Repurposing a proven gene therapy approach to treat, prevent COVID-19 – Penn Today
When did you first start using AAV vectors in your gene therapy work?
It came about 10 years ago when I was helping the Gates Foundation develop an approach for preventing HIV. Any attempt to use a traditional vaccine, where you inject a component of the virus to activate the immune system to develop proteins such as antibodies, had been challenging for HIV. Regardless of what you used to immunizebecause the virus changed so muchmost of it would escape. Once the field realized that, we started to look at other approaches, and it turns out its possible in the lab to engineer an antibody that could be effective against many types of HIV.
HIV represents a different type of pandemic than COVID-19. When did you turn to AAV vectors as a potential approach for other kinds of pandemics?
About eight years ago I started thinking about this as a countermeasure for a pandemic. The pandemics that we worry about are primarily transmitted through a respiratory route. If it were direct contact like Ebola virus, its not as dangerous because you can avoid touching one another. But if you cant even be in the same room, thats a problem.
Respiratory viruses enter our body through the nose and throat. Thats how we get infected. We proposed delivering the vector through a nasal mist or spray to engineer the cells that line the nose and throat to express the antibody. If you can localize this at that site to prevent the virus from going farther, then you dont need the whole body to express the antibodies.
The antibodies youre using, called casirivimab and imdevimab, are monoclonal antibodies, meaning they were created in a lab. Can you describe how they work?
Regeneron developed these. Theyre highly active and potent against SARS-CoV-2. For treatment, antibodies can be useful. If youre starting to get sick, you get an infusion or two of the antibodies and then you dont get sicker. But what do you do with 99% of the population who isnt sick and never gets sick? Our idea was to use an AAV vector expressing the antibodies to engineer someones cells to produce the antibodies. If we do this right, the expression could go on for a long period of time. Its a one-time vector infusion.
We were able to show in animal models that an AAV sprayed into the nose that expresses an antibody is effective against flu virus that causes respiratory diseases and has the potential to cause a pandemic. The treated animals were completely protected when exposed to flu virus. Its all about having the right antibody and then engineering a delivery system to have this blockage. We call it a bioshield. It could be a way to stop COVID-19 in its tracks.
Would this approach replace COVID-19 vaccines or be used in conjunction with them?
Theoretically, it could be used in place of a vaccine, but I suspect that traditional vaccines are going to succeed for a lot of people. We see our approach being deployed in individuals for which traditional vaccines may not work as well, patients with diseases that compromise their immune system such as cancer, patients who are on immune-modulating drugs, or even the elderly.
Early data seem to suggest that the elderly have some level of response to the active COVID-19 vaccine, but, like with many other vaccines, older people dont mount the same immune response as those who are younger. That said, I dont see any reason why receiving a traditional vaccine would preclude one from using our nasal spray because they do two different things.
The other possibility is that the COVID-19 vaccines we have become less effective because the virus changes. I dont think this will happen, and I hope it doesnt, but, if it does, the question becomes, Would the antibodies that Regeneron created become a backup? When we roll out an active vaccine based on a single spike protein into large populations, it creates pressure on the SARS-CoV-2 to change and potentially become resistant. I hope a variant doesnt emerge, but I do think it behooves us to have some redundancy in place to squelch a potential second wave due to resistant coronaviruses.
What is your projected timeline?
We are conducting one final experiment over the holiday break and in early January before we submit our request to the FDA for clinical trials. Weve had discussions with the FDA and have already done some of the initial testing, including safety testing in nonhuman primates, as well as preparing to manufacture the product. Conducting this in the Gene Therapy Program is beneficial since we are comfortable with AAV vectors and moving them into clinical trials. We support up to eight traditional AAV gene therapy programs a year, and we have the staff and technology to move pretty quickly.
If we get the go in January, I think our technology could contribute to the global response in eliminating COVID-19. And you have to understand, until we eliminate it globally, we havent actually eliminated it.
See original here:
Repurposing a proven gene therapy approach to treat, prevent COVID-19 - Penn Today
Recommendation and review posted by Bethany Smith
Locanabio Raises $100 Million to Advance RNA-Targeted Gene Therapies – BioSpace
San Diego-based Locanabio secured $100 million in a Series B financing round that will be used to advance the companys portfolio of novel RNA-targeted gene therapies for neurodegenerative, neuromuscular and retinal diseases.
The funding will support pre-clinical and clinical development of its gene therapy treatments for diseases such as Huntington's disease, myotonic dystrophy type 1, genetic forms of amyotrophic lateral sclerosis and retinal disease, the company said.
Locanabio has a unique approach to gene therapy. The company has combined two validated gene therapy and RNA modifications to treat diseases. Locanabio uses a gene therapy vector to deliver an RNA-targeting protein tipped with an RNA-modifying enzyme. Through targeting RNA, the company said its approach avoids the risk of off-target effects in DNA and is suited to address many diseases linked to dysfunctional processing of RNA.
The $100 Million Series B builds on $55 million the company secured in a Series A last year. Chief Executive Officer Jim Burns, who joined Locanabio one year ago, said the financing round will allow the company to advance several of the companys most promising programs into IND-enabling studies in 2021. The financing will also allow the company to continue to advance its RNA-targeting platform, which has the potential to be a major new advance in medicine that can bring hope to patients with many devastating genetic diseases, Burns said.
While all of Locanabios assets are still in the research phase, its most advanced is a therapy for myotonic dystrophy type 1 (DM1), a genetic neuromuscular disorder caused by a mutation in the DMPK gene that results in trinucleotide (CUG) repeat expansion in the expressed RNA. Locanabios DM1 program targets and destroys the toxic CUG repeats, according to company information. Earlier this year, as BioSpace previously reported, Locanabio published a paper demonstrating the benefits of its technology as a potential one-time treatment of DM1.
The financing round was led by Vida Ventures LLC with participation from RA Capital Management, Invus, Acuta Capital Partners, an investment fund associated with SVB Leerink Prior Locanabio investors ARCH Venture Partners, Temasek, Lightstone Ventures, UCB Ventures and GV, also participated in the financing round.
"We are pleased that a team of highly sophisticated investors led by Vida Ventures has joined in this financing round, further validating our progress in research and the significant potential of our unique RNA-targeting platform, Burns said in a statement.
With the Series B, Rajul Jain, director of Vida Ventures, joined Locanabio's board of directors. Before Vida Ventures, Jain served on the executive team and headed development for Kite Pharma and was previously global development lead for Amgen.
The unique approach in RNA targeting using gene therapy to deliver RNA binding proteins developed by Locanabio represents the next frontier of genetic medicine with the ability to target the root cause of a range of genetic diseases, Jain said in a statement. They have built a strong management team to execute this bold vision and we are proud to support them.
Most Read Today
The rest is here:
Locanabio Raises $100 Million to Advance RNA-Targeted Gene Therapies - BioSpace
Recommendation and review posted by Bethany Smith
Technical Report on Gene Therapy in Oncology Market 2021 – LionLowdown
Gene Therapy in Oncology Market forecast to 2028
The Global Gene Therapy in Oncology Market report provides information about the Global industry, including valuable facts and figures. This research study explores the Global Market in detail such as industry chain structures, raw material suppliers, with manufacturing The Gene Therapy in Oncology Sales market examines the primary segments of the scale of the market. This intelligent study provides historical data from 2015 alongside a forecast from 2021 to 2028.
This report contains a thorough analysis of the pre and post pandemic market scenarios. This report covers all the recent development and changes recorded during the COVID-19 outbreak.
Results of the recent scientific undertakings towards the development of new Gene Therapy in Oncology products have been studied. Nevertheless, the factors affecting the leading industry players to adopt synthetic sourcing of the market products have also been studied in this statistical surveying report. The conclusions provided in this report are of great value for the leading industry players. Every organization partaking in the global production of the Gene Therapy in Oncology market products have been mentioned in this report, in order to study the insights on cost-effective manufacturing methods, competitive landscape, and new avenues for applications.
Get Sample Report: https://www.marketresearchupdate.com/sample/29175
Top Key Players of the Market:Bristol-Myers Squibb, Cold Genesys, Advantagene, Amgen, AstraZeneca, Bio-Path Holdings, CRISPR Therapeutics, Editas Medicine, Geron Corp, Idera Pharmaceuticals, Intellia Therapeutics, Johnson & Johnson, Marsala Biotech, Merck, Mologen AG, Oncolytics Biotech, Oncosec, Oncotelic, Shenzhen SiBiono GeneTech, Sillajen Biotherapeutics, Tocagen, UniQure, Ziopharm Oncology
Types covered in this report are: Ex Vivo, In Vivo
Applications covered in this report are: Hospitals, Diagnostics Centers, Research Institutes
With the present market standards revealed, the market research report has also illustrated the latest strategic developments and patterns of the market players in an unbiased manner. The report serves as a presumptive business document that can help the purchasers in the global market plan their next courses towards the position of the markets future.
Check Discount on Gene Therapy in Oncology Market report @ https://www.marketresearchupdate.com/discount/29175
Regional Analysis For Gene Therapy in OncologyMarket
North America(the United States, Canada, and Mexico)Europe(Germany, France, UK, Russia, and Italy)Asia-Pacific(China, Japan, Korea, India, and Southeast Asia)South America(Brazil, Argentina, Colombia, etc.)The Middle East and Africa(Saudi Arabia, UAE, Egypt, Nigeria, and South Africa)
Why B2B Companies Worldwide Rely on us to Grow and Sustain Revenues:
This report provides:
Get Full Report @ https://www.marketresearchupdate.com/industry-growth/Gene-Therapy-in-Oncology-Market-29175
In the end, the Gene Therapy in Oncology Market report includes investment come analysis and development trend analysis. The present and future opportunities of the fastest growing international industry segments are coated throughout this report. This report additionally presents product specification, manufacturing method, and product cost structure, and price structure.
Contact Us:
(UK) +44-208-133-9198(APAC) +91-73789-80300Email : [emailprotected]
Read the original post:
Technical Report on Gene Therapy in Oncology Market 2021 - LionLowdown
Recommendation and review posted by Bethany Smith
Biopharma Money on the Move: December 9-15 – BioSpace
These life sciences companies can officially take cash off their Christmas listsafter last weeks bounty.
Certara
Thisbiosimulationcompany took in the second largest life sciences IPO of the year raking in a whopping$668 million. Selling 29.1 million shares at $23 eachput them in at a 19% increase of their original aim.Certara partners with biotech and pharmaceutical companies to accelerate drug development. According to their website, 90% of companies that received new drug approvals by the FDA since 2014 usedCertaras software or services.
AbCellera
AbCellerasdiscovery of the COVID-19 antibody used in Eli Lillysbamlanivimabrocketed this Canadian company into worldwide recognition.Joining the Nasdaq was a natural next step.Themonoclonal antibodywas the first approved by the FDA for the treatment of COVID-19.Originally prepping for a$391 million IPO,AbCelleraupped its offering to 24.15 million shares at $20 per share forexpected proceedsof$483 million, a 24% increase.
Tempus
Mega-raiser Tempus took in another$200 millionin a Series G-2 financing round, bringing their total lifetime raise to $1.05 billion.Currently employing around 1,500, the precision medicine company will use the funds to expand operations and expand to other disease areas includinginfectiousdiseases, depression and cardiology.Tempus AI platform analyzes multi-modal data across major disease types to look for therapeutically relevant insights.
4D Molecular Therapeutics
Offering 1.4 million more shares than planned, 4D raised 23% more, bringing their IPO toraise to$193 million.4D is in a collaboration with pharma giant Roche and has support from Pfizer as well, with these factors adding to the interest of its upsized IPO.The companys target is on both rare and large market diseases, including patient populations that other gene therapies arent able to address.
Locanabio
Building on last years$55 millionraise, San Diego-basedLocanabiosecured$100 millionthis week in a Series B financing round. The funds will be used to advance the companys portfolio of RNA-targeted gene therapies for neurodegenerative, neuromuscular and retinal diseases.Locanabiosunique approach combines gene therapy and RNA modifications to treat disease. Using a gene therapy vector, the treatments deliver RNA-targeting protein tipped with an RNA-modifying enzyme with the potential to treat many diseases linked to the dysfunctional processing of RNA.
Nanobiotix
This French nanoparticle drug developer sold its shares at the low point of their target range, $13.50, but still raked in$99 millionfor their Nasdaq debut.Nanobiotixsproprietary technology, NBTXR3 is a first-in-classradioenhancerto work across solidtumors, enhancing radiotherapy efficacy and producingan immune response with just oneinjection into the tumor. The treatment is currently intwo Phase II studiesfor patients with head and neck cancer.
Reneo Pharmaceuticals
With a focus on genetic mitochondrial diseases, Reneos Series B brought in$95 millionin a financing round led by Novo Ventures andAbingworth.Reneos lead candidate, REN001,has completed an open label safety and tolerability study in patients with primary mitochondrial myopathies. The funds from this raise will take REN001througha Phase II trial.The compoundworks to improve cellular energy metabolism by enhancingmitochondrial function and potentially increasing the number of mitochondria.
Faze Medicines
Biomolecular condensates have been around fordecades, but haverecently begun to gain traction in the biopharma world. Faze is the third company this year to snag investment cash in pursuit of this target. The$81 millionSeriesA will go into the preclinical research in two focus areas:amyotrophic lateral sclerosis (ALS) and myotonic dystrophy type 1 (DM1). The remaining funds will be used to research condensate biology in other disease areas. Faze intends to utilize screening and proteomics techniques to identify proteins that are components of disease-causing condensates.
Rani Therapeutics
This oral biologicscompany brought in$69 millionin a Series E. Looking to transform thehealthcare market, Ranis technology converts injectable drugs into pills. The funds will accelerate the companys internal pipeline of drugs to the clinic and scale up manufacturing."TheRaniPill has the potential to transform major markets where patients must endure frequent and often painful injections," saidMir Imran, Chairman, CEO and founder of Rani Therapeutics. "With this breakthrough platform, capable of creating orally available therapeutic antibodies, peptides, and proteins, we could impact millions of patients worldwide."
Vigil Neuroscience
Launching with a$50 millionSeries A, Vigil is one of many newbiotechssetting out to fight neurodegenerative disease in 2021. The company is developing a pipeline of precision-based therapies to combat both rare and common neurodegenerative diseases by restoring the vigilance of microglia.Atlas cofounded, seeded and incubated Vigil, with pre-clinical stage assets in-licensed fromAmgen Inc.,which will remain a key shareholder.
Most Read Today
Read the rest here:
Biopharma Money on the Move: December 9-15 - BioSpace
Recommendation and review posted by Bethany Smith
Global Gene Expression Market Analysis and Forecasts – A $6.78 Billion Market by 2027 – PRNewswire
DUBLIN, Dec. 17, 2020 /PRNewswire/ -- The "Gene Expression Market By Product And Services, By Capacity, By Application, And Segment Forecasts To 2027" report has been added to ResearchAndMarkets.com's offering.
Increasing demands for cancer medicines, falling cost of sequencing procedures, and a rise in demand for personalized medicines are key factors contributing to the high CAGR of the gene expression market during the forecast period.
The Global Gene Expression Market is expected to reach USD 6.78 billion by the year 2027, in terms of value at a CAGR of 8.1% over the forecast period. Gene expression promises to tap into a previously unexplored segment in the vast and burgeoning genetic engineering industry.
An increase in investments towards technological advancements and a rise in healthcare expenditure are estimated to shape the growth of the gene expression market. Drug discovery & development and increased demand for personalized medicine in chronic diseases, such as cancer, would be the most lucrative applications for gene expression analysis in the forecast period. Application of gene expression in clinical diagnostics, on the other hand, will reflect a moderate growth throughout the analysis period. Moreover, the falling costs of sequencing have facilitated the integration of genomic sequencing into medicine. With the increased availability and lowering costs of DNA technologies, gene expression has become a more readily used tool indispensable in drug discovery and development. Many companies and educational institutions are collaborating to make gene expression publicly accessible through databases, such as the Connectivity Map (CMap), Library of Integrated Network-based Cellular Signatures (LINCS), and the Tox 21 project.
Further key findings from the report suggest:
Key Topics Covered:
Chapter 1. Market Synopsis
Chapter 2. Executive Summary
Chapter 3. Indicative Metrics
Chapter 4. Gene Expression Market Segmentation & Impact Analysis
Chapter 5. Gene Expression Market By Product and Services Insights & Trends
Chapter 6. Gene Expression Market By Capacity Insights & Trends
Chapter 7. Gene Expression Market By Application Insights & Trends
Chapter 8. Gene Expression Market Regional Outlook
Chapter 9. Competitive Landscape
Chapter 10. Company Profiles
For more information about this report visit https://www.researchandmarkets.com/r/im4bgt
About ResearchAndMarkets.comResearchAndMarkets.com is the world's leading source for international market research reports and market data. We provide you with the latest data on international and regional markets, key industries, the top companies, new products and the latest trends.
Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.
Media Contact:
Research and Markets Laura Wood, Senior Manager [emailprotected]
For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900
U.S. Fax: 646-607-1904 Fax (outside U.S.): +353-1-481-1716
SOURCE Research and Markets
http://www.researchandmarkets.com
Go here to see the original:
Global Gene Expression Market Analysis and Forecasts - A $6.78 Billion Market by 2027 - PRNewswire
Recommendation and review posted by Bethany Smith
Research and therapy with induced pluripotent stem cells …
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:86172.
CAS PubMed Article Google Scholar
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:66376.
CAS PubMed Article Google Scholar
Boland MJ, Hazen JL, Nazor KL, Rodriguez AR, Gifford W, Martin G, et al. Adult mice generated from induced pluripotent stem cells. Nature. 2009;461:914.
CAS PubMed Article Google Scholar
Kang L, Wang J, Zhang Y, Kou Z, Gao S. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell. 2009;5:1358.
CAS PubMed Article Google Scholar
Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, et al. iPS cells produce viable mice through tetraploid complementation. Nature. 2009;461:8690.
CAS PubMed Article Google Scholar
Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov. 2017;16:11530.
CAS PubMed Article Google Scholar
Hasegawa K, Pomeroy JE, Pera MF. Current technology for the derivation of pluripotent stem cell lines from human embryos. Cell Stem Cell. 2010;6:52131.
CAS PubMed Article Google Scholar
Taylor CJ, Bolton EM, Bradley JA. Immunological considerations for embryonic and induced pluripotent stem cell banking. Philos Trans R Soc Lond Ser B Biol Sci. 2011;366:231222.
CAS Article Google Scholar
Devolder K. To be, or not to be? Are induced pluripotent stem cells potential babies, and does it matter? EMBO Rep. 2009;10:12857.
CAS PubMed PubMed Central Article Google Scholar
Fadel HE. Developments in stem cell research and therapeutic cloning: Islamic ethical positions, a review. Bioethics. 2012;26:12835.
PubMed Article Google Scholar
Abad M, Mosteiro L, Pantoja C, Canamero M, Rayon T, Ors I, et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature. 2013;502:3405.
CAS PubMed Article Google Scholar
Knoepfler PS. Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells. 2009;27:10506.
CAS PubMed PubMed Central Article Google Scholar
Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, Dunn NR. Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res. 2009;2:198210.
PubMed Article Google Scholar
Tan Y, Ooi S, Wang L. Immunogenicity and tumorigenicity of pluripotent stem cells and their derivatives: genetic and epigenetic perspectives. Curr Stem Cell Res Ther. 2014;9:6372.
CAS PubMed PubMed Central Article Google Scholar
Simonson OE, Domogatskaya A, Volchkov P, Rodin S. The safety of human pluripotent stem cells in clinical treatment. Ann Med. 2015;47:37080.
PubMed Article Google Scholar
Ayala FJ. Cloning humans? Biological, ethical, and social considerations. Proc Natl Acad Sci U S A. 2015;112:887986.
CAS PubMed PubMed Central Article Google Scholar
Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM. Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell. 2012;11:14752.
CAS PubMed Article Google Scholar
Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8:40912.
CAS PubMed Article Google Scholar
Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A. 2008;105:28838.
CAS PubMed PubMed Central Article Google Scholar
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:191720.
CAS PubMed Article Google Scholar
Sayed N, Liu C, Wu JC. Translation of human-induced pluripotent stem cells: from clinical trial in a dish to precision medicine. J Am Coll Cardiol. 2016;67:216176.
PubMed PubMed Central Article Google Scholar
Yamanaka S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell. 2012;10:67884.
CAS PubMed Article Google Scholar
Trounson A, DeWitt ND. Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol. 2016;17:194200.
CAS PubMed Article Google Scholar
Eguchi T, Kuboki T. Cellular reprogramming using defined factors and microRNAs. Stem Cells Int. 2016. https://doi.org/10.1155/2016/7530942.
Article CAS Google Scholar
Moradi S, Asgari S, Baharvand H. Concise review: harmonies played by microRNAs in cell fate reprogramming. Stem Cells. 2014;32:315.
CAS PubMed Article Google Scholar
Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D, et al. A small-molecule inhibitor of TGF- signaling replaces Sox2 in reprogramming by inducing Nanog. Cell Stem Cell. 2009;5:491503.
CAS PubMed PubMed Central Article Google Scholar
Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol. 2008;26:7957.
CAS PubMed PubMed Central Article Google Scholar
Li Y, Zhang Q, Yin X, Yang W, Du Y, Hou P, et al. Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res. 2011;21:196204.
CAS PubMed Article Google Scholar
Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science. 2013;341:6514.
CAS PubMed Article Google Scholar
Moradi S, Sharifi-Zarchi A, Ahmadi A, Mollamohammadi S, Stubenvoll A, Gunther S, et al. Small RNA sequencing reveals Dlk1-Dio3 locus-embedded MicroRNAs as major drivers of ground-state pluripotency. Stem Cell Rep. 2017;9:208196.
CAS Article Google Scholar
Greve TS, Judson RL, Blelloch R. MicroRNA control of mouse and human pluripotent stem cell behavior. Ann Rev Cell Dev Biol. 2013;29:21339.
CAS Article Google Scholar
Moradi S, Braun T, Baharvand H. miR-302b-3p promotes self-renewal properties in leukemia inhibitory factor-withdrawn embryonic stem cells. Cell J. 2018;20:6172.
PubMed Google Scholar
Lee YJ, Ramakrishna S, Chauhan H, Park WS, Hong S-H, Kim K-S. Dissecting microRNA-mediated regulation of stemness, reprogramming, and pluripotency. Cell Regen. 2016;5:2.
Article CAS Google Scholar
Hassani SN, Moradi S, Taleahmad S, Braun T, Baharvand H. Transition of inner cell mass to embryonic stem cells: mechanisms, facts, and hypotheses. Cell Mol Life Sci. 2019;76:87392.
CAS PubMed Article Google Scholar
Zhu S, Li W, Zhou H, Wei W, Ambasudhan R, Lin T, et al. Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Ctem Cell. 2010;7:6515.
CAS Article Google Scholar
Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Ctem Cell. 2010;6:719.
CAS Article Google Scholar
Xie M, Tang S, Li K, Ding S. Pharmacological reprogramming of somatic cells for regenerative medicine. Acc Chem Res. 2017;50:120211.
CAS PubMed Article Google Scholar
Ma X, Kong L, Zhu S. Reprogramming cell fates by small molecules. Protein Cell. 2017;8:32848.
CAS PubMed PubMed Central Article Google Scholar
Yoshioka N, Gros E, Li HR, Kumar S, Deacon DC, Maron C, et al. Efficient generation of human iPSCs by a synthetic self-replicative RNA. Cell Stem Cell. 2013;13:24654.
CAS PubMed Article Google Scholar
Yakubov E, Rechavi G, Rozenblatt S, Givol D. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors. Biochem Biophys Res Commun. 2010;394:18993.
CAS PubMed Article PubMed Central Google Scholar
Lee AS, Tang C, Rao MS, Weissman IL, Wu JC. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med. 2013;19:9981004.
CAS PubMed PubMed Central Article Google Scholar
Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature. 2011;471:637.
CAS PubMed PubMed Central Article Google Scholar
Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B, Clark AT, et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell. 2010;7:52131.
CAS PubMed Article PubMed Central Google Scholar
Tompkins JD, Hall C, Chen VC, Li AX, Wu X, Hsu D, et al. Epigenetic stability, adaptability, and reversibility in human embryonic stem cells. Proc Natl Acad Sci U S A. 2012;109:125449.
CAS PubMed PubMed Central Article Google Scholar
Amps K, Andrews PW, Anyfantis G, Armstrong L, Avery S, Baharvand H, et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol. 2011;29:113244.
CAS PubMed Article PubMed Central Google Scholar
Liang G, Zhang Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell. 2013;13:14959.
CAS PubMed PubMed Central Article Google Scholar
Steyer B, Bu Q, Cory E, Jiang K, Duong S, Sinha D, et al. Scarless genome editing of human pluripotent stem cells via transient puromycin selection. Stem Cell Rep. 2018;10:64254.
CAS Article Google Scholar
Giacalone JC, Sharma TP, Burnight ER, Fingert JF, Mullins RF, Stone EM, et al. CRISPR-Cas9-based genome editing of human induced pluripotent stem cells. Curr Protoc Stem Cell Biol. 2018;44:5B7.
PubMed PubMed Central Google Scholar
Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids. 2015;4:e264.
CAS PubMed PubMed Central Article Google Scholar
Guidance for human somatic cell therapy and gene therapy. Hum Gene Ther. 2001;12:30314.
Daley GQ, Hyun I, Apperley JF, Barker RA, Benvenisty N, Bredenoord AL, et al. Setting global standards for stem cell research and clinical translation: the 2016 ISSCR guidelines. Stem Cell Rep. 2016;6:78797.
More:
Research and therapy with induced pluripotent stem cells ...
Recommendation and review posted by Bethany Smith
UC Davis researchers find a way to help stem cells work …
Blocking an enzyme linked with inflammation makes it possible for stem cells to repair damaged heart tissue, new research from UC Davis Health scientists shows.
Researchers Phung Thai (left) and Padmini Sirish were part of a research team seeking stem cell solutions to heart failure care.
The enzyme soluble epoxide hydrolase, or sEH is a known factor in lung and joint disease. Now, it is a focus of heart-disease researchers as well.
The authors expect their work will lead to a new and powerful class of compounds that overcome the cell death and muscle thickening associated with heart failure a common outcome of a heart attack or long-term cardiovascular disease.
The study, conducted in mice, is published in Stem Cells Translational Medicine. The work was led by cardiologist Nipavan Chiamvimonvat.
The science of using stem cell treatments for heart disease has been full of promise but little progress, Chiamvimonvat said. The inflammation that accompanies heart disease is simply not conducive to stem cell survival.
Prior studies show that stem cells transplanted to the heart experience significant attrition in a very short period of time.
We think weve found a way to quiet that inflammatory environment, giving stem cells a chance to survive and do the healing work we know they can do, said lead author and cardiovascular medicine researcher Padmini Sirish.
Heart failure occurs when the heart no longer pumps blood efficiently, reducing oxygen throughout the body. Survival is around 45-60% five years after diagnosis. It affects approximately 5.7 million people in the U.S., with annual costs of nearly $30 billion. By 2030, it could affect as many as 9 million people at a cost of nearly $80 billion.
Chiamvimonvat often treats patients with heart failure and has been frustrated by the lack of effective medications for the disease, especially when it progresses to later stages. The best current therapies for end-stage heart failure are surgical heart transplants or mechanical heart pumps.
This research was led by cardiologist Nipavan Chiamvimonvat.
She expects her outcome will lead to a two-part treatment for end-stage heart failure that combines an sEH-blocking compound with stem cell transplantation.
Chiamvimonvat and her team tested that theory in mice using cardiac muscle cells known as cardiomyocytes, which were derived from human-induced pluripotent stem cells (hiPSCs). A hiPSC is a cell taken from any human tissue (usually skin or blood) and genetically modified to behave like an embryonic stem cell. They have the ability to form all cell types.
The specific sEH inhibitor used in the study TPPU was selected based on the work of co-author and cancer researcher Bruce Hammock, whose lab has provided detailed studies of nearly a dozen of the enzyme inhibitors.
The researchers studied six groups of mice with induced heart attacks. A group treated with a combination of the inhibitor and hiPSCs had the best outcomes in terms of increased engraftment and survival of transplanted stem cells. That group also had less heart muscle thickening and improved cardiac function.
Taken together, our data suggests that conditioning hiPSC cardiomyocytes with sEH inhibitors may help the cells to better survive the harsh conditions in the muscle damaged by a heart attack, Hammock said.
Chiamvimonvat and her team will next test the process in a larger research animal model to provide more insights into the beneficial role of TPPU. She also wants to test the process with additional heart diseases, including atrial fibrillation. Her ultimate goal, in collaboration with Hammock, is to launch human clinical trials to test the safety of the treatment.
It is my dream as a clinician and scientist to take the problems I see in the clinic to the lab for solutions that benefit our patients, Chiamvimonvat said. It is only possible because of the incredible strength of our team and the extraordinarily collaborative nature of research at UC Davis.
Additional co-authors were Phung Thai, Jun Yang, Xiao-Dong Zhang, Lu Ren, Ning Li, Valeriy Timofeyev, Kin Sing Lee, Carol Nader, Douglas Rowland, Sergey Yechikov, Svetlana Ganaga, J. Nilas Young and Deborah Lieu, all from UC Davis.
Their work was funded by the American Heart Association, Harold S. Geneen Charitable Trust. Rosenfeld Heart Foundation, U.S. Department of Veterans Affairs and the National Institutes of Health (grants T32HL86350, F32HL149288, K99R00ES024806, R35ES030443, P42ES04699, IR35 ES0443-1, P01AG051443, R01DC015135, R56HL138392, R01HL085727, R01HL085844, R01HL137228 and S10RR033106).
The study, titled Suppression of Inflammation and Fibrosis using Soluble Epoxide Hydrolase Inhibitors Enhances Cardiac Stem Cell-Based Therapy, is available online.
More information about UC Davis Health, including its cardiovascular medicine and stem cell programs, is at health.ucdavis.edu.
Read the original post:
UC Davis researchers find a way to help stem cells work ...
Recommendation and review posted by Bethany Smith
I Peace, Inc. and Avery Therapeutics announce collaboration to bring iPSC derived cell therapy for heart failure to the clinic – PRNewswire
Avery Therapeutics is projected to be one of the first companies in the US to seek approval for a clinical trial using iPSC-derived technology for heart failure. The goal of this collaboration is to develop a new off-the-shelf treatment to improve the quality of life of patients suffering from heart failure, a debilitating disease that affects tens of millions of people worldwide.
The iPSCs are manufactured at I Peace's state-of-the-art GMP facility in Kyoto, Japan, under comprehensive validation programs of the facility, equipment, and processes including donor recruiting, screening, blood draw, iPSC generation, storage, and distribution. I Peace has obtained a US-based independent institutional review board (IRB) approval for its process of donor sourcing for commercial-use iPSCs. The facility is designed to be PMDA and USFDA compliant.
As Avery Therapeutics expects to expand the application of its regenerative medicine technology to various types of heart diseases and beyond, iPSCs are the key enabling technology for quality and future scalability. This agreement provides a solid foundation to improve the welfare of those suffering from diseases through advancement of tissue-engineered therapeutics.
"We are thrilled to announce this collaboration with I Peace. It is a big step forward in the development of novel cell-based therapeutics for unmet medical needs. Through this collaboration, I Peace brings deep iPSC development and manufacturing expertise to enable Avery's proprietary MyCardia cell delivery platform technology. Together we hope to positively impact millions of patients worldwide in the near future," Said Jordan Lancaster, PhD, Avery Therapeutics' CEO.
This agreement reflects an innovative collaboration involving multiple locations internationally and marks a significant milestone for both I Peace, Inc. and Avery Therapeutics to pursue one of the first US clinical trials using iPSC technology in the area of heart diseases. Koji Tanabe, PhD, founder and CEO of I Peace stated: "By combining I Peace's proprietary clinical grade iPSC technology and Avery's tissue engineering technology, we can bring the regenerative medicine dream closer to reality. We are very excited by Avery's technology and look forward to continue working together."
About I Peace, Inc
I Peace, Inc. is a global supplier of clinical and research grade iPSCs. It was founded in 2015 in Palo Alto, California, USA by Dr. Tanabe, who earned his doctorate at Kyoto University under Nobel laureate Dr. Shinya Yamanaka. I Peace's mission is to alleviate the suffering of diseased patients and help healthy people maintain a high quality of life by making cell therapy accessible to all. I Peace's state-of-the-art GMP facility and proprietary manufacturing platform enables the fully-automated mass production of discrete iPSCs from multiple donors in a single room. Increasing the available number of clinical-grade iPSC lines allows I Peace customers to take differentiation propensity into account to select the most appropriate iPSC line for their clinical research at significantly reduced cost. I Peace aims to create iPSCs for every individual that become their stem cell for life.
Founder, CEO: Koji TanabeSince: 2015Head Quarter: Palo Alto, CaliforniaJapan subsidiary: I Peace, Ltd. (Kyoto, Japan)Cell Manufacturing Facility: Kyoto, JapanWeb: https://www.ipeace.com
About Avery Therapeutics
Avery Therapeutics is a company developing advanced therapies for patients suffering from cardiovascular diseases. Avery's lead candidate is an allogeneic tissue engineered cardiac graft, MyCardia in development for treatment of chronic heart failure. Using Avery's proprietary manufacturing process MyCardia can be manufactured at scale, cryopreserved, and shipped ready to use. Avery is leveraging its proprietary tissue platform to pursue other cardiovascular indications. For more information visit: AveryThera.com. Follow Avery Therapeutics on LinkedInand Twitter.Since: 2016Headquarter: Tucson, AZWebsite: https://www.AveryThera.com
SOURCE I Peace, Inc.
See the original post here:
I Peace, Inc. and Avery Therapeutics announce collaboration to bring iPSC derived cell therapy for heart failure to the clinic - PRNewswire
Recommendation and review posted by Bethany Smith
Flavors added to vaping devices damage the heart, vanilla custard the most toxic of all – Study Finds
TAMPA, Fla. While health officials and lawmakers continue trying to steer young people away from vaping, the wide variety of enticing flavors added to these products make that a tough task. Although most of the worry over vaping comes from the risk of addiction, lung damage, and threat of switching to conventional cigarettes, a new study finds the flavoring chemicals these products use may be just as harmful as anything else. Researchers from the University of South Florida Health say vaporized flavoring molecules are toxic to the heart and damage the organs ability to beat correctly.
While other studies find that vaping is generally less harmful than smoking traditional tobacco products, the nicotine and other chemicals in e-cigarettes still damages the heart and lungs. Until now however, researchers say the impact of flavoring additives inhaled into the bloodstream remained unclear.
The flavored electronic nicotine delivery systems widely popular among teens and young adults are not harm-free, says principal investigator Dr. Sami Noujaim in a university release. Altogether, our findings in the cells and mice indicate that vaping does interfere with the normal functioning of the heart and can potentially lead to cardiac rhythm disturbances.
Dr. Noujaims study is one of the first to investigate the cardiotoxic effects of flavoring chemicals added to the e-liquids in electronic nicotine delivery systems (ENDS). ENDS include a variety of different vaping products like vape pens, mods, and pods.
Researchers define vaping as inhaling aerosols (tiny droplets) which e-cigarettes create by heating liquid nicotine and solvents like propylene glycol and vegetable glycerin. A vaping devices battery-powered heater converts this liquid into a smoke-like mix, or vapor.
The study tested how three popular e-liquid flavors fruit, cinnamon, and vanilla custard affect cardiac muscle cells (HL-1) of mice. After being exposed to e-vapor in a lab dish, the results reveal all three flavors are toxic to HL-1 cells.
The USF team also examined what happens to cardiac cells grown from human stem cells that are exposed to three types of e-vapors. The first substance containing only solvents interfered with the cells electrical activity and beating rate. The second substance, containing both nicotine and solvents, proved to be even more toxic to the heart cells.
The third substance however, containing nicotine, solvents, and vanilla custard flavoring, caused the most damage to the heart and its ability to spontaneously beat correctly. Researchers also determined that vanilla custard flavoring is the most toxic of the varieties tested.
This experiment told us that the flavoring chemicals added to vaping devices can increase harm beyond what the nicotine alone can do, Dr. Noujaim says.
The study also tested flavored vapings impact on live mice. Researchers implanted each subject with a tiny electrocardiogram device before exposing them to 60 puffs of vanilla-flavored e-vapor five days a week for 10 weeks.
Study authors looked at how this exposure impacted heart rate variability (HRV), which is the change in time intervals between successive heartbeats. The results show that HRV decreased in vaping mice compared to those only exposed to puffs of clean air.
The USF team finds vaping interferes with normal HRV by disrupting the autonomic nervous system and its control over heart rate. Mice exposed to flavored vaping are also more prone to a dangerous heart rhythm problem called ventricular tachycardia.
Researchers say they still have to confirm these results in humans. Dr. Noujaim urges policymakers to continue looking at the growing evidence that vaping is not a particularly safer alternative to smoking.
Our research matters because regulation of the vaping industry is a work in progress, Dr. Noujaim explains. The FDA needs input from the scientific community about all the possible risks of vaping in order to effectively regulate electronic nicotine delivery systems and protect the publics health. At USF Health, in particular, we will continue to examine how vaping may adversely affect cardiac health.
The study appears in the American Journal of Physiology- Heart and Circulatory Physiology.
Recommendation and review posted by Bethany Smith
Covid-19 can have impact on heart too, say experts – Hindustan Times
The Covid-19 can damage the heart both directly and indirectly, and lead to complications ranging from inflammation of the heart (myocarditis), injury to heart cells (necrosis), heart rhythm disorders (arrhythmias), heart attack, and muscle dysfunction that can lead to acute or protracted heart failure, experts said.
Covid-19 is a vascular disease that injures heart cells and muscle. It also leads to the formation of blood clots, both in the microvasculature and large vessels, which can block blood supply to the heart, brain and lungs and lead to stroke, heart attack and respiratory failure, said Dr Ravi R Kasliwal, chairman of clinical and preventive cardiology department at Medanta -The Medicity Hospital.
Also Read: Few Covid-19 deaths in Indias old-age homes, survey finds
A US study using MRI found cardiac abnormalities in 78 of 100 patients who had recently recovered from Covid-19, including 12 of 18 asymptomatic patients. Sixty patients had ongoing myocardial inflammation consistent with myocarditis, found the study, which was published in the Journal of American Medical Association Cardiology in July.
Even people with mild disease or no symptoms can develop life-threatening cardiovascular complications. Whats worrying is that this holds true for healthy adults with no pre-existing risk factors, which raise their risk of complications, said Dr Kasliwal, who recommends that everyone who has recovered from Covid-19 be screened for heart damage
Cardiac trouble
Extensive cardiac involvement is what differentiates Sars-CoV-2, the virus that causes Covid-19, from the six other coronaviruses that cause infection in humans, writes cardiologist Dr Eric J Topol, founder, director and professor of molecular medicine at the Scripps Research Translational Institute in La Jolla, California, in the journal Science.
The four human coronaviruses that cause cold-like symptoms have not been associated with heart abnormalities, though there have been isolated reports linking the Middle East Respiratory Syndrome (MERS) caused by MERS-CoV) with myocarditis, and cardiac disease with the Severe Acute Respiratory Syndrome (SARS) caused by Sars-CoV.
Also Read| Extraordinary uncertainties: Harvard prof on Covid-19, impact on mental health
Sars-CoV-2 is structurally different from Sars-CoV. The virus targets the angiotensin-converting enzyme 2 (Ace2) receptor throughout the body, facilitating cell entry by way of its spike protein, along with the cooperation of proteases. The heart is one of the many organs with high expression of Ace2. The affinity of Sars-CoV-2 to Ace2 is significantly greater than that of SARS, according to Dr Topol.
Topol notes the ease with which Sars-CoV-2 infects heart cells derived from induced pluripotent stem cells (iPSCs) in vitro, leading to a distinctive pattern of heart muscle cell fragmentation evident in autopsy reports. Besides directly infecting heart muscle cells, Sars-CoV-2 also enters and infects the endothelial cells that line the blood vessels to the heart and multiple vascular beds, leading to a secondary immune response. This causes blood pressure dysregulation, and activation of a proinflammatory response leading to a cytokine storm, which is a potentially fatal systemic inflammatory syndrome associated with Covid-19.
Persisting problems
Studies have found that injury to heart cells reflected in blood concentrations of a cardiac muscle-specific enzyme called troponin affects at least one in five hospitalised patients and more than half of those with pre-existing heart conditions, which raises the risk of death. Patients with higher troponin amounts also have high markers of inflammation (including C-reactive protein, interleukin-6, ferritin, lactate dehydrogenase), high neutrophil count, and heart dysfunction, all of which heighten immune response.
The heightened systemic inflammatory responses and diminished blood supply because of clotting, endotheliitis (blood vessel inflammation), sepsis, or hypoxemia (oxygen deprivation) because of acute lung infection leads to indirect cardiac damage, said Dr Kasliwal.
The cardiovascular damage associated with Sars-CoV-2 infection can persist beyond recovery. Since the virus affects the heart as much as the respiratory tract, further research is needed to understand why some people are more vulnerable to heart damage than others.
Go here to read the rest:
Covid-19 can have impact on heart too, say experts - Hindustan Times
Recommendation and review posted by Bethany Smith
Network of Genes Involved in Congenital Heart Disease Identified – Technology Networks
Over two million babies, children, and adults in the United States are living with congenital heart disease--a range of birth defects affecting the heart's structure or function. Now, researchers at Gladstone Institutes and UC San Francisco (UCSF) have made inroads into understanding how a broad network of genes and proteins go awry in a subset of congenital heart diseases.
"We now have a better understanding of what genes are improperly deployed in some cases of congenital heart disease," says Benoit Bruneau, PhD, director of the Gladstone Institute of Cardiovascular Disease and a senior author of the new study. "Eventually, this might help us get a handle on how to modulate genetic networks to prevent or treat the disease."
Congenital heart disease encompasses a wide variety of heart defects, ranging from mild structural problems that cause no symptoms to severe malformations that disrupt or block the normal flow of blood through the heart. A handful of genetic mutations have been implicated in contributing to congenital heart disease; the first to be identified was in a gene known as TBX5. The TBX5 protein is a transcription factor--it controls the expression of dozens of others genes, giving it far-reaching effects.
Bruneau has spent the last 20 years studying the effect of TBX5 mutations on developing heart cells, mostly conducting research in mice. In the new study published inDevelopmental Cell, he and his colleagues turned instead to human cells, using novel approaches to follow what happens in individual cells when TBX5 is mutated.
"This is really the first time we've been able to study this genetic mutation in a human context," says Bruneau, who is also a professor in the Department of Pediatrics at UCSF. "The mouse heart is a good proxy for the human heart, but it's not exactly the same, so it's important to be able to carry out these experiments in human cells."
The scientists began with human induced pluripotent stem cells (iPS cells), which have been reprogrammed to an embryonic-like state, giving them--like embryonic stem cells--the ability to become nearly every cell type in the body.
Then, Bruneau's group used CRISPR-Cas9 gene-editing technology to mutate TBX5 in the cells and began coaxing the iPS cells to become heart cells. As the cells became more like heart cells, the researchers used a method called single-cell RNA sequencing to track how the TBX5 mutation changed which genes were switched on and off in tens of thousands of individual cells.
The experiment revealed many genes that were expressed at higher or lower levels in cells with mutated TBX5. Importantly, not all cells responded to the TBX5 mutation in the same way; some had drastic changes in gene expression while other were less affected. This diversity, the researchers say, reflects the fact that the heart is composed of many different cell types.
"It makes sense that some are more affected than others, but this is the first experimental data in human cells to show that diversity," says Bruneau.
Bruneau's team then collaborated with computational researchers to analyze how the impacted genes and proteins were related to each other. The new data let them sketch out a complex and interconnected network of molecules that work together during heart development.
"We've not only provided a list of genes that are implicated in congenital heart disease, but we've offered context in terms of how those genes are connected," says Irfan Kathiriya, MD, PhD, a pediatric cardiac anesthesiologist at UCSF Benioff Children's Hospital, an associate professor in the Department of Anesthesia and Perioperative Care at UCSF, a visiting scientist at Gladstone, and the first author of the study.
Several genes fell into known pathways already associated with heart development or congenital heart disease. Some genes were among those directly regulated by TBX5's function as a transcription factor, while others were affected in a less direct way, the study revealed. In addition, many of the altered genes were relevant to heart function in patients with congenital heart disease as they control the rhythm and relaxation of the heart, and defects in these genes are often found together with the structural defects.
The new paper doesn't point toward any individual drug target that can reverse a congenital heart disease after birth, but a better understanding of the network involved in healthy heart formation, as well as congenital heart disease may lead to ways to prevent the defects, the researchers say. In the same way that folate taken by pregnant women is known to help prevent neural tube defects, there may be a compound that can help ensure that the network of genes and proteins related to congenital heart disease stays balanced during embryonic development.
"Our new data reveal that the genes are really all part of one network--complex but singular--which needs to stay balanced during heart development," says Bruneau. "That means if we can figure out a balancing factor that keeps this network functioning, we might be able to help prevent congenital heart defects."
Reference: Kathiriya IS, Rao KS, Iacono G, et al. Modeling Human TBX5 Haploinsufficiency Predicts Regulatory Networks for Congenital Heart Disease. Developmental Cell. 2020. doi:10.1016/j.devcel.2020.11.020.
This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.
See the article here:
Network of Genes Involved in Congenital Heart Disease Identified - Technology Networks
Recommendation and review posted by Bethany Smith
Industry News: Hamamatsu Photonics UK Ltd and the Medical Technologies Innovation Facility enter into a partnership agreement – SelectScience
The agreement will accelerate the development and availability of new medical and pharmaceutical therapies to improve patients lives
Hamamatsu Photonics UK Ltd and Medical Technologies Innovation Facility (MTIF) are pleased to announce they have entered into a partnership agreement enabling customers the ability to view and utilize Hamamatsus Functional Drug Screening System (FDSS) CELL. This is the first FDSS/CELL to be made available in the UK in this way.
This new collaboration aims to leverage the photonics expertise, novel proprietary technology and applications of Hamamatsu, with the significant medical technology research and development capabilities of MTIF.
This is a high-end specialist piece of equipment utilised in the development of innovative medicines around the world. We are very excited to be able to provide customers with this capability, that complements our own research using this technically superb equipment. Says Professor John Hunt, Head of Strategic Research at MTIF and within Nottingham Trent University.
This partnership provides companies with a unique opportunity to use cutting edge high through-put technology to screen compounds for pharmacological activity. These capabilities are usually unavailable to all but the largest organisations. This collaboration allows organisations of every size the opportunity to accelerate their drug discovery programme. Says Professor Mike Hannay, Managing Director of the Medical Technologies Innovation Facility (MTIF) .
Hamamatsu has a long history in developing cutting edge scientific equipment for the life science market; our FDSS/CELL enables scientists, such as those working at MTIF, to make breakthroughs in the field of drug discovery and compound research. We are really excited about this new partnership between Hamamatsu and the team at MTIF helping to make such advanced instrumentation available to hundreds of potential users throughout the UK research community. Tim Stokes, Managing Director of Hamamatsu Photonics UK Ltd.
The FDSS/CELL is a compact, easy to use screening system that enables monitoring of GPCRs and ion channels for drug discovery and life science research. Screening various compounds at high throughput (96 / 384 well assays) is enabled by fluorescence or luminescence measurements using a highly sensitive Hamamatsu camera, which captures cell dynamics under the same conditions with no time lag between wells. It is also capable of recording changes in electrical potential in iPSC-derived neuronal and cardiac stem cells to gain a better understanding of toxic compound effects.
Through this new technical collaboration, HPUK and MTIF will organically integrate their respective advanced technologies and development capabilities to showcase this novel laboratory screening technology onsite at MTIF in Nottingham, UK.
Hamamatsu Photonics and MTIF aim to benefit the UK life science sector by accelerating the availability of new medical and pharmaceutical therapies. By aligning capabilities and ambitions, the parties will deliver benefit to clients by helping them to successfully navigate the complexities of discovering drug and cell therapy candidates.
Want the latest science news straight to your inbox? Become a SelectScience member today >>
The rest is here:
Industry News: Hamamatsu Photonics UK Ltd and the Medical Technologies Innovation Facility enter into a partnership agreement - SelectScience
Recommendation and review posted by Bethany Smith
What Is Gene Therapy? How Does It Work? | FDA
Espaol
The genes in your bodys cells play an important role in your health indeed, a defective gene or genes can make you sick.
Recognizing this, scientists have been working for decades on ways to modify genes or replace faulty genes with healthy ones to treat, cure or prevent a disease or medical condition.
Now this research on gene therapy is finally paying off. Since August 2017, the U.S. Food and Drug Administration has approved three gene therapy products, the first of their kind.
Two of them reprogram a patients own cells to attack a deadly cancer, and the most recent approved product targets a disease caused by mutations in a specific gene.
What is the relationship between cells and genes?f
Cells are the basic building blocks of all living things; the human body is composed of trillions of them. Within our cells there are thousands of genes that provide the information for the production of specific proteins and enzymes that make muscles, bones, and blood, which in turn support most of our bodys functions, such as digestion, making energy, and growing.
Sometimes the whole or part of a gene is defective or missing from birth, or a gene can change or mutate during adult life. Any of these variations can disrupt how proteins are made, which can contribute to health problems or diseases.
In gene therapy, scientists can do one of several things depending on the problem that is present. They can replace a gene that causes a medical problem with one that doesnt, add genes to help the body to fight or treat disease, or turn off genes that are causing problems.
In order to insert new genes directly into cells, scientists use a vehicle called a vector which is genetically engineered to deliver the gene.
Viruses, for example, have a natural ability to deliver genetic material into cells, and therefore, can be used as vectors. Before a virus can be used to carry therapeutic genes into human cells, however, it is modified to remove its ability to cause an infectious disease.
Gene therapy can be used to modify cells inside or outside the body. When its done inside the body, a doctor will inject the vector carrying the gene directly into the part of the body that has defective cells.
In gene therapy that is used to modify cells outside of the body, blood, bone marrow, or another tissue can be taken from a patient, and specific types of cells can be separated out in the lab. The vector containing the desired gene is introduced into these cells. The cells are left, to multiply in the laboratory, and are then injected back into the patient, where they continue to multiply and eventually produce the desired effect.
Before a company can market a gene therapy product for use in humans, the gene therapy product has to be tested for safety and effectiveness so that FDA scientists can consider whether the risks of the therapy are acceptable in light of the benefits.
Gene therapy holds the promise to transform medicine and create options for patients who are living with difficult, and even incurable, diseases. As scientists continue to make great strides in this therapy, FDA is committed to helping speed up development by prompt review of groundbreaking treatments that have the potential to save lives.
back to top
Read the original:
What Is Gene Therapy? How Does It Work? | FDA
Recommendation and review posted by Bethany Smith
What is gene therapy? – The Star Online
I have heard about people using genes to treat diseases nowadays, but I am not sure what this gene therapy means.
Gene therapy involves trying to alter or modify the genes inside your bodys cells in order to treat or stop a disease.
Since 2017, the US Food and Drug Administration (FDA) has approved three different types of gene therapy.
Maybe we can start at the beginning: what are genes?
Genes are the basic physical and functional unit of heredity.
Our genes are made out of DNA (deoxyribonucleic acid).
Each person has two copies of each gene one inherited from your mother and the other inherited from your father.
Each human being has around 20,000 to 25,000 genes.
These genes code for the way your body and mind are structured.
Some genes act as instructions (a blueprint) for your body to make various proteins, which in turn form your cells and organs, and the enzymes and hormones that regulate your body.
Other genes do not code for proteins.
Most genes are the same for all human beings, which is why we all look like human beings (and not a kangaroo, fish, bird or an alien)!
However, just under 1% of our genes vary slightly between each person.
That is why we have different races, heights, propensity for different diseases, curly or straight hair, etc.
These small differences also contribute to why we all look different from one another.
Genes that dont work as they should also cause diseases in the human body.
What types of diseases are caused by faulty genes?
These are what we call genetic disorders.
A genetic disease is any type of disease caused by an abnormality in our genetic blueprint.
This abnormality can range from very minor to significantly major.
What we consider minor is, for example, a small mutation in the DNA of a single gene resulting in the change of a single base protein.
What we consider major is a gross chromosomal abnormality, such as the addition of a whole chromosome or the subtraction of one.
Some genetic disorders are inherited from our parents.
Others are caused by mutations due to our environment.
Examples of single gene disorders, which are caused by the alteration of just one gene in our bodies, are:
Examples of multifactorial inheritance, which are caused by a combination of environmental factors and mutations in many of our genes, are:
If we inherited these genes from our parents, then how can we possibly modify or alter them? This sounds terribly like science fiction.
We are rapidly approaching that era where what used to be science fiction could become part of our everyday life.
In gene therapy, scientists can:
How do they do this? Do they have to harvest my cells? Im scared just thinking about it!
Many of the vectors are viruses, especially adenoviruses (not coronaviruses!).
Viruses have a natural ability to deliver genetic material into our cells.
After all, their main purpose is to attach themselves to cells and reproduce themselves.
Sometimes, the vector or virus is injected straight into our bodies, where they will deliver the gene that will modify our cells.
They are injected straight into the part of our body that has those defective cells.
Other times, we have to harvest healthy tissue from our body that needs to be modified.
These are usually tissues containing immune cells or stem cells, e.g. blood or bone marrow.
These tissue samples are then taken to the lab and specific cells are separated out.
The viral vector containing the corrective gene is then introduced to the harvested cells in the lab.
The modified cells are left to multiply, and then injected back into us.
Once inside our bodies, they will continue to multiply and eventually treat the disease or correct the defect within us.
Learn more about gene therapy in the next Tell Me About column on Dec 31 (2020).
Dr YLM graduated as a medical doctor, and has been writing for many years on various subjects such as medicine, health, computers and entertainment. For further information, email starhealth@thestar.com.my. The information contained in this column is for general educational purposes only. Neither The Star nor the author gives any warranty on accuracy, completeness, functionality, usefulness or other assurances as to such information. The Star and the author disclaim all responsibility for any losses, damage to property or personal injury suffered directly or indirectly from reliance on such information.
View original post here:
What is gene therapy? - The Star Online
Recommendation and review posted by Bethany Smith
What It’s Like Rising A Little Boy With Advanced Breast Cancer – Oprah Mag
Vichhika Taing with Autumn Love Photography
My goal in life is to see my two boys, who are now 5 and 7, graduate from high school. That might not seem like a lot, but at one point I wasnt even sure if I would see them start kindergarten.
Around four years ago, when I was 38 and the kids were about 1 and 3, I noticed I was walking with a limp and had a lot of back pain. But I dont like to complain, so I just kept going. Then one day, I was tandem breastfeeding my boys and I felt a lump in my breast. I wasnt that surprised, because I had an overabundance of milk and had experienced lots of clogs in my milk ducts. I asked my lactation consultant about it, and she sent me to see my primary care doctor.
My primary care doctor wasnt overly concerned, but because my mother was then a 13-year breast cancer survivor, I had a mammogram just to be safe. Having a mammogram while youre breastfeeding is crazyit was so painful, and I showered the machine with milk! They also did a diagnostic ultrasound that day, and then referred me for a biopsy. I had a hunch something might not be right, but I didn't let myself go into full on panic mode yet.
I was one bad step away from that bone shattering, and had to have surgery right away.
It was March 8, 2017 when I found out I had breast cancer, and after that it was like boom, boom, boom, things happened so fast. I had a lumpectomy and started chemo, and then a whirlwind of scans and appointments. I was soon told I had Stage IV metastatic breast cancer that had already spread through my blood to my bones. The reason I was limping was that there was a 5 cm tumor in the middle of my right femurI was one bad step away from that bone shattering, and had to have surgery right away to place titanium rods into both of my thighbones.
I haven't had enough time with my kids! That was my very first thought when the doctor told me the median life expectancy for metastatic breast cancer is 2 to 3 years. They were so young that I was legitimately concerned that they wouldnt even remember me. All I wanted was more time to spend with them.
When I first was diagnosed, my breast surgeon did genetic testing for the BRCA 1 and 2 gene mutations, both of which substantially raise your risk of breast cancer. Those were negative. But once we realized how advanced my cancer was, I had the full genetic panel done. In 2017, there were 40 genes known to be associated with breast cancer. And it came up that I was positive for a mutation in the ATM gene, which not only increases the risk for breast cancer and pancreatic cancer in women, but also prostate cancer in men. Of course, I let everyone in my family know what my genetic testing found, and a lot of relatives have now tested for ATM. Several are positive, and a sister and cousin of mine had prophylactic (preventative) double mastectomies, which dramatically reduces their risk of breast cancer. Genetic testing really had a huge effect on my entire family.
Abigail Johnston
The genetic testing also identified four somatic mutation (those caused randomly or due to environmental factors, not genetics), including PIK3CA. I was elated to learn that PIK3CA has an actionable treatment right now, but Im glad that I know about the other ones, despite the lack of treatment options. It means I can watch for new medications that might help down the line. Luckily, there is lots of research in the works.
My oncologist told me it was the closest I had come to being at No Evidence of Active Disease (NEAD).
In August 2019, after two years on the first drug, a PET scan showed that my cancer had mutated and the drug I was using was no longer effective. Since I had already gotten tested for PIK3CA, I was able to start a brand-new drug that was targeted to that mutation right away. But after several months on that second drug, another scan showed that the cancer in my bones was becoming more metabolically active, so I added another drug to my regimen. There are a lot of side effects, but its worth it to keep my cancer in check.
My most recent PET scan showed that this combination of drugs is working. I am currently stablemy medical oncologist told me it was the closest I had come to being at No Evidence of Active Disease (NEAD). It was the best scan Ive had in three and a half years.
Cancer has definitely changed things. I was really active before my diagnosis, and my boys are very high-energy, but now we do a lot more sedentary things, like crafts and science projectsthey love anything thats really messy, like slime and paint. We live in Miami, so we also spend a lot of time in the pool, which is great, because theyre like little fish, and I do a lot of my physical therapy in the water. On days when Im not feeling well, we have a lot of cuddles and snuggles in bed.
Abigail Johnston
The hardest thing is that I cant move too quickly or grab my kids if they run out in the middle of the street, so we have a baby-sitter to help with that. And since having cancer is just all-around challenging, about three years ago, my family moved in with my parents, so my mom can help out, too. My husband, Elliot, has also been amazing. He is so patient, loyal, consistent, and kind.
Ive met the first big goal I set when I was diagnosed, which was to see both my boys enter kindergarten! Now we have 12 more years until my younger son graduates high school, and Im feeling hopeful that a medication targeted to my body and my cancer will get me there.
This content is created and maintained by a third party, and imported onto this page to help users provide their email addresses. You may be able to find more information about this and similar content at piano.io
Link:
What It's Like Rising A Little Boy With Advanced Breast Cancer - Oprah Mag
Recommendation and review posted by Bethany Smith
Though Promising, Gene Therapies Face Durability And Reimbursement Headwinds – Forbes
WALPOLE , MA - AUGUST 6: Estelle Lemieux, a 21-month-old with spinal muscular atrophy, practices ... [+] using her new wheelchair outside of her home in Walpole, MA on Aug. 6, 2019. Estelle will be getting a treatment of Zolgensma after her insurer, Aetna, decided to cover the $2.1 million drug. (Photo by Jessica Rinaldi/The Boston Globe via Getty Images)
The promise of gene therapy is to cure diseases associated with faulty or missing genes. Theres enormous potential. Just this month, at the annual American Society of Hematology meeting, it was shown that gene therapy stops bleeding in hemophilia. Researchers reported that a single injection of a viral-mediated gene therapy vector decreases the bleeding rate among patients with Factor IX-related hemophilia B by 91% over a 6 month period.
Ideally, gene therapies address the root causes of disease with a single curative dose. If they can replace a lifetime of expensive maintenance treatments this may lead to cost savings in the long run. Yet, the high upfront costs, uncertainty surrounding long-term durability, and adverse events have led to some concerns among payers and regulators.
Pharmaceutical firms deploy multiple approaches to pursuing curative gene therapy, including:
These approaches build on advances in basic science. Companies involved in gene therapy research and development include mid-size and large firms. Among other large pharmaceutical firms, Bayer is establishing a cell and gene therapy platform within its pharmaceuticals division. The company aims to deploy the platform in as many indications as possible.
Novel drug development is invariably a risky venture. The issue of risk is further amplified in gene therapy. Promising therapies face unexpected challenges. For example, in a surprise decision this fall, the Food and Drug Administration (FDA) rejected BioMarins license application for its gene therapy to treat severe hemophilia A. According to the FDA, valoctocogene roxaparvovec gene therapy, is not ready for approval in its present form. The FDA changed its data requirements for the application. The agency is now requesting that the sponsor BioMarin provide two years of data from the companys ongoing Phase 3 study of the therapy.
While development challenges will persist, payment hurdles may be equally difficult to overcome. Should many of the gene therapies in the pipeline be approved in the coming decade the budgetary impact burden on payers could become overwhelming. Payer concerns stem in part from there being hundreds of gene therapies in clinical development,across a wide range of therapeutic categories, including among others, cardiovascular disease, Parkinsons, various inherited disorders, different types of cancer, viruses such as HIV, and blood diseases like sickle cell anemia.
The churn or turnover at U.S. insurers - as beneficiaries frequently switch plans - lowers the potential return on investment for payers. So, being saddled with high upfront costs without necessarily experiencing the downstream long-term benefits of gene therapies is a considerable problem for which a structural solution has not yet been found.
The payer assumes all the risk with fixed, static pricing. And, the payer isnt able to properly assess that risk, given that clinical development of gene therapies has, thus far, mostly included only very small numbers of patients. Therefore, the real-world benefits and risks remain unclear at the time of approval. Clearly, given the uncertainties regarding long-term durability of gene therapies as well as the potential for toxicity and other adverse effects to patients, a dynamic pricing structure is not only desirable but essentially required for these treatments.
Value-based contracts
In what appear to be harbingers of new ways to finance gene therapies and potentially turn fortunes around of therapies lagging in uptake, drug manufacturers are offering - and in some cases payers have been amenable to - indication-specific pricing arrangements, value-based contracts, and installment plans.
For example, in 2018, the FDA approved the gene therapy Luxturna. This treatment holds the promise to restore functional vision to the blind. The sponsor, Spark Therapeutics, set its products price at $425,000 per eye. Harvard Pilgrim entered into a unique outcomes-based contract with Spark Therapeutics. In the deal, Harvard Pilgrim pays for Luxturna, but gets certain refunds if the treatment wears off after a defined period of time. The full details of the contract are confidential. What is known, however, is that because of federal regulations, known as Medicaid best price rules, the maximum refund cannot exceed 23.1%, or the amount Spark Therapeutics is required to offer Medicaid programs. Spark Therapeutics did request that the Centers for Medicare and Medicaid Services (CMS) offer ways to work around the Medicaid best price requirement, in order for it to be able to accept installment payments and provide insurers deeper refunds or rebates in case the product doesnt meet certain targets.
Novartis Gene Therapies has been working closely with payers to create five-year outcomes-based agreements and novel pay-over-time options for the Zolgensma therapy, indicated for spinal muscular atrophy. The sponsor asserts that the treatment is cost-effective, even when priced at $2.125 million per patient. The installment plans would spread out payments over five years. In addition, the sponsor would offer a refund if a patient dies or the treatment otherwise fails within that period.The current alternative to Zolgensma is BiogensSpinraza, which patients take for the duration of their lifetime. The costs of Spinraza are approximately $4 million over a 10-year span.
In 2019, BluebirdBio told investors it was seeking value-based installment plan contracts to reimburse its sickle cell anemia product LentiGlobin for transfusion-dependent beta-thalassemia. The installments would be paid over a period of up to five years.
After an initial charge, Bluebird Bio would only get reimbursed if the one-time infusion benefits patients. This implies that up to 80% of the cost of LentiGlobin would only be made if there is treatment success. And this success would then be measured and tracked in patient registries maintained by payers.
As part of its contracting preparations, Bluebird Bio has sought ways to bypass Medicaid best price rules; for example, waivers to establish an exemption. The company has also pursued a resolution to the issue of portability - when patients change insurers - by way of a mutual recognition strategy across payers.
But, now the FDA wants Bluebird Bio to provide additional information on the manufacturing process it will use as it transitions the product, LentiGlobin, from clinical trials to commercial production. This will push back the timing of execution of contracts until LentiGlobin gets approved by FDA, which may not be until 2022 or later.
Across the various contract constructs described, payments can be administered in different ways that are not mutually exclusive:
Reimbursement of pharmaceutical products generally happens on a per-unit basis, which spreads out costs over years. But, the cost of a gene therapy is much more concentrated, possibly all upfront in a single payment. Such high upfront one-time costs make it harder for payers to underwrite the risk of full payment for one therapy, let alone the entire range of gene therapies that may be coming to market shortly. Therefore, a combination of installment plans and value-based contracting arrangements will likely be the wave of the future for gene therapy reimbursement.
See the original post here:
Though Promising, Gene Therapies Face Durability And Reimbursement Headwinds - Forbes
Recommendation and review posted by Bethany Smith
Lilly scores gene therapy programme in $1bn Prevail Therapeutics acquisition deal – PMLiVE
Eli Lilly has stepped into the gene therapy space after announcing a deal to acquire Prevail Therapeutics, a company focused on developing adeno-associated virus (AAV)-based gene therapies for neurodegenerative diseases.
Lilly will acquire Prevail for $22.50 per share in cash, plus one $4 contingent value right dependent on the first regulatory approval of a product from Prevails pipeline.
This reflects a potential consideration of up to $26.50 per share in cash for a total consideration of approximately $1.04bn.
For Lilly, the acquisition will extend its focus into developing gene therapies, establishing an in-house gene therapy programme anchored by Prevails current portfolio and AAV-based technology.
Prevails pipeline spans clinical-stage and preclinical neuroscience assets, including lead gene therapies PR001 for patients with Parkinsons disease with GBA1 mutations (PD-GBA) and neuronopathic Gaucher disease (nGD) and PR006 for patients with frontotemporal dementia with GRN mutations (FTD-GRN).
The companys preclinical pipeline also includes PR004, a potential gene therapy for patients with specific synucleinopathies, as well as candidates for Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders.
"The acquisition of Prevail will bring critical technology and highly skilled teams to complement our existing expertise at Lilly, as we build a new gene therapy programme anchored by well-researched assets, said Mark Mintun, vice president of pain and neurodegeneration research at Lilly.
We look forward to completing the proposed acquisition and working with Prevail to advance their ground-breaking work through clinical development, he added.
For Prevail to achieve the full value of the contingent CVR payment, the first regulatory approval arising from its current gene therapy pipeline must happen by 31 December 2024.
Failing regulatory approval by this date, Lilly said in a statement that the value of the CVR will decrease by approximately 8.3 cents per month until the expiration date 1 December 2028.
Within Prevails clinical pipeline, PR001 has already scored a US Food and Drug Administration (FDA) fast-track designation for the treatment of PD-GBA patients and nGD.
It has also been granted an FDA orphan drug designation for the treatment of Gaucher disease, and rare paediatric disease designation for the treatment of nGD.
Prevails PR006 gene therapy also has an FDA and European Commission orphan designation for the treatment of FTD, with the FDA also handing it a fast-track designation for FTD-GRN.
In November, Lilly signed a deal with Precision BioSciences focused on genome editing research, with an initial focus on developing in vivo therapies for Duchenne muscular dystrophy and two other undisclosed gene targets.
Read more:
Lilly scores gene therapy programme in $1bn Prevail Therapeutics acquisition deal - PMLiVE
Recommendation and review posted by Bethany Smith
Gene Therapy in One Eye Improves Vision in Both Eyes – The Scientist
I
n a Phase 3 gene therapy trial intended to improve vision among patients with Leber hereditary optic neuropathy, recipients gained somewhat better sight in both eyes even though only one was treated. The results and an investigation into possible explanations for the findings were published December 9 in Science Translational Medicine.
The paper has very strong clinical implications that a single injection maybe is enough for bilateral effects, says Thomas Corydon, who studies ocular gene therapy at Aarhaus University in Denmark and was not involved in the work.
The onset of Leber hereditary optic neuropathy (LHON) is sudden. Patientsusually young menstart losing vision at the center of one eye. Within months, the other eye follows, leaving them legally blind. The disease is caused by a point mutation in the mitochondrial genome that leads to dysfunction and death of retinal ganglion cells, the axons of which make up the optic nerve. About 70 percent of patients have the same mutation, known as MT-ND4.
If you're going to start somewhere, it makes sense to tackle this variant, says Patrick Yu-Wai-Man, an ophthalmologist at the University of Cambridge in the United Kingdom. He and his collaborators, including teams from GenSight Biologics and a group led by University of Pittsburg Medical Center ophthalmologist Jos-Alain Sahel, as well as other groups, previously showed that the point mutation could be corrected in animal models and in cell culture using gene therapy.
Its difficult to get genetic material into the mitochondrial genome because mitochondria have two membranes, an outer and inner membrane, Yu-Wai-Man explains. In the clinical trial, he, Sahel, and colleagues overcame this hurdle by injecting an AAV vector containing a wildtype copy of the ND4gene with an added mitochondrial-targeting sequencea strategy that had already been shown to correctly direct the protein product of ND4 and other mitochondrial genes to the organelle.
Each of 37 patients received the therapeutic virus via a single injection into the vitreous fluid within one eye six to 12 months after the onset of vision loss. They also got a sham treatment in the other eye: a surgeon pressed the eye with a blunt cannula to simulate an injection.
We thought that, if there was going to be an effect, it would be isolated to that eye and then the other one would be the perfect internal control, Yu-Wai-Man tells The Scientist. But as it turns out, that wasnt the case.
With a slight delay in the sham-treated eye, both eyes started to improve. By 96 weeks after treatment, 29 of the patients had gained visual acuity in both eyes and reported increases in their quality of life.
Patients do improve, but, even with the treatment, they still function at a very low level, says Byron Lam, an ophthalmologist at the University of Miami who was not involved in the study. Most of the subjects were still near legal blindness at the end of the study.
To determine how the bilateral effect might be happening, Yu-Wai-Man and colleagues injected the therapeutic virus into one eye of three monkeys. Three months later, they found viral DNA in the noninjected eye and optic nerve. This raises the possibility that the viral vector supplies the wildtype protein in the untreated eye, but its not firm proof.
Finding viral DNA in the untreated eye in primates is a little short of being definitive because DNA expression alone doesnt prove that youre getting a therapeutic effect. Detecting DNA doesnt mean there is mRNA expression or protein production, says Mark Pennesi, an ophthalmologist at Oregon Health & Science University who did not participate in the work.
Previous work has shown that there could be transneuronal spread of the vector, but we also need to keep a critical mind and think that there might be other explanations, agrees Yu-Wai-Man. It could be that injecting the vector in one eye leads to some form of localized inflammation that induces mitochondrial biogenesis, thus making the mitochondria work better, he adds. Another option is that improvement in one eye leads to reorganization in the part of the brain that interprets signals from the eye, which could enhance vision overall.
Clearly, further investigations are needed to understand the underlying mechanisms of how the interocular diffusion of viral DNA vector occurs and whether there are other mechanisms by which the optic nerves directly communicate, Bin Li, an ophthalmologist at Tongji Hospital in China who was not involved in the study, writes in an email to The Scientist.Li explains that his group has also reported that material injected in one eye can reach the other optic nerve.
These findings have implications for how this type of research should be performed in the future, he writes. Theyve shown that contralateral sham-treated eyes cannot serve as true internal control for clinical studies.
When you read this paper, you get a little excited, and then in some ways, you get a little disappointed, because it does look like theres some kind of positive effect with this treatmentthat it does do something more than what would happen with just the natural history of the disease. Unfortunately, the results are confounded by the fact that you treat one eye, but then there is improvement in the untreated control eye, Pennisi tells The Scientist. The question then really becomes . . . why did you get that result?
Along with academic collaborators, Yu-Wai-Man, who consults for GenSight Biologics, will continue to explore this question as they focus on ongoing clinical trials of this therapeutic.
P. Yu-Wai-Man et al., Bilateral visual improvement with unilateral gene therapy injection for Leber hereditary optic neuropathy,Science Translational Medicine,doi:10.1126/scitranslmed.aaz7423, 2020.
Correction (December 14): The story has been updated to remove mention of a company that was not involved in the work and to specify which fluid compartment in the eye was injected.The Scientist regrets the error.
See more here:
Gene Therapy in One Eye Improves Vision in Both Eyes - The Scientist
Recommendation and review posted by Bethany Smith
Gene Therapy Market Worth USD 35.67 Billion at 33.6% CAGR; Rising Prevalence of Spinal Muscular Atrophy to Augment Growth: Fortune Business Insights -…
Pune, India, Dec. 14, 2020 (GLOBE NEWSWIRE) -- The report mentions that the Gene Therapy Market size was USD 3.61 billion in 2019 and is projected to reach USD 35.67 billion by 2027, exhibiting a CAGR of 33.6% during the forecast period. The global gene therapy market is set to gain momentum from the rising incidence of different types of cancer. The field of this therapy is undergoing several technological advancements that would help in treating cancer in those patients who are at high risks of getting affected by this disease through genetic mutations. In 2019, the U.S. generated USD 2.16 billion in terms of revenue. The country is expected to dominate throughout the coming years stoked by the increasing usage of advanced gene therapies for the treatment of rare conditions.
KEY INDUSTRY DEVELOPMENTS:
Request a Sample Copy of the Research Report: https://www.fortunebusinessinsights.com/enquiry/request-sample-pdf/gene-therapy-market-100243
Increasing Innovations & Research Activities to Boost Growth
The U.S Food and Drug Administration (FDA) stated that it is expecting to receive more than 200 applications of this therapy by the end of 2020. This showcases that the rising number of research studies and innovations in this field would affect the gene therapy market growth positively in the near future. In North America, almost 208 companies are currently operating in this market. In addition to this, the Alliance for Regenerative Medicine declared that as of 2018, approximately 259 potential drug candidates are under Phase I clinical trials across the globe.
However, the outbreak of the COVID-19 pandemic is presently impacting the field of research. According to the director of the Office of Tissues and Advanced Therapy (FDA) named Wilson Brayan, nowadays the officials are prioritizing only those drugs that are associated with coronavirus.
To get to know more about the short-term & long-term impact of COVID-19 on this market, please click here: https://www.fortunebusinessinsights.com/industry-reports/gene-therapy-market-100243
The U.S. to Dominate Owing to Presence of Favorable Policies
In 2019, the U.S. generated USD 2.16 billion in terms of revenue. The country is expected to dominate throughout the coming years stoked by the increasing usage of advanced gene therapies for the treatment of rare conditions.
Besides, the presence of favorable reimbursement policies and guidelines would also help in propelling the market growth here. As this type of treatment is not legal in several developing nations, industry giants are emphasizing on the U.S. for launching their products.
Europe, on the other hand, is anticipated to grow significantly backed by the adoption of unique treatment options. Asia Pacific is set to hold a comparatively lower share on account of the decreasing usage of gene therapy because of its expensive nature.
Quick Buy - Gene Therapy Market Research Report: https://www.fortunebusinessinsights.com/checkout-page/100243
List of Key Players operating in Gene Therapy Market:
Have Any Query? Ask Our Experts: https://www.fortunebusinessinsights.com/enquiry/speak-to-analyst/gene-therapy-market-100243
Global Gene Therapy Market Segmentations:
By Application
Oncology
Neurology
Others
By Vector Type
Viral
Non-viral
By Distribution Channel
Hospitals
Clinics
Others
By Geography
U.S.
Europe (U.K., Germany, France, Italy, Spain, and Rest of Europe)
Asia-Pacific (Japan, China, and Rest of Asia- Pacific)
Rest of World
Get your Customized Research Report: https://www.fortunebusinessinsights.com/enquiry/customization/gene-therapy-market-100243
SECONDARY RESEARCH IS CONDUCTED TO DERIVE THE FOLLOWING INFORMATION:
Have a Look at Related Reports:
India Peritoneal Dialysis Market Share & Industry Analysis, By Type (Continuous Ambulatory Peritoneal Dialysis (CAPD), Automated Peritoneal Dialysis (APD)), By Product (Devices (Cyclers/Machines), PD Solutions/Fluids, PD Sets, Catheters) Forecast, 2019-2025
Guidewire Market Share & Industry Analysis, By Product (Coronary Guidewire, Peripheral Guidewire, Urology Guidewire, Neurovascular Guidewire, and Others) By Material (Nitinol, Stainless Steel, and Others) By Coating (Coated and Non-Coated) By End User (Hospitals & Clinics, Diagnostic Centers, and Others) and Regional Forecast, 2019-2026
India Insulin Pumps Market Share & Industry Analysis, By Product (Insulin Pumps (Tethered Pumps and Patch Pumps) and Consumables (Reservoirs, Infusion Sets, and Others) and Region Forecast, 2019-2025
Lactose Market Share Trends & Industry Analysis, By Purity (Crude Lactose, Edible Lactose, and Refined-edible Grade Lactose), By Color (Yellow Lactose, Pale-yellow to White Lactose, and White Lactose), By Applications (Food, Feed, Infant Formula, and Pharmaceuticals), and Regional Forecast, 2019-2026
Contact Lenses Market Share & Industry Analysis, By Modality (Reusable and Disposable), By Design (Toric, Multi-focal, and Spherical), By Distribution Channel (Retail Stores, Online Stores, and Ophthalmlogists), and Regional Forecast, 2019-2026
About Us:
Fortune Business Insights offers expert corporate analysis and accurate data, helping organizations of all sizes make timely decisions. We tailor innovative solutions for our clients, assisting them to address challenges distinct to their businesses. Our goal is to empower our clients with holistic market intelligence, giving a granular overview of the market they are operating in.
Our reports contain a unique mix of tangible insights and qualitative analysis to help companies achieve sustainable growth. Our team of experienced analysts and consultants use industry-leading research tools and techniques to compile comprehensive market studies, interspersed with relevant data.
At Fortune Business Insights we aim at highlighting the most lucrative growth opportunities for our clients. We, therefore, offer recommendations, making it easier for them to navigate through technological and market-related changes. Our consulting services are designed to help organizations identify hidden opportunities and understand prevailing competitive challenges.
Contact Us:
Fortune Business Insights Pvt. Ltd. 308, Supreme Headquarters, Survey No. 36, Baner, Pune-Bangalore Highway, Pune - 411045, Maharashtra, India.
Phone:US :+1 424 253 0390UK : +44 2071 939123APAC : +91 744 740 1245Email: sales@fortunebusinessinsights.comFortune Business InsightsLinkedIn | Twitter | Blogs
Press Release: https://www.fortunebusinessinsights.com/press-release/global-gene-therapy-market-10136
See the rest here:
Gene Therapy Market Worth USD 35.67 Billion at 33.6% CAGR; Rising Prevalence of Spinal Muscular Atrophy to Augment Growth: Fortune Business Insights -...
Recommendation and review posted by Bethany Smith
Health Canada approves Zolgensma, the one-time gene therapy for pediatric patients with spinal muscular atrophy (SMA) – Canada NewsWire
Zolgensma is a gene therapy designed to address the genetic root cause of SMA by replacing the missing or defectiveSMN1gene1.It is administered during an intravenous (IV) infusion, delivering a new working copy of the SMN1 gene into a patient's cells, halting disease progression and restoring production of SMN protein1.
"SMA can be a devastating diagnosis for families to receive. Without treatment, many children would not be able to meet important developmental milestones like lifting their head, sitting or walking.Even breathing and swallowing can become difficult in the severe, infant-onset form of this disease," said Dr. Hugh McMillan, Pediatric Neurologist at the Children's Hospital of Eastern Ontario in Ottawa."The approval of Zolgensma in Canada offers children an opportunity to maximize their developmental potential from this one-time therapy.The decision to treat based upon weight may allow children diagnosed slightly later to also benefit from this therapy."
"When I first started diagnosing SMA, I couldn't have imagined that we would see such scientific advancements," said Dr. Nicolas Chrestian, Chief of Paediatric Neurology, specialized in neuromuscular disorders at Centre Hospitalier Mre Enfant Soleil, Universit Laval in Qubec City. "Zolgensma offers, in a single dose, the possibility of halting the progression of this degenerative condition that can rob children of regular developmental milestones."
In Canada each year, approximately one in 10,000 babies are born with SMA,a rare, genetic neuromuscular disease caused by a defective or missingSMN1gene3. Without a functionalSMN1gene, infants with SMA lose the motor neurons responsible for muscle functions such as breathing, swallowing, speaking and walking2. Left untreated, muscles become progressively weaker2,3. In the most severe form, this eventually leads to paralysis and ultimately permanent ventilation or death by age 2 in more than 90%of cases4.
"The SMA community is thrilled to have another treatment option to offer hope to families grappling with an SMA diagnosis. The approval of Zolgensma couldn't come soon enough. We will continue to advocate until everyone who needs access to treatment can benefit from innovations like this," said Susi Vander Wyk, Executive Director, CureSMA Canada.
"Today's announcement about the Canadian approval of Zolgensma is a significant milestone in our journey to reimagine medicine by changing the treatment paradigm for children with SMA." said Andrea Marazzi, Country Head, Novartis Pharmaceuticals Canada. "Our commitment to the SMA community truly comes to life when those that could benefit most from Zolgensma can access it. This is why we continue to work collaboratively with the pan-Canadian Pharmaceutical Alliance, provinces and territories to make this happen as quickly as possible."
The efficacy and safety data supporting the approval of Zolgensma in treating pediatric patients with SMA are derived from completed and ongoing open-label, single-arm, clinical trials in patients with infantile-onset SMA and 2 copies of SMN2 gene; and presymptomatic genetically diagnosed SMA and 2 or 3 copies of SMN2 gene1.
Zolgensma is the only gene therapy approved by Health Canada for the treatment of SMA1. Thirteen treatment sites have been identified in leading healthcare institutions with SMA expertise. The sites are located in: Vancouver, BC; Edmonton, AB; Calgary, AB; Saskatoon, SK; Winnipeg, MB; London, ON; Hamilton, ON; Toronto, ON; Ottawa, ON; Montreal, QC; Quebec City, QC; Halifax, NS.
About Spinal Muscular AtrophySMA is the leading cause of genetic infant death2. Loss of motor neurons cannot be reversed, so SMA patients with symptoms at the time of treatment will likely require some supportive respiratory, nutritional and/or musculoskeletal care to maximize functional abilities5.This is why it is imperative to diagnose SMA and begin treatment, including proactive supportive care, as early as possible to halt irreversible motor neuron loss and disease progression6.Early diagnosis is especially critical in the most severe form, where motor neuron degeneration starts before birth and escalates quickly5. Newborn screening for SMA is currently being implemented in Ontario and piloted in Alberta7,8.
About Novartis in Gene Therapy and Rare DiseaseNovartis is at the forefront of cell and gene therapies designed to halt diseases in their tracks or reverse their progress rather than simply manage symptoms. The company is collaborating on the cell and gene therapy frontier to bring this major leap in personalized medicine to patients with a variety of diseases, including genetic disorders and certain deadly cancers. Cell and gene therapies are grounded in careful research that builds on decades of scientific progress. Following key approvals of cell and gene therapies by health authorities, new treatments are being tested in clinical trials around the world.
About Novartis in CanadaNovartis Pharmaceuticals Canada Inc., a leader in the healthcare field, is committed to the discovery, development and marketing of innovative products to improve the well-being of all Canadians. In 2019, the company invested $51.8 million in research and development in Canada. Located in Dorval, Quebec, Novartis Pharmaceuticals Canada Inc. employs approximately 1,500 people in Canada and is an affiliate of Novartis AG, which provides innovative healthcare solutions that address the evolving needs of patients and societies. For further information, please consult http://www.novartis.ca.
About Novartis globallyNovartis is reimagining medicine to improve and extend people's lives. As a leading global medicines company, we use innovative science and digital technologies to create transformative treatments in areas of great medical need. In our quest to find new medicines, we consistently rank among the world's top companies investing in research and development. Novartis products reach nearly 800 million people globally and we are finding innovative ways to expand access to our latest treatments. About 110,000 people of more than 140 nationalities work at Novartis around the world. Find out more at https://www.novartis.com.
Zolgensma is a registered trademark of Novartis Gene Therapies.
Novartis Gene Therapies has an exclusive, worldwide license with Nationwide Children's Hospital to both the intravenous and intrathecal delivery of AAV9 gene therapy for the treatment of all types of SMA; has an exclusive, worldwide license from REGENXBIO for any recombinant AAV vector in its intellectual property portfolio for thein vivogene therapy treatment of SMA in humans; an exclusive, worldwide licensing agreement with Gnthon forin vivodelivery of AAV9 vector into the central nervous system for the treatment of SMA; and a non-exclusive, worldwide license agreement with AskBio for the use of its self-complementary DNA technology for the treatment of SMA.
References
SOURCE Novartis Pharmaceuticals Canada Inc.
For further information: Novartis Media Relations, Julie Schneiderman, +1 514 633 7873, E-mail: [emailprotected]
Follow this link:
Health Canada approves Zolgensma, the one-time gene therapy for pediatric patients with spinal muscular atrophy (SMA) - Canada NewsWire
Recommendation and review posted by Bethany Smith
Global Gene Therapy Market Report 2020-2030 Featuring Novartis, Bluebird Bio, Spark Therapeutics, Audentes Therapeutics, Voyager Therapeutics,…
DUBLIN, Dec. 17, 2020 /PRNewswire/ -- The "Gene Therapy Global Market Report 2020-30: COVID-19 Growth and Change" report has been added to ResearchAndMarkets.com's offering.
Gene Therapy Global Market Report 2020-30: COVID-19 Growth and Change provides the strategists, marketers and senior management with the critical information they need to assess the global gene therapy market market.
Major players in the gene therapy market are Novartis AG, Bluebird Bio, Inc., Spark Therapeutics, Inc., Audentes Therapeutics, Voyager Therapeutics, Applied Genetic Technologies Corporation, UniQure N.V., Celgene Corporation, Cellectis S.A. and Sangamo Therapeutics.
The global gene therapy market is expected to decline from $3.22 billion in 2019 to $3.18 billion in 2020 at a compound annual growth rate (CAGR) of -1.30%. The decline is mainly due to the COVID-19 outbreak that has led to restrictive containment measures involving social distancing, remote working, and the closure of industries and other commercial activities resulting in operational challenges. The market is then expected to recover and reach $6.84 billion in 2023 at a CAGR of 29.09%.
The gene therapy market consists of sales of gene therapy related services by entities (organizations, sole traders and partnerships) that manufacture gene therapy drugs. Gene therapy is used to replace faulty genes or add new genes to cure disease or improve the body's ability to fight disease. Only goods and services traded between entities or sold to end consumers are included.
North America was the largest region in the gene therapy market in 2019.
The gene therapy market covered in this report is segmented by gene type into antigen; cytokine; suicide gene; others. It is also segmented by vector into viral vector; non-viral vector; others, by application into oncological disorders; rare diseases; cardiovascular diseases; neurological disorders; infectious diseases; others, and by end users into hospitals; homecare; specialty clinics; others.
In December 2019, Roche, a Switzerland-based company, completed its acquisition of Spark Therapeutics for $4.3 billion. With this deal, Roche is expected to strengthen its presence in the gene therapy segment, support transformational therapies and increase its product portfolio. Spark Therapeutics is a US-based company involved in gene therapy.
The high prices of gene therapy medicines are expected to limit the growth of the gene therapy market. The pressure to contain costs and demonstrate value is widespread. Political uncertainty and persistent economic stress in numerous countries are calling into question the sustainability of public health care funding. In less wealthy countries, the lack of cost-effective therapies for cancer and other diseases has influenced the health conditions of the population and has led to a low average life expectancy.
Luxturna, a one-time treatment for acquired retinal eye disease, costs $850,000 in the US and 613,410 in the UK, despite a markdown that is applied through Britain's National Health Service. Zolgensma, for spinal muscular atrophy, is valued at $2.1 million in the US and Zynteglo, which focuses on a rare genetic blood disorder, costs $1.78 million, thus restraining the growth of the market.
The use of machine learning and artificial intelligence is gradually gaining popularity in the gene therapy market. Artificial intelligence (AI) is the simulation of human intelligence in machines, which are programmed to display their natural intelligence. Machine learning is a part of AI.
Machine learning and AI help companies in the gene therapy market to conduct a detailed analysis of all relevant data, provide insights between tumor and immune cell interactions, and offer a more accurate evaluation of tissue samples often conflicted between different evaluators. For instance, since January 2020, GlaxoSmithKline, a pharmaceutical company, has been investing in AI to optimize gene therapy and develop off-the-shelf solutions for patients. It is also expected to reduce turnaround time and also the cost of gene therapies.
Key Topics Covered:
1. Executive Summary
2. Gene Therapy Market Characteristics
3. Gene Therapy Market Size And Growth 3.1. Global Gene Therapy Historic Market, 2015 - 2019, $ Billion 3.1.1. Drivers Of The Market 3.1.2. Restraints On The Market 3.2. Global Gene Therapy Forecast Market, 2019 - 2023F, 2025F, 2030F, $ Billion 3.2.1. Drivers Of The Market 3.2.2. Restraints On the Market
4. Gene Therapy Market Segmentation 4.1. Global Gene Therapy Market, Segmentation By Gene Type, Historic and Forecast, 2015-2019, 2023F, 2025F, 2030F, $ Billion
4.2. Global Gene Therapy Market, Segmentation By Vector, Historic and Forecast, 2015-2019, 2023F, 2025F, 2030F, $ Billion
4.3. Global Gene Therapy Market, Segmentation By Application, Historic and Forecast, 2015-2019, 2023F, 2025F, 2030F, $ Billion
4.4. Global Gene Therapy Market, Segmentation By End Users, Historic and Forecast, 2015-2019, 2023F, 2025F, 2030F, $ Billion
5. Gene Therapy Market Regional And Country Analysis 5.1. Global Gene Therapy Market, Split By Region, Historic and Forecast, 2015-2019, 2023F, 2025F, 2030F, $ Billion 5.2. Global Gene Therapy Market, Split By Country, Historic and Forecast, 2015-2019, 2023F, 2025F, 2030F, $ Billion
Companies Mentioned
For more information about this report visit https://www.researchandmarkets.com/r/fltbmv
Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.
Media Contact:
Research and Markets Laura Wood, Senior Manager [emailprotected]
For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900
U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716
SOURCE Research and Markets
http://www.researchandmarkets.com
Recommendation and review posted by Bethany Smith
Passage Bio Invests In Gene Therapy Manufacturing R&D Site – Contract Pharma
Passage Bio, Inc., a genetic medicines company focused on therapies for rare, monogenic central nervous system (CNS) disorders, has entered into a long-term lease to support Chemistry, Manufacturing and Controls (CMC) lab operations for the companys gene therapy programs. The new lab, scheduled to open in 2Q21 at the Princeton West Innovation Campus in Hopewell, NJ, will initially focus on state-of-the-art analytical capabilities, clinical assay development and validation, biomarker assay validation and clinical product testing to support both viral vector manufacturing and clinical development.The opening of the CMC lab is part of Passage Bios strategy to expand its internal manufacturing capabilities to support its lead gene therapy programs as they move into the clinic and advance toward commercialization. The CMC lab complements the recent opening of Passage Bios dedicated CGMP manufacturing suite at Catalent. These investments provide the company with the foundation for an integrated manufacturing supply chain with capabilities to advance multiple gene therapy programs to support clinical trials worldwide.The 62,000 sq.-ft. lab space is intended to support analytics, process development, quality control and pilot manufacturing. The 1.2 million-sq.-ft., multi-purpose research and development and biologic/pharmaceutical manufacturing campus also provides Passage Bio with expansion opportunities for additional lab space and CGMP manufacturing operations. Passage Bio plans to add more than 20 new positions in 2021 at the new lab.
Read more:
Passage Bio Invests In Gene Therapy Manufacturing R&D Site - Contract Pharma
Recommendation and review posted by Bethany Smith
Experimental Therapy Injected in One Eye Unexpectedly Improves Vision in The Other – ScienceAlert
In a development that could restore sight to thousands of people with an inheritable condition calledLeber's Hereditary Optic Neuropathy (LHON), scientists have been able to improve vision in both eyes in a majority of patients even though only one eye was actually treated.
The treatment is an experimental type of gene therapy, where tailored genetic material is injected to counteract genes that are defective or malfunctioning. With LHON, a m.11778G>A mutation in the MT-ND4 gene is the target.
In a phase 3 clinical trial, 37 patients were treated with a modified viral vector rAAV2/2-ND4 in one eye only, leading to an average vision improvement of 15 letters on the standard ETDRS chart you might have spotted at an optician's clinic.
"We expected vision to improve in the eyes treated with the gene therapy vector only," says neuro-ophthalmologist Patrick Yu-Wai-Man, from the University of Cambridge.
"Rather unexpectedly, both eyes improved for 78 percent of patients in the trial following the same trajectory over two years of follow-up."
The eyes that didn't get the gene therapy were given a sham treatment instead, and while the improvement wasn't as great, it was still substantial. Those in the earlier stages of LHON typically saw a bigger improvement in their vision from the treatment.
LHON is the most common form of mitochondrial blindness transmitted from a mother to her children and attacks the retinal ganglion cells, damaging the optic nerves. Around 1 in 30,000 people are thought to be affected, usually men in their 20s or 30s.
The replacement MT-ND4 gene treatment seems to rescue the retinal ganglion cells from their fate, causing results that can be "life-changing" according to the researchers. Normally less than 20 percent of those affected get their sight back.
"As someone who treats these young patients, I get very frustrated about the lack of effective therapies," says ophthalmologist Jos-Alain Sahel, from the University of Pittsburgh.
"These patients rapidly lose vision in the course of a few weeks to a couple of months. Our study provides a big hope for treating this blinding disease in young adults."
While scientists know what causes the loss of vision, finding a way to stop it has proved difficult. LHON is a good candidate for gene therapy though, because it has a clear starting stage and genetic targets that are relatively straightforward to hit.
What's not clear yet is why and how the gene therapy is spreading from one eye to the other. Follow-up experiments in macaque monkeys, which have vision systems similar to humans, suggested the injected viral vector can spread to other tissue via some means of interocular diffusion, but more research is going to be needed to understand the mechanisms at work.
Gene therapy is now being used to tackle a wide range of diseases and health issues, including those inherited from parents. Many other eye problems are in the sights of researchers too, and advances in one area can quickly help research in another something that the team behind the current study is excited about.
"Our approach isn't just limited to vision restoration," says Sahel. "Other mitochondrial diseases could be treated using the same technology."
The research has been published in Science Translational Medicine.
Link:
Experimental Therapy Injected in One Eye Unexpectedly Improves Vision in The Other - ScienceAlert
Recommendation and review posted by Bethany Smith
They thought their gene therapy failed. Instead, it spawned a medical mystery – Endpoints News
Jos-Alain Sahel was on a rare vacation in Portugal in the spring of 2018 when his phone rang with grim news: The gene therapy he had worked on for a decade, a potential cure for a rare form of blindness, had failed in a pivotal trial.
In the first minute, I was very disappointed, Sahel says. I said, well OK, its not working.
A failed trial in drug development is crushing but not unexpected, a tradeoff of doing business in biology. You examine the full data, go back to the drawing board and either abandon the effort or tweak and try again. Sahel, founder of four companies and the longtime head of the Vision Institute of Paris, was used to the process. But this time, when the full data came, he was bewildered.
Unlock this story instantly and join 95,700+ biopharma pros reading Endpoints daily and it's free.
SUBSCRIBE SIGN IN
Go here to read the rest:
They thought their gene therapy failed. Instead, it spawned a medical mystery - Endpoints News
Recommendation and review posted by Bethany Smith
After leaving Wall Street to launch a gene therapy upstart, Rachel McMinn nabs $115M to drive her first candidate to the clinic – Endpoints News
When former analyst Rachel McMinn started Neurogene from her apartment around three years ago, she would joke that theyd get office space as soon as her living room table was no longer big enough to hold company meetings.
We lasted about a year before my living room couldnt take it anymore, she said.
With several gene therapies for Batten disease and other lysosomal storage disorders in the preclinical and discovery stage, Neurogene is now bound for the clinic. And on Wednesday, they announced a $115 million Series B to get them there.
Gene therapy has generated so much enthusiasm for patients and families with these devastating disorders, but theres still a lot of science and innovation left on the table, McMinn said.
The CEO said Neurogene will split the Series B funds into four buckets, the first of which is advancing multiple gene therapy programs into the clinic. She anticipates filing the first IND in 2021 for CLN5, a rapidly progressive subtype of Batten disease caused by a variant in the CLN5 gene.
The second so-called bucket for the Series B funds will be expanding the companys portfolio, followed by another bucket for augmenting our resources for our novel technology platform, the CEO said. Then comes manufacturing.
Weve got the ability to make virus in-house, and the money from the financing will allow us to take that vector to the next stage and make GMP quality vector for use in dosing and clinical trials, McMinn said.
Because Neurogene manufactures products in-house, the biotech has gotten around the massive gene therapy manufacturing bottleneck, which has Big Pharma and big biotech spending billions on retrofitted plants and gene therapy factories.
The concept of gene therapy is simple: A viral particle is used to deliver a healthy copy of a gene to a patient with a dysfunctional gene. In the case of Neurogenes CLN5 candidate, viral vectors shuttle a payload into the body designed to make the CLN5 gene.
Over the next year, key milestones will be filing our first IND, completing the refurbishment of our GMP manufacturing facility, (and) advancing our programs towards the clinic, McMinn said. After CLN5, the goal is to file one to two INDs a year, she added.
The CEO previously served as an analyst at Piper Jaffray, Cowen and Bank of America Merrill Lynch, and as chief business and strategy officer at Intercept. During her time as an analyst, McMinn said most people would stay away from investing in neurology companies because drugs inevitably fail.
Theres really been nothing, very little innovation in devastating neurological disorders, for quite a long time, she said, adding that she was inspired to jump into R&D by an older brother who is neurologically impaired.
Neurogene attracted a slate of new and old investors, including EcoR1 Capital which led the round, and Redmile Group, Samsara BioCapital, Cormorant Asset Management, BlackRock, funds managed by Janus Henderson Investors, Casdin Capital, Avidity Partners, Ascendant BioCapital, Arrowmark Partners, Alexandria Venture Investments, and an undisclosed leading healthcare investment fund.
For me, I really want to make a difference, McMinn said, adding later, Im personally driven by developing something that is life-altering for people that really have no other option.
Read the rest here:
After leaving Wall Street to launch a gene therapy upstart, Rachel McMinn nabs $115M to drive her first candidate to the clinic - Endpoints News
Recommendation and review posted by Bethany Smith