Added On: November 6th, 2011]
- Stem Cells Could Repair Heart [11-14-2011] - Video [Last Updated On: November 21st, 2011] [Originally Added On: November 21st, 2011]
- Advantages Seroquel - Video [Last Updated On: December 6th, 2011] [Originally Added On: December 6th, 2011]
- induced pluripotent stem (iPS) cells: Part 2 - Video [Last Updated On: December 6th, 2011] [Originally Added On: December 6th, 2011]
- Advantages Seroquel - Video [Last Updated On: December 6th, 2011] [Originally Added On: December 6th, 2011]
- stem cell research - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- Ian Wilmut discusses stem cell and direct cellular transformation therapy - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- Lec 22 | MIT 16.885J Aircraft Systems Engineering, Fall 2005 - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- Paralyzed rat walks with own stem cells in 11 wks. - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- Lec 22 | MIT 16.885J Aircraft Systems Engineering, Fall 2005 - Video [Last Updated On: December 8th, 2011] [Originally Added On: December 8th, 2011]
- Jeff Bluestone: Immune rejection of stem cell transplants - Video [Last Updated On: December 8th, 2011] [Originally Added On: December 8th, 2011]
- Advances in Stem Cell Research: Shinya Yamanaka - Video [Last Updated On: December 10th, 2011] [Originally Added On: December 10th, 2011]
- 2011 Summit: Stem Cells, Reprogramming and Personalized Medicine, Rudolf Jaenisch, MD - Video [Last Updated On: December 14th, 2011] [Originally Added On: December 14th, 2011]
- Parkinson's Disease: Advancing Stem Cell Therapies - 2011 CIRM Grantee Meeting - Video [Last Updated On: January 19th, 2012] [Originally Added On: January 19th, 2012]
- Parkinson's Disease: Advancing Stem Cell Therapies - 2011 CIRM Grantee Meeting - Video [Last Updated On: January 20th, 2012] [Originally Added On: January 20th, 2012]
- Professor Alan Trounson - World focus on stem cell research - Video [Last Updated On: January 26th, 2012] [Originally Added On: January 26th, 2012]
- Professor Alan Trounson - World focus on stem cell research - Video [Last Updated On: January 26th, 2012] [Originally Added On: January 26th, 2012]
- Researchers turn skin cells into neural precusors, bypassing stem-cell stage [Last Updated On: January 31st, 2012] [Originally Added On: January 31st, 2012]
- Skin cells turned into neural precusors, bypassing stem-cell stage [Last Updated On: February 1st, 2012] [Originally Added On: February 1st, 2012]
- “Wide-ranging applications for pluripotent stem cells” [Last Updated On: February 2nd, 2012] [Originally Added On: February 2nd, 2012]
- New era of medicine in the offing, says scientist [Last Updated On: February 5th, 2012] [Originally Added On: February 5th, 2012]
- EC transfers Basti Commissioner to pacify agitating IPS officers [Last Updated On: February 7th, 2012] [Originally Added On: February 7th, 2012]
- Radiation treatment transforms breast cancer cells into cancer stem cells [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- Radiation treatment generates cancer stem cells from less aggressive breast cancer cells, study suggests [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- Radiation Treatment Generates Cancer Stem Cells from Less Aggressive Breast Cancer Cells [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- Life Technologies Scientist Uma Lakshmipathy presents, "Solving Challenges in the Generation of Induced Pluripotent ... [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- Radiation therapy transforms breast cancer cells into cancer stem cells [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- Radiation treatment transforms breast cancer cells into cancer stem cells [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- Radiation treatment generates cancer stem cells from less aggressive breast cancer cells, study suggests [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- Life Technologies Scientist Uma Lakshmipathy presents, "Solving Challenges in the Generation of Induced Pluripotent ... [Last Updated On: February 15th, 2012] [Originally Added On: February 15th, 2012]
- Radiation Treatment Generates Cancer Stem Cells from Less Aggressive Breast Cancer Cells [Last Updated On: February 15th, 2012] [Originally Added On: February 15th, 2012]
- Horizon in new super-cell elite [Last Updated On: February 16th, 2012] [Originally Added On: February 16th, 2012]
- albuterol adverse effects - Video [Last Updated On: February 21st, 2012] [Originally Added On: February 21st, 2012]
- Presentations at the Society of Toxicology Annual Meeting Demonstrate Superior Predictivity of Cellular Dynamics ... [Last Updated On: March 8th, 2012] [Originally Added On: March 8th, 2012]
- A new approach to treating type I diabetes? Gut cells transformed into insulin factories [Last Updated On: March 11th, 2012] [Originally Added On: March 11th, 2012]
- New approach to treating type 1 diabetes? Transforming gut cells into insulin factories [Last Updated On: March 11th, 2012] [Originally Added On: March 11th, 2012]
- New approach to treating type 1 diabetes? Transforming gut cells into insulin factories [Last Updated On: March 11th, 2012] [Originally Added On: March 11th, 2012]
- A new approach to treating type I diabetes? Gut cells transformed into insulin factories [Last Updated On: March 11th, 2012] [Originally Added On: March 11th, 2012]
- Gut cells transformed into insulin factories 'could help to treat type I diabetes' [Last Updated On: March 12th, 2012] [Originally Added On: March 12th, 2012]