Page 1,241«..1020..1,2401,2411,2421,243..1,2501,260..»

Fertility hope in stem cell eggs

Hopes of a cure for infertility in humans were raised Friday after Japanese stem cell researchers announced they had created viable eggs using normal cells from adult mice.

The breakthrough raises the possibility that women who are unable to produce eggs naturally could have them created in a test tube from their own cells and then planted back into their body.

A team at Kyoto University harvested stem cells from mice and altered a number of genes to create cells very similar to the primordial germ cells that generate sperm in men and oocytes -- or eggs -- in women.

They then nurtured these with cells that would become ovaries and transplanted the mixture into living mice, where the cells matured into fully-grown oocytes.

They extracted the matured oocytes, fertilised them in vitro -- in a test tube -- and implanted them into surrogate mother mice.

The resulting mice pups were born healthy and were even able to reproduce once they matured.

Writing in the US journal Science, which published the findings, research leader professor Michinori Saito said the work provided a promising basis for hope in reproductive medicine.

"Our system serves as a robust foundation to investigate and further reconstitute female germline development in vitro, not only in mice, but also in other mammals, including humans," he said.

Saito cautioned that this was not a ready-made cure for people with fertility problems, adding that a lot of work remained.

"This achievement is expected to help us understand further the egg-producing mechanism and contribute to clarifying the causes of infertility," he told reporters.

Continue reading here:
Fertility hope in stem cell eggs

Recommendation and review posted by simmons

Robin Roberts says her prayers have been answered as she recovers from bone marrow transplant

By Daily Mail Reporter

PUBLISHED: 14:58 EST, 4 October 2012 | UPDATED: 16:07 EST, 4 October 2012

Good Morning America co-anchor Robin Roberts has revealed that her bone marrow transplant, which she underwent two weeks ago, appears to have been successful.

The procedure, which saw donor stem cells from her sister Sally Ann injected into her body, took just five minutes, and according to the 51-year-old, who wrote fans an update from her hospital in New York City this morning, her sister's cells 'feel right at home' in her body.

'My blood counts are GREAT,' she wrote on herGMA blog, after being hospitalized or 25 days now. 'It's an answer to so many prayers'.

Scroll down for video

Pulling through: Robin Roberts, 51, said her friends near and far (pictured here with Sam and Josh yesterday) have been lifting her spirits, she says

Ms Roberts, who was diagnosed with myelodysplastic syndrome, or MDS, earlier this year - a disease which attacks blood cells and bone - added: 'My doctors and rock star nurses are very pleased with my progress and I could not be more thankful for the excellent care I am receiving.

'I have had some extremely painful days and its still difficult for me to eat because of all the chemo. [But] I continue to learn so much on this journey, especially when it comes to true friendship and love.

Read this article:
Robin Roberts says her prayers have been answered as she recovers from bone marrow transplant

Recommendation and review posted by Bethany Smith

Stem Cell Transplant May Spur Heart Disease Risk: Study

WEDNESDAY, Oct. 3 (HealthDay News) -- People who undergo the transplantation of stem cells taken from bone marrow, circulating blood or umbilical cord blood are more likely to develop risk factors for heart disease, such as high blood pressure, diabetes and high cholesterol, a new study contends.

Researchers from the American Society of Hematology noted that patients who were treated with chemotherapy or radiation before such a transplant -- called a "hematopoietic cell transplant," or HCT -- had a significantly higher risk for heart disease later in life.

"While we know that heart disease is a real concern for long-term HCT survivors, small sample sizes and a lack of long-term follow-up in previous studies have only allowed us to look at a small piece of the puzzle of how this chronic condition develops in these patients," the study's first author, Dr. Saro Armenian, medical director of the Pediatric Survivorship Clinic in the Childhood Cancer Survivorship Program at City of Hope in Duarte, Calif., said in a society news release.

"Our study sought to better determine the specific factors before and after transplant that can lead to heart disease in a large group of transplant recipients," Armenian explained.

In conducting the study, the researchers examined the medical records of nearly 1,900 hematopoietic cell transplant recipients to identify factors that could affect their development of risk factors for heart disease. The transplants occurred between 1995 and 2004, and the patients survived for at least one year after the treatment.

The investigators considered the patients' exposure to chemotherapy or radiation before the transplant, the type of hematopoietic cell transplant and whether they were treated for a serious transplant complication known as graft-versus-host disease.

Using the U.S. National Health and Nutrition Examination Survey, the researchers also projected heart disease risk factor rates for the general population.

The study found that high blood pressure, diabetes and high cholesterol were more common among long-term survivors of the blood-forming stem cell transplants.

The risk for developing diabetes was 1.5 times higher for hematopoietic cell transplant survivors who underwent total body radiation. Their risk for high cholesterol was 1.4 times higher. The researchers noted this was true regardless of the type of blood-forming stem cell transplant the patient received.

Although it's unclear why total body radiation increased these patients' risk for diabetes and high cholesterol, previous studies have shown that abdominal radiation may contribute to insulin resistance and an increase in belly fat among cancer patients.

See more here:
Stem Cell Transplant May Spur Heart Disease Risk: Study

Recommendation and review posted by Bethany Smith

Japan: Scientists Create Eggs From Skin Cells

Eggs capable of being fertilised and making babies can be created in the laboratory from skin cells, a study has shown.

Scientists successfully produced three fertile baby mice using the technique, which involves transforming ordinary skin cells into personalised stem cells.

The same Japanese team created viable mouse sperm from embryonic stem cells earlier this year.

Together both advances greatly increase the likelihood of radical and controversial future treatments for restoring fertility.

It could mean creating sperm for men whose fertility has been wiped out by cancer therapy, or reversing the menopause in women long after they have used up their natural supply of eggs.

However, many questions about safety and ethics will have to be answered first.

In August, scientists from Kyoto University in Japan announced that they had created sperm cells from mouse embryo stem cells.

Injected into mouse eggs, the sperm produced embryos which developed into healthy baby mice.

The same team, led by Dr Katsuhiko Hayashi, carried out the latest research which focused on eggs rather than sperm.

The scientists mirrored their earlier achievement by transforming stem cells from mouse embryos into eggs which could be fertilised to produce offspring.

See the original post here:
Japan: Scientists Create Eggs From Skin Cells

Recommendation and review posted by Bethany Smith

Life created for first time from eggs made from skin cells

London, October 5 (ANI): Using stem cells made from skin, a Japanese team has created healthy eggs that, once fertilised, grow into normal baby mice.

These babies later had their own babies, the BBC reported.

The team at Kyoto University used stem cells from two sources: those collected from an embryo and skin-like cells, which were reprogrammed, into becoming stem cells.

The first step was to turn the stem cells into early versions of eggs.

A "reconstituted ovary" was then built by surrounding the early eggs with other types of supporting cells that are normally found in an ovary. This was transplanted into female mice. Surrounding the eggs in this environment helped them to mature.

IVF techniques were used to collect the eggs, fertilise them with sperm from a male mouse and implant the fertilised egg into a surrogate mother.

"They develop to be healthy and fertile offspring," Dr Katsuhiko Hayashi, from Kyoto University, told the BBC.

Those babies then had babies of their own, whose "grandmother" was a cell in a laboratory dish.

If the same methods could be used in people then, it could help infertile couples have children and even allow women to overcome the menopause.

But experts say many scientific and ethical hurdles must be overcome before the technique could be adapted for people.

Read the original:
Life created for first time from eggs made from skin cells

Recommendation and review posted by Bethany Smith

Skin cells become 'grandparents'

4 October 2012 Last updated at 18:31 ET By James Gallagher Health and science reporter, BBC News

Stem cells made from skin have become "grandparents" after generations of life were created in experiments by scientists in Japan.

The cells were used to create eggs, which were fertilised to produce baby mice. These later had their own babies.

If the technique could be adapted for people, it could help infertile couples have children and even allow women to overcome the menopause.

But experts say many scientific and ethical hurdles must be overcome.

Stem cells are able to become any other type of cell in the body from blood to bone, nerves to skin.

Last year the team at Kyoto University managed to make viable sperm from stem cells. Now they have performed a similar feat with eggs.

They used stem cells from two sources: those collected from an embryo and skin-like cells which were reprogrammed into becoming stem cells.

I just thought wow! The science is quite brilliant

The first step, reported in the journal Science, was to turn the stem cells into early versions of eggs.

Here is the original post:
Skin cells become 'grandparents'

Recommendation and review posted by Bethany Smith

NeuroGeneration Recruits Top Scientist To Direct New Division of Biotherapeutics and Drug Discovery In La Jolla, CA

LOS ANGELES and LA JOLLA, Calif., Oct. 5, 2012 /PRNewswire/ -- A senior research neuroscientist from The Salk Institute,Mohamedi Kagalwala PhD, has been recruited to head NeuroGeneration's new laboratories in La Jolla, California. Dr. Kagalwala, an expert on neural stem cells, will become director of the new Division of Biotherapeutics and Drug Discovery.

"I am extremely pleased to lead NeuroGeneration's new Division and expand its technology of adult neural stem cells for Parkinson's disease. It will allow us to develop personalized iPS cell therapies for degenerative brain disorders," said Dr. Kagalwala. "In addition, by investigating intrinsic neurogenesis and brain repair mechanisms, our team will be able to modify discrete molecular mechanisms during aging and neurodegenerative changes. We will then be in a better position to influence the environment, either with drugs or cellular therapies, to prevent the progression of disease and facilitate brain repair."

This new Division will complement the neural stem cell therapy studies for Parkinson's disease and other Atypical Parkinsonism led by Dr. Michel Levesque, NeuroGeneration's scientific founder.

Within the new facility providing core state of the art technologies, NeuroGeneration will expand its bioinformatic platforms to include personalized neurogenomic, analysis for drug target discovery for aging, Parkinson's disease, Stroke, Amyotrophic Lateral Sclerosis, Alzheimer's disease, Multiple Sclerosis, Epilepsy, Depression and Schizophrenia.

ABOUT NEUROGENERATION:

NeuroGeneration is a life science company designing new cellular therapies and biological modulators for the prevention and treatment of neurodegenerative disorders. The company has completed a Phase I clinical trial for Parkinson's disease using adult-derived autologous neural stem cells. It intends to complete a Phase II study for the treatment of Parkinson's disease as soon as it receives final approval from the FDA. NeuroGeneration's Division of Biotherapeutics and Drug Discovery offers molecular products using its drug discovery platforms to target neuroprotective and endogenous repair mechanisms.

FOR MORE INFORMATION CONTACT:

NeuroGeneration Laboratories Division of Biotherapeutics and Drug Discovery 3210 Merryfield Row San Diego, CA92121

Patricia Eastman NeuroGeneration,Inc 8670 Wilshire Blvd, Suite 201 Los Angeles, CA 90211 USA Tel.:1-310-659-3880 Email: info@neurogeneration.com http://www.neurogeneration.com

More here:
NeuroGeneration Recruits Top Scientist To Direct New Division of Biotherapeutics and Drug Discovery In La Jolla, CA

Recommendation and review posted by Bethany Smith

Multiple miRNA Markers Associated with Angiogenesis and Tissue Injury Repair Expressed in Cytori’s Cell Therapy

SAN DIEGO--(BUSINESS WIRE)--

Cytori Therapeutics (CYTX) announced that three oral presentations related to its cell therapy are being presented today at the 10th annual International Federation for Adipose Therapeutics and Sciences meeting. The findings provide insights into the mechanisms-of-action for Cytoris cell therapy. One study identified high levels of micro-RNA (miRNA) markers in human tissue thought to play a role in the repair of tissue injury resulting from ischemia, or lack of blood flow. Two additional characterization and comparative analysis studies on human tissue reaffirmed cellular characteristics of Cytoris cell therapy and distinguished the safety, viability and cell make-up as compared to cell outputs derived from alternate approaches.

Results from all three studies have important implications for how the cells repair injured tissue and on the safety and viability of cell-based treatments derived from adipose tissue, said John Fraser, Ph.D., Chief Scientist of Cytori Therapeutics. Mechanisms identified in our miRNA analysis are consistent with our prior clinical and preclinical data, which suggest these mechanisms include angiogenesis, immune-modulation, and remodeling and wound repair. The miRNA study provides baseline data, which we can apply to our U.S. ATHENA clinical trial in refractory heart failure patients and other activities including our recently announced contract with BARDA for thermal burns.

In one study, miRNA profiles were assessed in adipose-derived stem and regenerative cells (ADRCs) derived from human tissue samples. The purpose was to determine which miRNA markers are expressed, miRNA variability from patient to patient, cellular functions of miRNA, and to establish a baseline miRNA population on healthy patients to compare against patients with a specific disease. Specifically, miRNA markers associated with angiogenesis, tissue remodeling and wound repair, and modulation of the immune response were found to be highly represented in ADRCs.

Our two additional characterization and comparative analysis studies evaluated alternate processing techniques and reaffirmed our proprietary enzyme-based process using Celution is the clear gold standard, added Dr. Fraser. If the composition of a cell population extracted from adipose tissue by an alternative process is not equivalent to Cytoris ADRC population, one cannot claim equivalence to ADRCs in terms of safety or efficacy in preclinical or clinical outcomes.

The characterization and comparative analysis studies reaffirmed the high cell yield and viability as well as the heterogeneity in Cytoris cell therapy approach. Cytoris cells are derived with a proprietary formulation of clinical grade enzymes which break up the connective tissue and which are removed at the end of the process. Cytoris cell mixture includes adipose-derived stem cells, based on the measure of colony forming units, and a high yield of CD34+ cells. By contrast, data in these studies showed that alternate approaches such as ultrasound or emulsification, contained little to no adipose-derived stem cells, a high concentration of red and white blood cells, and did not meet the key criteria for safe clinical use.

About Cytori

Cytori Therapeutics, Inc. is developing cell therapies based on autologous adipose-derived regenerative cells (ADRCs) to treat cardiovascular disease and repair soft tissue defects. Our scientific data suggest ADRCs improve blood flow, moderate the immune response and keep tissue at risk of dying alive. As a result, we believe these cells can be applied across multiple "ischemic" conditions. These therapies are made available to the physician and patient at the point-of-care by Cytori's proprietary technologies and products, including the Celution system product family. http://www.cytori.com

Cautionary Statement Regarding Forward-Looking Statements

This press release includes forward-looking statements regarding events, trends and business prospects, which may affect our future operating results and financial position. Such statements including our ability to apply this data to our ATHENA study and other projects are subject to risks and uncertainties that could cause our actual results and financial position to differ materially. Some of these risks and uncertainties include our history of operating losses, the need for further financing, inherent risk and uncertainty in the protection of intellectual property rights, regulatory uncertainties regarding the collection and results of, clinical data, dependence on third party performance, and other risks and uncertainties described under the "Risk Factors" in Cytori's Securities and Exchange Commission Filings, including its annual report on Form 10-K for the year ended December 31, 2011. Cytori assumes no responsibility to update or revise any forward-looking statements contained in this press release to reflect events, trends or circumstances after the date of this press release.

Read more:
Multiple miRNA Markers Associated with Angiogenesis and Tissue Injury Repair Expressed in Cytori’s Cell Therapy

Recommendation and review posted by Bethany Smith

No on Proposition 37

There's a growing gap between what grocery shoppers think they know about their food and the reality. Those tomatoes with the evenly rich red color that look ripened to perfection? They were bred to avoid showing streaks of green, a result of genetic prodding that also stole away most of their flavor. Unless the carton says otherwise, the eggs didn't come from chickens that scratched around in barnyards but rather spent their lives in cramped battery cages that offered no room to move around. There's a good chance the meat came from animals that were given antibiotics from their youngest days, both to promote growth and to prevent disease from sweeping through their crowded pens. Pesticides were almost certainly used on the fruits and vegetables. And the sweetener in the soda, or the golden corn on the cob, probably was a product of genetic engineering.

In most cases, there is no requirement to inform consumers, via labels, about the use of pesticides, hormones or antibiotics, or about the inhumane conditions in which animals are often kept. But Proposition 37 would make an exception for genetically engineered food, requiring that it be labeled before being sold in California. Although we generally endorse people's right to know what goes into their food, this initiative is problematic on a number of levels and should be rejected.

Genetic engineering tinkering with genes in a laboratory to produce desirable qualities has dominated the production of certain crops for years. Today, somewhere between 85% and 95% of the corn and soybeans grown in this country, for example, have altered genes. Often, the alteration renders the crops "Roundup ready," which means they're able to withstand the herbicide glyphosate, marketed by Monsanto under the trade name Roundup. That allows farms to spray against weeds without killing the food plants. And because corn and soy appear in so many products in the form of high-fructose corn syrup, as just one example genetically engineered ingredients are common in processed foods.

ENDORSEMENTS: The Times' recommendations for Nov. 6

Unfortunately, the initiative to require labeling of those ingredients is sloppily written. It contains language that, according to the nonpartisan Legislative Analyst's Office, could be construed by the courts to imply that processed foods could not be labeled as "natural" even if they weren't genetically engineered. Most of the burden for ensuring that foods are properly labeled would fall not on producers but on retailers, which would have to get written statements from their suppliers verifying that there were no bioengineered ingredients a paperwork mandate that could make it hard for mom-and-pop groceries to stay in business. Enforcement would largely occur through lawsuits brought by members of the public who suspect grocers of selling unlabeled food, a messy and potentially expensive way to bring about compliance.

These are all valid arguments for rejecting Proposition 37, but a more important reason is that there is no rationale for singling out genetic engineering, of all the agricultural practices listed above, as the only one for which labeling should be required. So far, there is little if any evidence that changing a plant's or animal's genes through bioengineering, rather than through selective breeding, is dangerous to the people who consume it. In fact, some foods have been engineered specifically to remove allergens from the original version. By contrast, there is obvious reason to be worried about the fact that three-fourths of the antibiotics in this country are used to fatten and prevent disease in livestock, not to treat disease in people. The rise of antibiotic-resistant bacteria from overuse of pharmaceuticals poses a real threat to public health. So why label only the bioengineered foods? Because the group that wrote Proposition 37 happened to target them. What's needed is a consistent, rational food policy, not a piecemeal approach based on individual groups' pet concerns.

That's not to belittle consumer doubts about genetically engineered foods. The nation rushed headlong into producing them with lax federal oversight, and although many studies have been conducted over the last couple of decades, a 2009 editorial in Scientific American complained that too much of the research has been controlled by the companies that create the engineered products. The solution, though, is more independent study and, if necessary, stronger federal oversight and legislation, not a label that would almost certainly raise alarm about products that haven't been shown to cause harm.

VOTER GUIDE: 2012 California Propositions

The more substantiated issue with genetically engineered foods is their effect on the environment and possibly on other crops. The over-reliance they've encouraged on a single herbicide has contributed to the emergence of Roundup-resistant weeds. The industry is now seeking federal permission to grow corn that can withstand a different, more problematic herbicide. The Obama administration should withhold permission until agribusiness comes up with a better long-term solution than creating ever-tougher weeds.

Meanwhile, the marketplace already provides ways to inform consumers about their food. Just as some meats are labeled antibiotic-free or hormone-free, and some eggs are labeled cage-free, food producers are welcome to label their foods as GE-free. The Trader Joe's grocery chain has helped market itself to concerned consumers by announcing that its private-label foods do not contain genetically engineered ingredients. Organic foods are never genetically engineered. There are no genetically engineered versions of most fruits sold in markets.

See the original post:
No on Proposition 37

Recommendation and review posted by Bethany Smith

Genetic Disorder Test for Newborns May Speed Up Diagnoses

By Randy Dotinga HealthDay Reporter

WEDNESDAY, Oct. 3 (HealthDay News) -- Researchers say they have developed a blood test that could potentially detect hundreds of genetic conditions in newborn babies in about two days. The test might allow physicians to quickly diagnose babies and treat them instead of waiting for lengthy tests or guessing without full information.

The test, which uses a drop of a newborn's blood to examine the entire genome, isn't ready for widespread use. A study released Oct. 3 reports only the results of testing that confirmed genetic conditions in three newborns.

The test could be available soon, however, said study co-author Dr. Stephen Kingsmore, director of the Center for Pediatric Genomic Medicine at the Children's Mercy Hospital in Kansas City, Mo.

"Genome analysis is moving from being a research tool that holds promise to being something that's ready to ... be used for real medical care in real patients," he said.

Newborns routinely undergo genetic screening in the United States to see if they have genetic conditions. The screenings, however, look for about 60 conditions at most, Kingsmore said, and focus on diseases that don't show obvious symptoms at first.

There are thousands of other genetic conditions -- many of them quite rare -- and about 500 can be treated. If a child shows symptoms of one of them, testing may take weeks and cost thousands of dollars, Kingsmore said. Physicians may base their diagnoses on other factors in order to treat children quickly, in some cases to keep them from dying.

"The reality is that neonatologists have to treat on the basis of their best clinical judgment rather than based on any knowledge of the genome sequence," Kingsmore said.

"If you liken testing to fishing, conventional fishing is like throwing a line into the ocean and hoping you catch a fish," he said. The new test, which looks for signs of genetic problems throughout the genome, "is like throwing a net over the entire ocean and seeing what you catch."

The test costs about $13,500 and takes 50 hours to process, although researchers hope to quicken the pace, he said. The new study reports that the test identified genetic conditions in three newborns and ruled them out in another.

Read the original post:
Genetic Disorder Test for Newborns May Speed Up Diagnoses

Recommendation and review posted by Bethany Smith

Stem Cell Transplant May Spur Heart Disease Risk: Study

WEDNESDAY, Oct. 3 (HealthDay News) -- People who undergo the transplantation of stem cells taken from bone marrow, circulating blood or umbilical cord blood are more likely to develop risk factors for heart disease, such as high blood pressure, diabetes and high cholesterol, a new study contends.

Researchers from the American Society of Hematology noted that patients who were treated with chemotherapy or radiation before such a transplant -- called a "hematopoietic cell transplant," or HCT -- had a significantly higher risk for heart disease later in life.

"While we know that heart disease is a real concern for long-term HCT survivors, small sample sizes and a lack of long-term follow-up in previous studies have only allowed us to look at a small piece of the puzzle of how this chronic condition develops in these patients," the study's first author, Dr. Saro Armenian, medical director of the Pediatric Survivorship Clinic in the Childhood Cancer Survivorship Program at City of Hope in Duarte, Calif., said in a society news release.

"Our study sought to better determine the specific factors before and after transplant that can lead to heart disease in a large group of transplant recipients," Armenian explained.

In conducting the study, the researchers examined the medical records of nearly 1,900 hematopoietic cell transplant recipients to identify factors that could affect their development of risk factors for heart disease. The transplants occurred between 1995 and 2004, and the patients survived for at least one year after the treatment.

The investigators considered the patients' exposure to chemotherapy or radiation before the transplant, the type of hematopoietic cell transplant and whether they were treated for a serious transplant complication known as graft-versus-host disease.

Using the U.S. National Health and Nutrition Examination Survey, the researchers also projected heart disease risk factor rates for the general population.

The study found that high blood pressure, diabetes and high cholesterol were more common among long-term survivors of the blood-forming stem cell transplants.

The risk for developing diabetes was 1.5 times higher for hematopoietic cell transplant survivors who underwent total body radiation. Their risk for high cholesterol was 1.4 times higher. The researchers noted this was true regardless of the type of blood-forming stem cell transplant the patient received.

Although it's unclear why total body radiation increased these patients' risk for diabetes and high cholesterol, previous studies have shown that abdominal radiation may contribute to insulin resistance and an increase in belly fat among cancer patients.

See original here:
Stem Cell Transplant May Spur Heart Disease Risk: Study

Recommendation and review posted by sam

Japan: Scientists Create Eggs From Skin Cells

Eggs capable of being fertilised and making babies can be created in the laboratory from skin cells, a study has shown.

Scientists successfully produced three fertile baby mice using the technique, which involves transforming ordinary skin cells into personalised stem cells.

The same Japanese team created viable mouse sperm from embryonic stem cells earlier this year.

Together both advances greatly increase the likelihood of radical and controversial future treatments for restoring fertility.

It could mean creating sperm for men whose fertility has been wiped out by cancer therapy, or reversing the menopause in women long after they have used up their natural supply of eggs.

However, many questions about safety and ethics will have to be answered first.

In August, scientists from Kyoto University in Japan announced that they had created sperm cells from mouse embryo stem cells.

Injected into mouse eggs, the sperm produced embryos which developed into healthy baby mice.

The same team, led by Dr Katsuhiko Hayashi, carried out the latest research which focused on eggs rather than sperm.

The scientists mirrored their earlier achievement by transforming stem cells from mouse embryos into eggs which could be fertilised to produce offspring.

Read the original post:
Japan: Scientists Create Eggs From Skin Cells

Recommendation and review posted by sam

NeuroGeneration Recruits Top Scientist To Direct New Division of Biotherapeutics and Drug Discovery In La Jolla, CA

LOS ANGELES and LA JOLLA, Calif., Oct. 5, 2012 /PRNewswire/ -- A senior research neuroscientist from The Salk Institute,Mohamedi Kagalwala PhD, has been recruited to head NeuroGeneration's new laboratories in La Jolla, California. Dr. Kagalwala, an expert on neural stem cells, will become director of the new Division of Biotherapeutics and Drug Discovery.

"I am extremely pleased to lead NeuroGeneration's new Division and expand its technology of adult neural stem cells for Parkinson's disease. It will allow us to develop personalized iPS cell therapies for degenerative brain disorders," said Dr. Kagalwala. "In addition, by investigating intrinsic neurogenesis and brain repair mechanisms, our team will be able to modify discrete molecular mechanisms during aging and neurodegenerative changes. We will then be in a better position to influence the environment, either with drugs or cellular therapies, to prevent the progression of disease and facilitate brain repair."

This new Division will complement the neural stem cell therapy studies for Parkinson's disease and other Atypical Parkinsonism led by Dr. Michel Levesque, NeuroGeneration's scientific founder.

Within the new facility providing core state of the art technologies, NeuroGeneration will expand its bioinformatic platforms to include personalized neurogenomic, analysis for drug target discovery for aging, Parkinson's disease, Stroke, Amyotrophic Lateral Sclerosis, Alzheimer's disease, Multiple Sclerosis, Epilepsy, Depression and Schizophrenia.

ABOUT NEUROGENERATION:

NeuroGeneration is a life science company designing new cellular therapies and biological modulators for the prevention and treatment of neurodegenerative disorders. The company has completed a Phase I clinical trial for Parkinson's disease using adult-derived autologous neural stem cells. It intends to complete a Phase II study for the treatment of Parkinson's disease as soon as it receives final approval from the FDA. NeuroGeneration's Division of Biotherapeutics and Drug Discovery offers molecular products using its drug discovery platforms to target neuroprotective and endogenous repair mechanisms.

FOR MORE INFORMATION CONTACT:

NeuroGeneration Laboratories Division of Biotherapeutics and Drug Discovery 3210 Merryfield Row San Diego, CA92121

Patricia Eastman NeuroGeneration,Inc 8670 Wilshire Blvd, Suite 201 Los Angeles, CA 90211 USA Tel.:1-310-659-3880 Email: info@neurogeneration.com http://www.neurogeneration.com

Read the original here:
NeuroGeneration Recruits Top Scientist To Direct New Division of Biotherapeutics and Drug Discovery In La Jolla, CA

Recommendation and review posted by sam

K computer may be used in regenerative medicine

The Yomiuri Shimbun/Asia News Network Friday, Oct 05, 2012

The K supercomputer, which once held the world's fastest computing speed, may be used to shorten the time needed in regenerative medicine from several months, or even years, to several hours, according to the Riken Center of Developmental Biology and other institutions.

Researchers aim to create organs from human embryonic stem cells (ES cells) or induced pluripotent stem cells (iPS cells), but the length of time normally needed to accomplish this task is a problem.

The institutions hope to put regenerative medicine into practical use as soon as possible using iPS cells, a Japanese technology, and other cells, and this is where the supercomputer will come in.

Yoshiki Sasai, group director at the Riken Center, and other researchers are planning to use the K supercomputer to determine the best method to create organs from these cells.

The researchers successfully developed an optic cup, a basic part of the eye, from ES cells for the first time in the world. While it takes about six months to transform ES cells into an optic cup, the researchers spent about three years to find how to do this through trial and error.

Currently, it takes several years to complete basic experiments to transform ES cells or iPS cells into target organs, and in many cases the experiments fail to achieve their purpose.

Plans are under way to use the K supercomputer to develop new medicines, work out disaster prevention measures and conduct research on cosmic evolution and for other purposes.

Sasai and the other researchers, therefore, decided the supercomputer, which performs 10 quadrillion (or one kei in Japanese) calculations per second, would be ideal in completing basic experiments in a fraction of the time it now takes.

If the K supercomputer calculates mathematized data on divisions, growth and internal changes of iPS cells to which protein or certain kinds of genes are added, it will become possible to create target organs more effectively, according to the researchers.

See the rest here:
K computer may be used in regenerative medicine

Recommendation and review posted by sam

Japan team offers fertility hope with stem cell eggs

Hopes of a cure for infertility in humans were raised Friday after Japanese stem cell researchers announced they had created viable eggs using normal cells from adult mice.

The breakthrough raises the possibility that women who are unable to produce eggs naturally could have them created in a test tube from their own cells and then planted back into their body.

A team at Kyoto University harvested stem cells from mice and altered a number of genes to create cells very similar to the primordial germ cells that generate sperm in men and oocytes -- or eggs -- in women.

They then nurtured these with cells that would become ovaries and transplanted the mixture into living mice, where the cells matured into fully-grown oocytes.

They extracted the matured oocytes, fertilised them in vitro -- in a test tube -- and implanted them into surrogate mother mice.

The resulting mice pups were born healthy and were even able to reproduce once they matured.

Writing in the US journal Science, which published the findings, research leader professor Michinori Saito said the work provided a promising basis for hope in reproductive medicine.

"Our system serves as a robust foundation to investigate and further reconstitute female germline development in vitro, not only in mice, but also in other mammals, including humans," he said.

Saito cautioned that this was not a ready-made cure for people with fertility problems, adding that a lot of work remained.

"This achievement is expected to help us understand further the egg-producing mechanism and contribute to clarifying the causes of infertility," he told reporters.

Visit link:
Japan team offers fertility hope with stem cell eggs

Recommendation and review posted by simmons

Bernard Siegel to Deliver Keynote Addresses at Midwest Conference on Stem Cell Biology and Therapy and BioFlorida …

PALM BEACH, Fla.--(BUSINESS WIRE)--

Genetics Policy Institute (GPI) announced today that Bernard Siegel, Executive Director of GPI, will make two keynote presentations this month at regional conferences: Midwest Conference on Stem Cell Biology and Therapy October 5-7 in Rochester, Michigan and BioFlorida Conference 2012 October 7-9 in Miami, Florida.

Siegel will present a keynote address titled The Power of Advocacy at the Midwest Conference on Stem Cell Biology and Therapy. The Genetics Policy Institute joined with the Oakland University William Beaumont Institute for Stem Cell and Regenerative Medicine (ISCRM) as a collaborating partner for the event. Researchers from hospitals, medical organizations, academic institutions and the business community throughout the Midwest will discuss not only the latest advances in this rapidly expanding field of medical science, but the ethical and moral issues that surround it.

"I am pleased to participate in these important conferences, which showcase the latest scientific developments in their respective regions and beyond. ISCRM and the World Stem Cell Summit have a strong connection, as the Institute was officially launched at our 2010 Summit in Detroit, said Bernard Siegel, GPI's Executive Director and founder of the annual World Stem Cell Summit.

BioFloridas 15th annual Conference is the premier event for Floridas bioscience community. This years meeting will bring together more than 500 professionals from across Florida, the Southeast and the nation to discuss major trends and issues, including topics related to product development, scientific research, business development, financing and public policy.

Siegels keynote address at BioFlorida is titled: The Mandate to Deliver Cures: Aligning Patient Advocacy, Industry and Science. Former Governor Jeb Bush will deliver the second keynote at BioFloridas annual Conference.

The 2012 World Stem Cell Summit is in West Palm Beach, Florida this December, so we have been working closely with the biotechnology community here. I am delighted to partner with BioFlorida as they advance Floridas bioscience industry," said Siegel, who also serves on the Executive Committee of the Alliance for Regenerative Medicine and Board of the Coalition for Advancement of Medical Research. He serves as spokesperson for the Stem Cell Action Coalition.

ABOUT GPI:The Genetics Policy Institute (GPI) supports stem cell research to develop therapeutics and cures. GPI pursues its mission by honoring leadership through the Stem Cell Action Awards, producing the World Stem Cell Summit, publishing theWorld Stem Cell Report, organizing educational initiatives and fostering strategic collaborations. For more information, visitwww.genpol.org.

ABOUT THE WORLD STEM CELL SUMMIT:The 2012 World Stem Cell Summit is presented by GPI and is co-organized by the Interdisciplinary Stem Cell Institute (ISCI) at the University of Miami Miller School of Medicine, Diabetes Research Institute, Beckman Research Institute at City of Hope, Karolinska Institute (home of the Nobel Prize in Physiology and Medicine), International Translational Regenerative Medicine Center (ITRC) and the Institute for Integrated Cell-Material Sciences (iCeMS) at Kyoto University. The Summit is the flagship meeting of the world stem cell community. The 2012 Summit will be held at the Palm Beach County Convention Center in West Palm Beach, Florida, December 3-5, 2012. For more information, visit http://www.worldstemcellsummit.com.

See original here:
Bernard Siegel to Deliver Keynote Addresses at Midwest Conference on Stem Cell Biology and Therapy and BioFlorida ...

Recommendation and review posted by simmons

College student answers growing need for bone marrow transplants

To view our videos, you need to enable JavaScript. Learn how. install Adobe Flash 9 or above. Install now. Then come back here and refresh the page.

DURHAM -- With lives on the line, the need for bone marrow donations across the country is greater than ever.

The National Marrow Donor Program said just five out of 10 patients will receive the transplant they need survive.

Elon University student Donovan Rainey recently passed the exam of a lifetime. He's a donor match for a patient in need of a bone marrow transplant.

"To be able to give life and to be able to try to sustain someone else's is just the ultimate gift," said Rainey.

Giving that gift is easier than before.

Duke University Medical Center said many are under the false impression that the only way to donate is by surgerically removing bone marrow from the hip.

Instead, donors can get blood removed through a machine. The stem cells found in donors blood will be used to create a new immune system for recipients.

"They don't need general anesthesia, they don't have to go to the operating room and I think there is less discomfort," said Susan Drago, a nurse at Duke's Blood and Marrow Transplant Clinic and Treatment Facility.

Rainey said the temporary discomfort is worth it because the life on the line was his dad's.

See the original post here:
College student answers growing need for bone marrow transplants

Recommendation and review posted by Bethany Smith

Eggs created from stem cells in fertility breakthrough

Professor Robert Norman, Professor of Reproductive Medicine at the University of Adelaide in Australia, said: "While this is a major contribution to knowledge, application to humans is still a long way off but for the first time the goal appears to be in sight.

In the new study, the scientists transformed skin cells into personalised stem cells, which were then fertilised via IVF and ultimately resulted in three fertile baby mice.

Safety concerns must be addressed, particularly into the long-term health of the resulting offspring, before researchers come any closer to determining whether the treatment could be viable in humans.

The researchers wrote in the latest online issue of the journal Science: "Our system serves as a robust foundation to investigate and further reconstitute female germ line development in vitro (in the laboratory), not only in mice, but also in other mammals, including humans."

Dr Allan Pacey, senior lecturer in reproduction and developmental medicine at the University of Sheffield, said: "What is remarkable about this work is the fact that, although the process is still quite inefficient, the offspring appeared healthy and were themselves fertile as adults.

"This is a great step forward, but I would urge caution as this is a laboratory study and we are still quite a long way from clinical trials taking place in humans."

Read more from the original source:
Eggs created from stem cells in fertility breakthrough

Recommendation and review posted by Bethany Smith

Eggs can be created from skin cells

Eggs capable of being fertilised and making babies can be created in the laboratory from skin cells, a study has shown.

Scientists successfully produced three fertile baby mice using the technique, which involves transforming ordinary skin cells into personalised stem cells.

The same Japanese team created viable mouse sperm from embryonic stem cells earlier this year.

Together, both advances greatly increase the likelihood of radical and controversial future treatments for restoring fertility. It could mean creating sperm for men whose fertility has been wiped out by cancer therapy or reversing the menopause in women long after they have used up their natural supply of eggs.

In August, scientists from Kyoto University in Japan announced that they had created sperm cells from mouse embryo stem cells. Injected into mouse eggs, the sperm produced embryos which developed into healthy baby mice.

The same team, led by Dr Katsuhiko Hayashi, carried out the latest research which focused on eggs rather than sperm. The scientists mirrored their earlier achievement by transforming stem cells from mouse embryos into eggs which could be fertilised to produce offspring. But they also took a further step by obtaining mouse pups from eggs derived from ordinary skin cells.

The researchers wrote in the latest online issue of the journal Science: "Our system serves as a robust foundation to investigate and further reconstitute female germline development in vitro (in the laboratory), not only in mice but also in other mammals, including humans."

The "germline" consists of genetic material carried in reproductive cells that can be passed onto future generations.

Dr Allan Pacey, senior lecturer in reproduction and developmental medicine at the University of Sheffield, said: "This is a very technical piece of work which pushes much further the science of how eggs are generated and how we might one day be able to routinely stimulate the new production of eggs for women who are infertile.

"What is remarkable about this work is the fact that, although the process is still quite inefficient, the offspring appeared healthy and were themselves fertile as adults. This is a great step forward but I would urge caution as this is a laboratory study and we are still quite a long way from clinical trials taking place in humans."

Go here to read the rest:
Eggs can be created from skin cells

Recommendation and review posted by Bethany Smith

Baby Mice Born from Eggs Made from Stem Cells

Mouse pups from induced pluripotent stem cell-derived eggs; image courtesy of Katsuhiko Hayashi

Stem cells have been coaxed into creating everything from liver cells to beating heart tissue. Recently, these versatile cells were even used to make fertile mouse sperm, suggesting that stem cell technology might eventually be able to play a role in the treatment of human infertility.

Now two types of stem cells have been turned into viable mouse egg cells that were fertilized and eventually yielded healthy baby mice. Details of this achievement were published online October 4 in Science.

Mouse oocytes; image courtesy of Katsuhiko Hayashi

Katsuhiko Hayashi, of Kyoto Universitys School of Medicine, were able to create the eggs with embryonic stem cells as well as with induced pluripotent stem cells (formed from adult cells).

The team started with female embryonic stem cells and then coaxed them genetically to revert to an earlier developmental stage (primordial germ cell-like cells). These cells were blended with gonadal somatic cells, important in the development of sexual differentiation, to create reconstituted ovaries. The researchers then transplanted these cultured assemblages into female mice (in either the actual ovary or the kidney) for safekeeping and to allow the stem cells to mature into oocytes in a natural environment.

Healthy adult mice from litter produced from induced pluripotent stem cell-based oocytes; image courtesy of Katsuhiko Hayashi

To test the eggs fertility, the new oocytes were removed from the mice for an in vitro fertilization with mouse spermand then re-implanted into the female mice. The experimental females went on to bear normally developing and fertile offspring. The procedure was then also performed successfully with induced pluripotent stem cells from adult skin cells with similar results.

Our system serves as a robust foundation to investigate and further reconstitute female germline development in vitro, the researchers noted in their paper, not only in mice, but also in other mammals, including humans.

Read more from the original source:
Baby Mice Born from Eggs Made from Stem Cells

Recommendation and review posted by Bethany Smith

2-day test can spot gene diseases in newborns

WASHINGTON (AP) -

Too often, newborns die of genetic diseases before doctors even know what's to blame. Now scientists have found a way to decode those babies' DNA in just days instead of weeks, moving gene-mapping closer to routine medical care.

The idea: Combine faster gene-analyzing machinery with new computer software that, at the push of a few buttons, uses a baby's symptoms to zero in on the most suspicious mutations. The hope would be to start treatment earlier, or avoid futile care for lethal illnesses.

Wednesday's study is a tentative first step: Researchers at Children's Mercy Hospital in Kansas City, Mo., mapped the DNA of just five children, and the study wasn't done in time to help most of them.

But the hospital finds the results promising enough that by year's end, it plans to begin routine gene-mapping in its neonatal intensive care unit - and may offer testing for babies elsewhere, too - while further studies continue, said Dr. Stephen Kingsmore, director of the pediatric genome center at Children's Mercy.

"For the first time, we can actually deliver genome information in time to make a difference," predicted Kingsmore, whose team reported the method in the journal Science Translational Medicine.

Even if the diagnosis is a lethal disease, "the family will at least have an answer. They won't have false hope," he added.

More than 20% of infant deaths are due to a birth defect or genetic diseases, the kind caused by a problem with a single gene. While there are thousands of such diseases - from Tay-Sachs to the lesser known Pompe disease, standard newborn screening tests detect only a few of them. And once a baby shows symptoms, fast diagnosis becomes crucial.

Sequencing whole genomes - all of a person's DNA - can help when it's not clear what gene to suspect. But so far it has been used mainly for research, in part because it takes four to six weeks to complete and is very expensive.

Wednesday, researchers reported that the new process for whole-genome sequencing can take just 50 hours - half that time to perform the decoding from a drop of the baby's blood, and the rest to analyze which of the DNA variations uncovered can explain the child's condition.

See the original post here:
2-day test can spot gene diseases in newborns

Recommendation and review posted by Bethany Smith

Rapid gene-mapping test may diagnose disease in newborns

WASHINGTONToo often, newborns die of genetic diseases before doctors even know what's to blame. Now scientists have found a way to decode those babies' DNA in just days instead of weeks, moving gene-mapping closer to routine medical care.

The idea: Combine faster gene-analyzing machinery with new computer software that, at the push of a few buttons, uses a baby's symptoms to zero in on the most suspicious mutations. The hope would be to start treatment earlier, or avoid futile care for lethal illnesses.

Wednesday's study is a tentative first step: Researchers at Children's Mercy Hospital in Kansas City, Mo., mapped the DNA of just five children, and the study wasn't done in time to help most of them.

But the hospital finds the results promising enough that by year's end, it plans to begin routine gene-mapping in its neonatal intensive care unit -- and may offer testing for babies elsewhere, too -- while further studies continue, said Dr. Stephen Kingsmore, director of the pediatric genome center at Children's Mercy.

"For the first time, we can actually deliver genome information in time to make a difference," predicted Kingsmore, whose team reported the method in the journal Science Translational Medicine.

Even if the diagnosis is a lethal disease, "the family will at least have an answer. They won't have false hope," he added.

More than 20 percent of infant deaths are due to a birth defect or genetic diseases, the kind caused by a problem with a single gene. While there are thousands of such diseases -- from Tay-Sachs to the lesser known Pompe disease, standard newborn screening tests detect only a few of them. And once a baby shows symptoms, fast diagnosis becomes crucial.

Sequencing whole genomes - all of a person's DNA - can help when it's not clear what gene to suspect. But so far it has been used mainly for research, in part because it takes four to six weeks to complete and is very expensive.

Wednesday, researchers reported that the new process for whole-genome sequencing can take just 50 hours -- half that time to perform the decoding from a drop of the baby's blood, and the rest to analyze which of the DNA variations uncovered can explain the child's condition.

That's an estimate: The study counted only the time the blood was being decoded or analyzed, not the days needed to ship the blood to Essex, England, home of a speedy new DNA decoding machine made by Illumina, Inc. -- or to ship back the results for Children's Mercy's computer program to analyze. Kingsmore said the hospital is awaiting arrival of its own decoder, when 50 hours should become the true start-to-finish time.

Read the original here:
Rapid gene-mapping test may diagnose disease in newborns

Recommendation and review posted by Bethany Smith

Gene diseases in newborns unveiled quicker

WASHINGTON (AP) -- Too often, newborns die of genetic diseases before doctors even know what's to blame. Now scientists have found a way to decode those babies' DNA in just days instead of weeks, moving gene-mapping closer to routine medical care.

The idea: Combine faster gene-analyzing machinery with new computer software that, at the push of a few buttons, uses a baby's symptoms to zero in on the most suspicious mutations. The hope would be to start treatment earlier, or avoid futile care for lethal illnesses.

Wednesday's study is a tentative first step: Researchers at Children's Mercy Hospital in Kansas City, Mo., mapped the DNA of just five children, and the study wasn't done in time to help most of them.

But the hospital finds the results promising enough that by year's end, it plans to begin routine gene-mapping in its neonatal intensive care unit -- and may offer testing for babies elsewhere, too -- while further studies continue, said Dr. Stephen Kingsmore, director of the pediatric genome center at Children's Mercy.

"For the first time, we can actually deliver genome information in time to make a difference," predicted Kingsmore, whose team reported the method in the journal Science Translational Medicine.

Even if the diagnosis is a lethal disease, "the family will at least have an answer. They won't have false hope," he added.

More than 20 percent of infant deaths are due to a birth defect or genetic diseases, the kind caused by a problem

Sequencing whole genomes -- all of a person's DNA -- can help when it's not clear what gene to suspect. But so far it has been used mainly for research, in part because it takes four to six weeks to complete and is very expensive.

On Wednesday, researchers reported that the new process for whole-genome sequencing can take just 50 hours -- half that time to perform the decoding from a drop of the baby's blood, and the rest to analyze which of the DNA variations uncovered can explain the child's condition.

That's an estimate: The study counted only the time the blood was being decoded or analyzed, not the days needed to ship the blood to Essex, England, home of a speedy new DNA decoding machine made by Illumina, Inc. -- or to ship back the results for Children's Mercy's computer program to analyze. Kingsmore said the hospital is awaiting arrival of its own decoder, when 50 hours should become the true start-to-finish time.

Go here to see the original:
Gene diseases in newborns unveiled quicker

Recommendation and review posted by Bethany Smith

Gene diseases in newborns spotted with 2-day test

Too often, newborns die of genetic diseases before doctors even know what's to blame. Now scientists have found a way to decode those babies' DNA in just days instead of weeks, moving gene-mapping closer to routine medical care.

The idea: Combine faster gene-analyzing machinery with new computer software that, at the push of a few buttons, uses a baby's symptoms to zero in on the most suspicious mutations. The hope would be to start treatment earlier, or avoid futile care for lethal illnesses.

Wednesday's study is a tentative first step: Researchers at Children's Mercy Hospital in Kansas City, Mo., mapped the DNA of just five children, and the study wasn't done in time to help most of them.

But the hospital finds the results promising enough that by year's end, it plans to begin routine gene-mapping in its neonatal intensive care unit and may offer testing for babies elsewhere, too while further studies continue, said Dr. Stephen Kingsmore, director of the pediatric genome center at Children's Mercy.

Even if the diagnosis is a lethal disease, "the family will at least have an answer. They won't have false hope," said Kingsmore, who team reported the method in the journal Science Translational Medicine.

More than 20 per cent of infant deaths are due to a birth defect or genetic diseases, the kind caused by a problem with a single gene. While there are thousands of such diseases from Tay-Sachs to the lesser known Pompe disease, standard newborn screening tests detect only a few of them. And once a baby shows symptoms, fast diagnosis becomes crucial.

Sequencing whole genomes all of a person's DNA can help when it's not clear what gene to suspect. But so far it has been used mainly for research, in part because it takes four to six weeks to complete and is very expensive.

Wednesday, researchers reported that the new process for whole-genome sequencing can take just 50 hours half that time to perform the decoding from a drop of the baby's blood, and the rest to analyze which of the DNA variations uncovered can explain the child's condition.

That's an estimate: The study counted only the time the blood was being decoded or analyzed, not the days needed to ship the blood to Essex, England, home of a speedy new DNA decoding machine made by Illumina, Inc. or to ship back the results for Children's Mercy's computer program to analyze. Kingsmore said the hospital is awaiting arrival of its own decoder, when 50 hours should become the true start-to-finish time.

Specialists not involved with the study said it signals the long-promised usefulness of gene-mapping to real-world medicine finally is close.

More:
Gene diseases in newborns spotted with 2-day test

Recommendation and review posted by Bethany Smith

Are inhaled medications effective and safe in critically ill patients on mechanical ventilation?

Public release date: 4-Oct-2012 [ | E-mail | Share ]

Contact: Vicki Cohn vcohn@liebertpub.com 914-740-2100 Mary Ann Liebert, Inc./Genetic Engineering News

New Rochelle, NY, October 4, 2012Essential medications can be delivered as inhaled drugs to critically ill patients in the Intensive Care Unit (ICU) who require mechanical ventilation to breathe. Aerosol drug delivery is highly complex, however, and if not done properly the medication will not reach the lungs and therapy will be ineffective. The efficacy and safety of aerosol delivery of drugs commonly used in the ICU such as antibiotics, diuretics, and anticoagulants is explored in depth in a review article published in Journal of Aerosol Medicine and Pulmonary Drug Delivery, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free online on the Journal of Aerosol Medicine and Pulmonary Drug Delivery website.

Arzu Ari, PhD, RRT and James Fink, PhD, RRT, Georgia State University (Atlanta) and Rajiv Dhand, MD, University of Tennessee Graduate School of Medicine (Knoxville) state that the successful use of bronchodilator therapy in ventilator-dependent patients has led to growing interest in the delivery of other aerosolized forms of medication to improve outcomes for patients in the ICU that require mechanical ventilation. In the article "Inhalation Therapy in Patients Receiving Mechanical Ventilation: An Update," the authors explore the complexities of aerosol therapy in this patient population and the advances in drug delivery devices that are contributing to its increasing use and success.

"Newer drugs, such as antibiotics, will require better control of dose and delivery if they are to be successful in treating the intubated patient." says Editor-in-Chief Gerald C. Smaldone, MD, PhD, Professor and Chief, Division of Pulmonary and Critical Care Medicine at SUNY-Stony Brook.

###

About the Journal

Journal of Aerosol Medicine and Pulmonary Drug Delivery is an authoritative peer-reviewed journal published bimonthly in print and online. It is the Official Publication of the International Society for Aerosols in Medicine. The Journal is the only authoritative publication delivering innovative articles on the health effects of inhaled aerosols and delivery of drugs through the pulmonary system. Topics covered include airway reactivity and asthma treatment, inhalation of particles and gases in the respiratory tract, toxic effects of inhaled agents, and aerosols as tools for studying basic physiologic phenomena. Complete tables of content and a sample issue may be viewed on the Journal of Aerosol Medicine and Pulmonary Drug Delivery website.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Pediatric Allergy, Immunology, and Pulmonology; High Altitude Medicine & Biology; and Microbial Drug Resistance. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 70 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.

Read more here:
Are inhaled medications effective and safe in critically ill patients on mechanical ventilation?

Recommendation and review posted by Bethany Smith


Archives