PRC1-mediated epigenetic programming is required to generate the ovarian reserve – Nature.com

Posted: August 11, 2022 at 2:09 am

Borum, K. Oogenesis in the mouse. A study of the meiotic prophase. Exp. Cell Res. 24, 495507 (1961).

CAS PubMed Article Google Scholar

Broekmans, F. J., Knauff, E. A., te Velde, E. R., Macklon, N. S. & Fauser, B. C. Female reproductive ageing: current knowledge and future trends. Trends Endocrinol. Metab. 18, 5865 (2007).

CAS PubMed Article Google Scholar

Grive, K. J. & Freiman, R. N. The developmental origins of the mammalian ovarian reserve. Development 142, 25542563 (2015).

CAS PubMed PubMed Central Article Google Scholar

Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487500 (2016).

CAS PubMed Article Google Scholar

Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707719 (2007).

CAS PubMed Article Google Scholar

Di Croce, L. & Helin, K. Transcriptional regulation by Polycomb group proteins. Nat. Struct. Mol. Biol. 20, 11471155 (2013).

PubMed Article CAS Google Scholar

Geisler, S. J. & Paro, R. Trithorax and Polycomb group-dependent regulation: a tale of opposing activities. Development 142, 28762887 (2015).

CAS PubMed Article Google Scholar

Schuettengruber, B., Bourbon, H. M., Di Croce, L. & Cavalli, G. Genome Regulation by Polycomb and Trithorax: 70 Years and Counting. Cell 171, 3457 (2017).

CAS PubMed Article Google Scholar

Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873878 (2004).

ADS CAS PubMed Article Google Scholar

Tamburri, S. et al. Histone H2AK119 Mono-Ubiquitination Is Essential for Polycomb-Mediated Transcriptional Repression. Mol. Cell 77, 840856 e845 (2020).

CAS PubMed PubMed Central Article Google Scholar

Dobrinic, P., Szczurek, A. T. & Klose, R. J. PRC1 drives Polycomb-mediated gene repression by controlling transcription initiation and burst frequency. Nat. Struct. Mol. Biol. 28, 811824 (2021).

CAS PubMed PubMed Central Article Google Scholar

Yokobayashi, S. et al. PRC1 coordinates timing of sexual differentiation of female primordial germ cells. Nature 495, 236240 (2013).

ADS CAS PubMed Article Google Scholar

Yamaguchi, S. et al. Tet1 controls meiosis by regulating meiotic gene expression. Nature 492, 443447 (2012).

ADS CAS PubMed PubMed Central Article Google Scholar

Hackett, J. A. et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339, 448452 (2013).

ADS CAS PubMed Article Google Scholar

Hargan-Calvopina, J. et al. Stage-Specific Demethylation in Primordial Germ Cells Safeguards against Precocious Differentiation. Dev. Cell 39, 7586 (2016).

CAS PubMed PubMed Central Article Google Scholar

Mansour, A. A. et al. The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature 488, 409413 (2012).

ADS CAS PubMed Article Google Scholar

Hill, P. W. S. et al. Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte. Nature 555, 392396 (2018).

ADS CAS PubMed PubMed Central Article Google Scholar

Nagaoka, S. I. et al. ZGLP1 is a determinant for the oogenic fate in mice. Science 367, aaw4115 (2020).

Huang, T. C. et al. Sex-specific chromatin remodelling safeguards transcription in germ cells. Nature 600, 737742 (2021).

ADS CAS PubMed Article Google Scholar

Stewart, K. R. et al. Dynamic changes in histone modifications precede de novo DNA methylation in oocytes. Genes Dev. 29, 24492462 (2015).

CAS PubMed PubMed Central Article Google Scholar

Xu, Q. et al. SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development. Nat. Genet. 51, 844856 (2019).

CAS PubMed Article Google Scholar

Posfai, E. et al. Polycomb function during oogenesis is required for mouse embryonic development. Genes Dev. 26, 920932 (2012).

CAS PubMed PubMed Central Article Google Scholar

Mei, H. et al. H2AK119ub1 guides maternal inheritance and zygotic deposition of H3K27me3 in mouse embryos. Nat. Genet 53, 539550 (2021).

CAS PubMed Article Google Scholar

Hunter, N. Oocyte Quality Control: Causes, Mechanisms, and Consequences. Cold Spring Harb. Symp. Quant. Biol. 82, 235247 (2017).

PubMed Article Google Scholar

Pepling, M. E. & Spradling, A. C. Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Developmental Biol. 234, 339351 (2001).

CAS Article Google Scholar

Pepling, M. E. From primordial germ cell to primordial follicle: mammalian female germ cell development. Genesis 44, 622632 (2006).

CAS PubMed Article Google Scholar

Malki, S., van der Heijden, G. W., ODonnell, K. A., Martin, S. L. & Bortvin, A. A role for retrotransposon LINE-1 in fetal oocyte attrition in mice. Dev. Cell 29, 521533 (2014).

CAS PubMed PubMed Central Article Google Scholar

Shimamoto, S. et al. Hypoxia induces the dormant state in oocytes through expression of Foxo3. Proc. Natl Acad. Sci. USA 116, 1232112326 (2019).

CAS PubMed PubMed Central Article Google Scholar

Niu, W. & Spradling, A. C. Two distinct pathways of pregranulosa cell differentiation support follicle formation in the mouse ovary. Proc. Natl Acad. Sci. USA 117, 2001520026 (2020).

CAS PubMed PubMed Central Article Google Scholar

Pan, H., OBrien, M. J., Wigglesworth, K., Eppig, J. J. & Schultz, R. M. Transcript profiling during mouse oocyte development and the effect of gonadotropin priming and development in vitro. Dev. Biol. 286, 493506 (2005).

CAS PubMed Article Google Scholar

Hamazaki, N. et al. Reconstitution of the oocyte transcriptional network with transcription factors. Nature 589, 264269 (2021).

ADS CAS PubMed Article Google Scholar

Gallardo, T., Shirley, L., John, G. B. & Castrillon, D. H. Generation of a germ cell-specific mouse transgenic Cre line, Vasa-Cre. Genesis 45, 413417 (2007).

CAS PubMed PubMed Central Article Google Scholar

Gao, Z. et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol. Cell 45, 344356 (2012).

CAS PubMed PubMed Central Article Google Scholar

del Mar Lorente, M. et al. Loss- and gain-of-function mutations show a polycomb group function for Ring1A in mice. Development 127, 50935100 (2000).

PubMed Article Google Scholar

Maezawa, S. et al. Polycomb directs timely activation of germline genes in spermatogenesis. Genes Dev. 31, 16931703 (2017).

CAS PubMed PubMed Central Article Google Scholar

Cohen, I., Bar, C. & Ezhkova, E. Activity of PRC1 and Histone H2AK119 Monoubiquitination: Revising Popular Misconceptions. Bioessays 42, e1900192 (2020).

PubMed PubMed Central Article Google Scholar

Soh, Y. Q. et al. A Gene Regulatory Program for Meiotic Prophase in the Fetal Ovary. PLoS Genet. 11, e1005531 (2015).

PubMed PubMed Central Article CAS Google Scholar

Baltus, A. E. et al. In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nat. Genet. 38, 14301434 (2006).

CAS PubMed Article Google Scholar

Anderson, E. L. et al. Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc. Natl Acad. Sci. USA 105, 1497614980 (2008).

ADS CAS PubMed PubMed Central Article Google Scholar

Ishiguro, K. I. et al. MEIOSIN Directs the Switch from Mitosis to Meiosis in Mammalian Germ Cells. Dev. Cell. 52, 429445.e410 (2020).

CAS PubMed Article Google Scholar

Shibuya, H. et al. MAJIN Links Telomeric DNA to the Nuclear Membrane by Exchanging Telomere Cap. Cell 163, 12521266 (2015).

CAS PubMed Article Google Scholar

Horn, H. F. et al. A mammalian KASH domain protein coupling meiotic chromosomes to the cytoskeleton. J. Cell Biol. 202, 10231039 (2013).

CAS PubMed PubMed Central Article Google Scholar

Morimoto, A. et al. A conserved KASH domain protein associates with telomeres, SUN1, and dynactin during mammalian meiosis. J. Cell Biol. 198, 165172 (2012).

CAS PubMed PubMed Central Article Google Scholar

Edelmann, W. et al. Mammalian MutS homologue 5 is required for chromosome pairing in meiosis. Nat. Genet. 21, 123127 (1999).

CAS PubMed Article Google Scholar

Yoshida, K. et al. The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Mol. Cell 1, 707718 (1998).

CAS PubMed Article Google Scholar

Pittman, D. L. et al. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Mol. Cell 1, 697705 (1998).

CAS PubMed Article Google Scholar

Shin, Y. H. et al. Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis. PLoS Genet. 6, e1001190 (2010).

PubMed PubMed Central Article CAS Google Scholar

Daniel, K. et al. Meiotic homologue alignment and its quality surveillance are controlled by mouse HORMAD1. Nat. Cell Biol. 13, 599610 (2011).

CAS PubMed PubMed Central Article Google Scholar

Kogo, H. et al. HORMAD1-dependent checkpoint/surveillance mechanism eliminates asynaptic oocytes. Genes Cells 17, 439454 (2012).

CAS PubMed Article Google Scholar

Wojtasz, L. et al. Meiotic DNA double-strand breaks and chromosome asynapsis in mice are monitored by distinct HORMAD2-independent and -dependent mechanisms. Genes Dev. 26, 958973 (2012).

CAS PubMed PubMed Central Article Google Scholar

Kogo, H. et al. HORMAD2 is essential for synapsis surveillance during meiotic prophase via the recruitment of ATR activity. Genes Cells 17, 897912 (2012).

Read this article:
PRC1-mediated epigenetic programming is required to generate the ovarian reserve - Nature.com

Related Posts

Comments are closed.

Archives