International Stem Cell Corporation Scientists Create New Protein-Based Stem Cell Technology
CARLSBAD, Calif.--(BUSINESS WIRE)--
International Stem Cell Corporation (ISCO) http://www.internationalstemcell.com announced that scientists in its wholly-owned subsidiary, Lifeline Cell Technology (LCT), have developed a technology to modify human stem cells by using engineered proteins, called "transducible transcription factors" or "TTFs." TTFs are designed to pass into stem cells and direct the stem cells to change into specific cell types that can be both therapeutically-useful and can be used as revenue-generating research products.
In contrast to more traditional cell therapy methods this technology does not require the use of viruses or chemicals, and has the potential to produce safe therapeutic cells from stem cells. In addition, the TTF proteins are naturally eliminated by the cells when no longer required, a characteristic that further improves safety. The Company intends that this technology, once perfected, will first be used to create revenue-generating research products for sale through Lifeline Cell Technologys international distribution channels to the academic, biotechnology and pharmaceutical markets for cellular proteins, including the quickly growing markets for the study of stem cell biology and drug testing.
According to Jeffrey Janus, Lifeline Cell Technologys CEO, These proteins can be sold into the market for cellular proteins which exceeds $700 million and represents an excellent opportunity for LCT to grow sales. Since the technology also has broad application in research and therapy, it should provide ISCO with future out-licensing opportunities to the biotechnology and pharmaceutical industries.
About International Stem Cell Corporation
International Stem Cell Corporation is focused on the therapeutic applications of human parthenogenetic stem cells (hpSCs) and the development and commercialization of cell-based research and cosmetic products. ISCO's core technology, parthenogenesis, results in the creation of pluripotent human stem cells from unfertilized oocytes (eggs). hpSCs avoid ethical issues associated with the use or destruction of viable human embryos. ISCO scientists have created the first parthenogenic, homozygous stem cell line that can be a source of therapeutic cells for hundreds of millions of individuals of differing genders, ages and racial background with minimal immune rejection after transplantation. hpSCs offer the potential to create the first true stem cell bank, UniStemCell. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology (www.lifelinecelltech.com), and stem cell-based skin care products through its subsidiary Lifeline Skin Care (www.lifelineskincare.com). More information is available at http://www.internationalstemcell.com or follow us on Twitter @intlstemcell.
To receive ongoing corporate communications, please click on the following link: http://www.b2i.us/irpass.asp?BzID=1468&to=ea&s=0
Forward-looking Statements
Statements pertaining to anticipated developments, the potential benefits of research programs and products, and other opportunities for the company and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates,") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products, regulatory approvals, need and ability to obtain future capital, application of capital resources among competing uses, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the company's business, particularly those mentioned in the cautionary statements found in the company's Securities and Exchange Commission filings. The company disclaims any intent or obligation to update forward-looking statements.
Excerpt from:
International Stem Cell Corporation Scientists Create New Protein-Based Stem Cell Technology
Recommendation and review posted by simmons
Osiris Receives Second Approval for Life-Saving Stem Cell Drug; Prochymal Granted Marketing Consent by New Zealand
COLUMBIA, Md.--(BUSINESS WIRE)--
Osiris Therapeutics, Inc. (OSIR), announced today it has received consent from New Zealand to market its first-in-class stem cell therapy Prochymal (remestemcel-L), for the treatment of acute graft-vs-host disease (GvHD) in children. With this decision New Zealand joins Canada, which last month became the worlds first internationally recognized regulatory authority to grant approval to a stem cell drug. Prochymal is also the first therapy approved for GvHD - a devastating complication of bone marrow transplantation that kills up to 80 percent of children affected, many within just weeks of diagnosis.
"With each of our approvals it becomes clearer that the time for life-saving stem cell therapies in the practice of medicine has arrived, and we are humbled to have a leading role, said C. Randal Mills, Ph.D., President and Chief Executive Officer of Osiris. I would like to thank the professionals at Medsafe for their thoughtful and expeditious review of this complex application. I would also like to thank the team at Osiris that continues to do an outstanding job of making Prochymal available to children around the world suffering from the devastating effects of GvHD."
Osiris submitted a New Medicine Application (NMA) to Medsafe(New Zealand's medical regulatory agency) in May of 2011, and was granted Priority Review in June of 2011. Priority review provides expedited review for new drugs which offer a significant clinical advantage over current treatment options. Prochymal was granted provisional consent under Section 23 of the Medicines Act 1981.
"The incidence of GvHD is likely to rise as the demographic profile of our transplant population evolves," said Hans Klingemann, M.D., Ph.D., a Professor of Medicine and the Director of the Bone Marrow & Hematopoietic Stem Cell Transplant Program at Tufts University School of Medicine. "Effective strategies to manage the often lethal consequences of GvHD reduce the overall risk to transplantation and provide the transplant physician with better options when approaching their most difficult cases.
Clinical trials have shown that Prochymal is able to induce an objective, clinically meaningful response in 61-64 percent of children with GvHD that is otherwise refractory to treatment. Furthermore, treatment response with Prochymal resulted in a statistically significant improvement in survival.
As a mother who watched my son Christian suffer and die from the horrifying effects of GvHD, while waiting for the regulatory approvals necessary to allow him access to Prochymal, words cannot express how happy I am that significant progress is finally being made, said Sandy Barker, President and Co-founder of the Gold Rush Cure Foundation. We are proud to stand side-by-side with Osiris in this historic battle for our children around the world. Our motto is 'not one more child, not one more family' and when it comes to GvHD mortality, zero is the only acceptable number.
Prochymal is now approved in Canada and New Zealand, and is currently available in seven other countries including the United States under an Expanded Access Program (EAP). It is expected that Prochymal will be commercially available in New Zealand later this year.
About GvHD
GvHD represents a major unmet medical need with no approved treatment until Prochymal. GvHD is the leading cause of transplant related mortality, in which immune cells contained within the transplanted marrow recognize the recipient as foreign and mount an immunologic attack. Severe GvHD can cause blistering of the skin, intestinal hemorrhage and liver failure. Severe GvHD is extremely painful and fatal in up to 80 percent of cases. Currently, steroids are used as first-line therapy with a success rate of only 30-50 percent. When steroids fail, treatment options are limited to immunosuppressive agents used off-label with little benefit and significant toxicities.
Continued here:
Osiris Receives Second Approval for Life-Saving Stem Cell Drug; Prochymal Granted Marketing Consent by New Zealand
Recommendation and review posted by simmons
The Myelin Repair Foundation Achieves Phase 1 Myelin Repair Clinical Trial
SARATOGA, Calif.--(BUSINESS WIRE)--
The Myelin Repair Foundation (MRF) today announced the achievement of a myelin repair Phase 1 clinical trial for multiple sclerosis earlier than the foundations goal set for 2014. By establishing its Accelerated Research Collaboration (ARC) Model to advance myelin repair treatments forward into clinical trial Phase 1 within a decade, the Myelin Repair Foundation achieved this critical milestone ahead of its goal, validating the efficiency of the ARC model to speed drug development.
This Phase 1 clinical trial conducted at Cleveland Clinic will examine the efficacy of a new myelin repair therapeutic pathway with mesenchymal stem cells (MSCs), based on MRF supported research conducted by MRF Principal Investigator Dr. Robert Miller, Professor of Neurosciences and Vice President for Research & Technology Management at Case Western Reserve University. To date, half of the 24 patients planned for this initial trial have been enrolled.
Scientists hope that one day their research will reach clinical trials, and Im thrilled to achieve this milestone in my career, said Dr. Robert Miller. Without the support of Myelin Repair Foundation funding a critical component of our research that is the basis of this trial, this achievement would not have been possible. Our partnership with the Myelin Repair Foundation has helped identify new pathways to treat disease that reverses damage, ultimately accomplishing so much more than the suppression of MS symptoms.
Funded by the Myelin Repair Foundation, Dr. Millers team of scientists identified an innovative clinical pathway through mesenchymal stem cell signals that not only protect myelin, which is damaged by the autoimmune reaction in MS, but also facilitates myelin repair. Current MS drugs on the market only focus on the suppression of the immune system to protect myelin from future damage; patients have no treatment options available to repair myelin once damage occurs in MS.
Our goal to support research that would enter Phase 1 trials within a decade was deemed nearly impossible, said Scott Johnson, president and CEO of the Myelin Repair Foundation. To think we achieved this ambitious goal even earlier than we planned illustrates the effectiveness of our innovative research model that accelerates promising scientific discoveries into clinical trials. Even with this success, we refuse to rest on our laurels and will continue to progress myelin research into multiple clinical trials. We remain focused on our singular goal: To speed the development of an effective myelin repair treatment to reach patients with multiple sclerosis.
For more information about the clinical trial and enrollment, please visit http://www.clinicaltrials.gov.
About the Myelin Repair Foundation
The Myelin Repair Foundation (MRF) (http://www.myelinrepair.org) is a Silicon Valley-based, non-profit research organization focused on accelerating the discovery and development of myelin repair therapeutics for multiple sclerosis. Its Accelerated Research Collaboration (ARC) model is designed to optimize the entire process of medical research, drug development and the delivery of patient treatments.
About Case Western Reserve University
Here is the original post:
The Myelin Repair Foundation Achieves Phase 1 Myelin Repair Clinical Trial
Recommendation and review posted by simmons
Vein grown from 10-year-old girl's stem cells
Highly-magnified red blood cells course through a vein. Picture: file Source: Supplied
DOCTORS in Sweden successfully replaced a potentially-fatal blocked vein in a 10-year-old girl with one grown from her own stem cells, according to a study published today.
The team - from the University of Gothenburg andSahlgrenska University Hospital - accomplished the feat by populating a section of vein from a dead donor using stem cells gleaned from the girl's bone barrow.
"The new stem-cells-derived graft resulted not only in good blood flow rates and normal laboratory test values but also, in strikingly improved quality of life for the patient," the study's authors wrote in The Lancet.
The successful feat also "opens interesting new areas of research," they added.
The operation marked the latest step in scientists' ability to create replacement organs for transplant.
In 2010, doctors at London's Great Ormond Street Hospital made history by successfully transplanting a donor windpipe into a young boy, also aged 10, that was regenerated inside his body using his own stem cells.
In the latest instance, a 3.5-inch (9cm) section of groin vein from the donor was stripped of any living cells and "recellularised" with new cells grown from stem cells taken from the girl's bone marrow.
Techniques that use stem cells from a patient's own body carry the major benefit that they do not provoke an immune response. In the Swedish case, one alternative treatment option was a liver transplant, which would have required a lifetime of immunosuppressants. The work was funded by the Swedish government.
Original post:
Vein grown from 10-year-old girl's stem cells
Recommendation and review posted by Bethany Smith
Girl gets vein grown from her own stem cells for transplant
LONDON: Scientists have successfully transplanted a vein made from a 10-year-old girl's own stem cells into her body. It is the first time such an operation has been reported and marks an important step in the practical ability of doctors to use stem cells to grow replacement cells for damaged or diseased tissue.
Writing in the medical journal The Lancet, a team led by Professor Suchitra Sumitran-Holdgersson, of the University of Gothenburg in Sweden, described how the girl had a blocked hepatic portal vein, which takes blood away from the gut and spleen to the liver.
The blockage can lead to complications including internal bleeding, developmental problems and even death. The usual treatment for the condition is to remove the blocked vein and replace it with sections of healthy vein from other parts of the body.
Advertisement: Story continues below
The team instead grew a vein for the young girl using her own bone marrow stem cells.
They started with a nine-centimetre section of vein taken from the groin of a donor and stripped it of its cells, leaving behind a tubular protein scaffold. This was seeded with the girl's stem cells and the resulting vein was transplanted into the girl.
The procedure restored blood flow out of her liver immediately.
''The patient increased in height from 137 to 143 centimetres and increased in weight from 30 to 35 kilograms in the one year since the first operation,'' the authors wrote. ''Although we undertook no neurocognitive tests, the parents reported that the patient had enhanced physical activity (increased long distance walks of two to three kilometres and light gymnastics) and improved articulated speech and concentration power in school activities.''
Nine months after the operation, the vein had constricted slightly in size and this was corrected in a follow-up procedure. Most significantly, scientists found no antibodies for the donor vein in the girl's blood. Her body was not rejecting the transplant because it was recognised as being made of her own cells.
''The young girl in this report was spared the trauma of having veins harvested from the deep neck or leg with the associated risk of lower limb disorders, and avoided the need for a liver or multivisceral transplantation,'' Professors Martin Birchall and George Hamilton of University College London wrote in an accompanying commentary article in The Lancet.
Read more:
Girl gets vein grown from her own stem cells for transplant
Recommendation and review posted by Bethany Smith
Vein grown from girl's own stem cells transplanted
For the first time doctors have successfully transplanted a vein grown with a patient's own stem cells, another example of scientists producing human body parts in the lab.
In this case, the patient was a 10-year-old girl in Sweden who was suffering from a severe vein blockage to her liver. Last March, the girl's doctors decided to make her a new blood vessel to bypass the blocked vein instead of using one of her own or considering a liver transplant.
They took a 9-centimetre section of vein from a deceased donor, which was stripped of all its cells, leaving just a hollow tube. Using stem cells from the girl's bone marrow, scientists grew millions of cells to cover the vein, a process that took about two weeks. The new blood vessel was then transplanted into the patient.
Because the procedure used her own cells, the girl did not have to take any drugs to stop her immune system from attacking the new vein, as is usually the case in transplants involving donor tissue.
"This is the future for tissue engineering, where we can make tailor-made organs for patients," said Suchitra Sumitran-Holgersson of the University of Gothenburg, one of the study's authors.
She and colleagues published the results of their work online Thursday in the British medical journal Lancet. The work was paid for by the Swedish government.
The science is still preliminary and one year after the vein was transplanted, it needed to be replaced with another lab-grown vein when doctors noticed the blood flow had dropped. Experts from University College London raised questions in an accompanying commentary about how cost-effective the procedure might be, citing "acute pressures" on health systems that might make these treatments impractical for many patients.
Sumitran-Holgersson estimated the cost at between $6,000 and $10,000.
Similar methods have already been used to make new windpipes and urethras for patients. Doctors in Poland have also made blood vessels grown from donated skin cells for dialysis patients.
Patients with the girl's condition are usually treated with a vein transplant from their own leg, a donated vein, or a liver transplant. Those options can be complicated in children and using a donated vein or liver also requires taking anti-rejection medicines.
Read the original:
Vein grown from girl's own stem cells transplanted
Recommendation and review posted by Bethany Smith
Vein grown from stem cells
LONDON For the first time doctors have successfully transplanted a vein grown with a patients own stem cells, another example of scientists producing human body parts in the lab.
In this case, the patient was a 10-year-old girl in Sweden who was suffering from a severe vein blockage to her liver. Last March, the girls doctors decided to make her a new blood vessel to bypass the blocked vein instead of using one of her own or considering a liver transplant.
They took a 3-1/2-inch section of vein from a deceased donor, which was stripped of all its cells, leaving just a hollow tube. Using stem cells from the girls bone marrow, scientists grew millions of cells to cover the vein, a process that took about two weeks. The new blood vessel was then transplanted into the patient.
Because the procedure used her own cells, the girl did not have to take any drugs to stop her immune system from attacking the new vein, as is usually the case in transplants involving donor tissue.
This is the future for tissue engineering, where we can make tailor-made organs for patients, said Suchitra Sumitran-Holgersson of the University of Gothenburg, one of the studys authors.
She and colleagues published the results of their work online Thursday in the British medical journal Lancet. The work was paid for by the Swedish government.
The science is still preliminary and one year after the vein was transplanted, it needed to be replaced with another lab-grown vein when doctors noticed the blood flow had dropped. Experts from University College London raised questions in an accompanying commentary about how cost-effective the procedure might be, citing acute pressures on health systems that might make these treatments impractical for many patients.
Sumitran-Holgersson estimated the cost at between $6,000 and $10,000.
Similar methods have already been used to make new windpipes and urethras for patients. Doctors in Poland have also made blood vessels grown from donated skin cells for dialysis patients.
Patients with the girls condition are usually treated with a vein transplant from their own leg, a donated vein, or a liver transplant. Those options can be complicated in children and using a donated vein or liver also requires taking anti-rejection medicines.
See the original post here:
Vein grown from stem cells
Recommendation and review posted by Bethany Smith
International Stem Cell Corporation Scientists Create New Protein-Based Stem Cell Technology
CARLSBAD, Calif.--(BUSINESS WIRE)--
International Stem Cell Corporation (ISCO) http://www.internationalstemcell.com announced that scientists in its wholly-owned subsidiary, Lifeline Cell Technology (LCT), have developed a technology to modify human stem cells by using engineered proteins, called "transducible transcription factors" or "TTFs." TTFs are designed to pass into stem cells and direct the stem cells to change into specific cell types that can be both therapeutically-useful and can be used as revenue-generating research products.
In contrast to more traditional cell therapy methods this technology does not require the use of viruses or chemicals, and has the potential to produce safe therapeutic cells from stem cells. In addition, the TTF proteins are naturally eliminated by the cells when no longer required, a characteristic that further improves safety. The Company intends that this technology, once perfected, will first be used to create revenue-generating research products for sale through Lifeline Cell Technologys international distribution channels to the academic, biotechnology and pharmaceutical markets for cellular proteins, including the quickly growing markets for the study of stem cell biology and drug testing.
According to Jeffrey Janus, Lifeline Cell Technologys CEO, These proteins can be sold into the market for cellular proteins which exceeds $700 million and represents an excellent opportunity for LCT to grow sales. Since the technology also has broad application in research and therapy, it should provide ISCO with future out-licensing opportunities to the biotechnology and pharmaceutical industries.
About International Stem Cell Corporation
International Stem Cell Corporation is focused on the therapeutic applications of human parthenogenetic stem cells (hpSCs) and the development and commercialization of cell-based research and cosmetic products. ISCO's core technology, parthenogenesis, results in the creation of pluripotent human stem cells from unfertilized oocytes (eggs). hpSCs avoid ethical issues associated with the use or destruction of viable human embryos. ISCO scientists have created the first parthenogenic, homozygous stem cell line that can be a source of therapeutic cells for hundreds of millions of individuals of differing genders, ages and racial background with minimal immune rejection after transplantation. hpSCs offer the potential to create the first true stem cell bank, UniStemCell. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology (www.lifelinecelltech.com), and stem cell-based skin care products through its subsidiary Lifeline Skin Care (www.lifelineskincare.com). More information is available at http://www.internationalstemcell.com or follow us on Twitter @intlstemcell.
To receive ongoing corporate communications, please click on the following link: http://www.b2i.us/irpass.asp?BzID=1468&to=ea&s=0
Forward-looking Statements
Statements pertaining to anticipated developments, the potential benefits of research programs and products, and other opportunities for the company and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates,") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products, regulatory approvals, need and ability to obtain future capital, application of capital resources among competing uses, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the company's business, particularly those mentioned in the cautionary statements found in the company's Securities and Exchange Commission filings. The company disclaims any intent or obligation to update forward-looking statements.
Read more:
International Stem Cell Corporation Scientists Create New Protein-Based Stem Cell Technology
Recommendation and review posted by Bethany Smith
Osiris Receives Second Approval for Life-Saving Stem Cell Drug; Prochymal Granted Marketing Consent by New Zealand
COLUMBIA, Md.--(BUSINESS WIRE)--
Osiris Therapeutics, Inc. (OSIR), announced today it has received consent from New Zealand to market its first-in-class stem cell therapy Prochymal (remestemcel-L), for the treatment of acute graft-vs-host disease (GvHD) in children. With this decision New Zealand joins Canada, which last month became the worlds first internationally recognized regulatory authority to grant approval to a stem cell drug. Prochymal is also the first therapy approved for GvHD - a devastating complication of bone marrow transplantation that kills up to 80 percent of children affected, many within just weeks of diagnosis.
"With each of our approvals it becomes clearer that the time for life-saving stem cell therapies in the practice of medicine has arrived, and we are humbled to have a leading role, said C. Randal Mills, Ph.D., President and Chief Executive Officer of Osiris. I would like to thank the professionals at Medsafe for their thoughtful and expeditious review of this complex application. I would also like to thank the team at Osiris that continues to do an outstanding job of making Prochymal available to children around the world suffering from the devastating effects of GvHD."
Osiris submitted a New Medicine Application (NMA) to Medsafe(New Zealand's medical regulatory agency) in May of 2011, and was granted Priority Review in June of 2011. Priority review provides expedited review for new drugs which offer a significant clinical advantage over current treatment options. Prochymal was granted provisional consent under Section 23 of the Medicines Act 1981.
"The incidence of GvHD is likely to rise as the demographic profile of our transplant population evolves," said Hans Klingemann, M.D., Ph.D., a Professor of Medicine and the Director of the Bone Marrow & Hematopoietic Stem Cell Transplant Program at Tufts University School of Medicine. "Effective strategies to manage the often lethal consequences of GvHD reduce the overall risk to transplantation and provide the transplant physician with better options when approaching their most difficult cases.
Clinical trials have shown that Prochymal is able to induce an objective, clinically meaningful response in 61-64 percent of children with GvHD that is otherwise refractory to treatment. Furthermore, treatment response with Prochymal resulted in a statistically significant improvement in survival.
As a mother who watched my son Christian suffer and die from the horrifying effects of GvHD, while waiting for the regulatory approvals necessary to allow him access to Prochymal, words cannot express how happy I am that significant progress is finally being made, said Sandy Barker, President and Co-founder of the Gold Rush Cure Foundation. We are proud to stand side-by-side with Osiris in this historic battle for our children around the world. Our motto is 'not one more child, not one more family' and when it comes to GvHD mortality, zero is the only acceptable number.
Prochymal is now approved in Canada and New Zealand, and is currently available in seven other countries including the United States under an Expanded Access Program (EAP). It is expected that Prochymal will be commercially available in New Zealand later this year.
About GvHD
GvHD represents a major unmet medical need with no approved treatment until Prochymal. GvHD is the leading cause of transplant related mortality, in which immune cells contained within the transplanted marrow recognize the recipient as foreign and mount an immunologic attack. Severe GvHD can cause blistering of the skin, intestinal hemorrhage and liver failure. Severe GvHD is extremely painful and fatal in up to 80 percent of cases. Currently, steroids are used as first-line therapy with a success rate of only 30-50 percent. When steroids fail, treatment options are limited to immunosuppressive agents used off-label with little benefit and significant toxicities.
See more here:
Osiris Receives Second Approval for Life-Saving Stem Cell Drug; Prochymal Granted Marketing Consent by New Zealand
Recommendation and review posted by Bethany Smith
Health Enhancement Products, Inc. Names New Chief Science Officer
BLOOMFIELD HILLS, MI--(Marketwire -06/14/12)- Arizona-based algae producer Health Enhancement Products (HEPI) has named Scott Freeman, MD to the post of Chief Science Officer as the Company continues to build out its senior management team. Dr. Freeman will help guide the Company through product development initiatives and compliance requirements.
Dr. Freeman's expertise encompasses all therapeutic areas in clinical drug development including oncology, infectious disease, women's health, gastrointestinal, autoimmune, metabolic, and neurological disorders. Dr. Freeman served as Vice President of Clinical Development at Onyx Pharmaceutical (2001-2006) and was head of both clinical development and operations, which executed the clinical trials for renal cell, melanoma, liver, lung, and colorectal cancer. The Phase 1, 2 and 3 trials in kidney and liver cancer were successfully performed and led to NDA approval of Nexavar. Further, Dr. Freeman was a key leader in the regulatory strategy that led to FDA approval of Nexavar for renal cell and liver cancer.
As Clinical Project Director at Schering-Plough Research Institute (1998-2001), his clinical projects included Phase 1, 2 and 3 trials for an anti-estrogen program, a breast cancer treatment, and a P53 gene therapy program. He was Associate Professor at Tulane University (1992-1998) and also served as the Medical Director for the Blood Center. At that time, he also conducted a basic research and clinical research program which focused on gene therapy for cancer and neurological diseases.
Dr. Freeman developed an HSV-TK gene therapy program to treat ovarian cancer, which genetically modified patients' ovarian tumor cells to sensitize the cells to the anti-viral drug ganciclovir. He served as Adjunct Associate Professor at the University of Rochester (1992-1998) and as a clinical investigator on the seminal human gene therapy studies performed at the National Institutes of Health (NIH) in the late 1980's for cancer and metabolic diseases.
Dr. Freeman has authored sixty-four scientific publications. He earned his BA from the University of Colorado in 1978 and received his MD from the University of Nevada in 1983. Dr. Freeman completed an internship and residency at the University of Minnesota in pediatrics and clinical pathology, respectively.
"We're pleased that Dr. Freeman is able to join the senior management team," states Andrew Dahl, HEPI President & CEO. "Finding and recruiting the ideal candidate with the requisite skills, experience and availability is an involved process in its own right. His expertise and experience will hasten the progress being made on several fronts. He's already engaged in a review of current and prior research, and will be directly involved in shaping the R&D work moving forward. Of particular value is Dr. Freeman's intimate knowledge of clinical trials and compliance strategy, as this will also influence food ingredient, supplement and medical food applications, and provide a competitive advantage."
About Health Enhancement Products, Inc. Health Enhancement Products, Inc. (HEPI) is a health & wellness company engaged in the development of natural products derived from algae cultures for use as dietary supplements and food ingredients. These natural products are extracted from living algae grown in purified water.
Safe Harbor Statement
Except for any historical information, the matters discussed in this press release contain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. These forward-looking statements involve risks and uncertainties. A number of factors could cause actual results to differ from those indicated in the forward-looking statements, including the timing of completion of a trial, actual future clinical trial results being different than the results the company has obtained to date, and the company's ability to secure funding. Such statements are subject to a number of assumptions, risks and uncertainties. Readers are cautioned that such statements are not guarantees of future performance and those actual results or developments may differ materially from those set forth in the forward-looking statements. The company undertakes no obligation to publicly update or revise forward-looking statements, whether as a result of new information or otherwise.
Originally posted here:
Health Enhancement Products, Inc. Names New Chief Science Officer
Recommendation and review posted by Bethany Smith
Gene may link diabetes and Alzheimer's, CCNY researchers find
Public release date: 14-Jun-2012 [ | E-mail | Share ]
Contact: Jessa Netting jnetting@ccny.cuny.edu 212-650-7615 City College of New York
In recent years it became clear that people with diabetes face an ominous prospect a far greater risk of developing Alzheimer's disease. Now researchers at The City College of New York (CCNY) have shed light on one reason why. Biology Professor Chris Li and her colleagues have discovered that a single gene forms a common link between the two diseases.
They found that the gene, known to be present in many Alzheimer's disease cases, affects the insulin pathway. Disruption of this pathway is a hallmark of diabetes. The finding could point to a therapeutic target for both diseases. The researchers report their finding in the June 2012 issue of the journal "Genetics." (http://www.genetics.org/)
"People with type 2 diabetes have an increased risk of dementia. The insulin pathways are involved in many metabolic processes, including helping to keep the nervous system healthy," said Professor Li, explaining why the link is not far-fetched.
Although the cause of Alzheimer's is still unclear, one criterion for diagnosis of the disease after death is the presence of sticky plaques of amyloid protein in decimated portions of patients' brains.
Mutations in the human "amyloid precursor protein" (APP) gene, or in genes that process APP, show up in cases of Alzheimer's that run in families. In the study, Professor Li and her colleagues scrutinized a protein called APL-1, made by a gene in the worm Caenorhabditis elegans (C. elegans ) that happens to be a perfect stand-in for the human Alzheimer's disease gene.
"What we found was that mutations in the worm-equivalent of the APP gene slowed their development, which suggested that some metabolic pathway was disrupted," said Professor Li. "We began to examine how the worm-equivalent of APP modulated different metabolic pathways and found that the APP equivalent inhibited the insulin pathway."
This suggested that the human version of the gene likely plays a role in both Alzheimer's disease and diabetes.
They also found that additional mutations in the insulin pathway reversed the defects of the APP mutation. This helped explain how these genes are functionally linked.
The rest is here:
Gene may link diabetes and Alzheimer's, CCNY researchers find
Recommendation and review posted by Bethany Smith
Fragile X gene's prevalence suggests broader health risk
ScienceDaily (June 14, 2012) The first U.S. population prevalence study of mutations in the gene that causes fragile X syndrome, the most common inherited form of intellectual disability, suggests the mutation in the gene -- and its associated health risks -- may be more common than previously believed.
Writing this month (June 2012) in the American Journal of Medical Genetics, a team of Wisconsin researchers reports that the cascade of genetic amino acid repeats, which accumulate over generations and culminate in the mutation of a single gene causing fragile X, is occurring with more frequency among Americans than previously believed. The study also shows that as the genetic basis for the condition is passed from generation to generation and amplified, risks to neurological and reproductive health emerge in many carriers.
"The premutation of this condition is much more prevalent than we previously thought and there are some clinical risks associated with that," explains Marsha Mailick Seltzer, director of the University of Wisconsin-Madison Waisman Center, who led the new study.
Fragile X is caused by the unexplained runaway expansion of a set of amino acid repeats in a single X chromosome gene known as FMR1. When fully mutated, the gene fails to express and produce a protein that's required for healthy brain development. The syndrome, which is more common in boys, results in a spectrum of intellectual disability.
However, before the gene fully mutates, carriers of the faulty gene exhibit a smaller number of elevated repeats, which expand as the gene is passed from generation to generation. Normal FMR1 genes exhibit anywhere from five to 40 repeats. Carriers with a premutation may have anywhere from 55 to 200. Those with between 45 and 54 repeats are characterized as falling into a "gray zone." Carriers of gray zone expansions often pass the mutation on to their children who themselves are at greater risk of having the premutation, and in subsequent generations the risk of a full mutation causing fragile X syndrome is high.
The goal of the new study was to calculate the prevalence in a U.S. population of the premutation and the gray zone. The research was based on data from the Wisconsin Longitudinal Study (WLS), also known as the "Happy Days study," which for more than 50 years has tracked the careers, family life, health and education of more than 10,000 graduates of Wisconsin's high school class of 1957.
Using genetic samples from 6,747 WLS participants, the team led by Seltzer, an expert on developmental disability and family life, found that 1 in 151 females and 1 in 468 males carry the fragile X premutation while 1 in 35 females and 1 of every 42 males fall into the gray zone.
"The prevalence is high, the second highest reported in the world literature," says Seltzer, noting that the incidence of fragile X varies by population and is higher in some places such as Israel, and lower in others like Asia.
The expansion of the FMR1 gene is known to vary across ethnic groups. The sample in the WLS study is primarily white and of northern European descent.
People with the premutation are more likely to have a child with disability; to have neurological symptoms such as numbness, dizziness and faintness; and, for women, to experience early menopause. Although these symptoms have been recognized previously in clinical studies, the WLS data represent an unbiased sample and supports those observations.
More here:
Fragile X gene's prevalence suggests broader health risk
Recommendation and review posted by Bethany Smith
Gene may link diabetes and Alzheimer's
ScienceDaily (June 14, 2012) In recent years it became clear that people with diabetes face an ominous prospect -- a far greater risk of developing Alzheimer's disease. Now researchers at The City College of New York (CCNY) have shed light on one reason why. Biology Professor Chris Li and her colleagues have discovered that a single gene forms a common link between the two diseases.
They found that the gene, known to be present in many Alzheimer's disease cases, affects the insulin pathway. Disruption of this pathway is a hallmark of diabetes. The finding could point to a therapeutic target for both diseases. The researchers report their finding in the June 2012 issue of the journal Genetics.
"People with type 2 diabetes have an increased risk of dementia. The insulin pathways are involved in many metabolic processes, including helping to keep the nervous system healthy," said Professor Li, explaining why the link is not far-fetched.
Although the cause of Alzheimer's is still unclear, one criterion for diagnosis of the disease after death is the presence of sticky plaques of amyloid protein in decimated portions of patients' brains.
Mutations in the human "amyloid precursor protein" (APP) gene, or in genes that process APP, show up in cases of Alzheimer's that run in families. In the study, Professor Li and her colleagues scrutinized a protein called APL-1, made by a gene in the worm Caenorhabditis elegans (C. elegans ) that happens to be a perfect stand-in for the human Alzheimer's disease gene.
"What we found was that mutations in the worm-equivalent of the APP gene slowed their development, which suggested that some metabolic pathway was disrupted," said Professor Li. "We began to examine how the worm-equivalent of APP modulated different metabolic pathways and found that the APP equivalent inhibited the insulin pathway."
This suggested that the human version of the gene likely plays a role in both Alzheimer's disease and diabetes.
They also found that additional mutations in the insulin pathway reversed the defects of the APP mutation. This helped explain how these genes are functionally linked.
The APL-1 is so important, they found, that "when you knock out the worm-equivalent of APP, the animals die," Li explained. "This tells us that the APP family of proteins is essential in worms, as they are essential in mammals," like us.
Professor Li and her colleagues hope that this new insight will help focus research in ways that might lead to new therapies in the treatment of both Alzheimer's disease and diabetes.
See the rest here:
Gene may link diabetes and Alzheimer's
Recommendation and review posted by Bethany Smith
Genetics Society of America's GENETICS Journal Highlights
Newswise Bethesda, MDJune 14, 2012 Listed below are the selected highlights for the June 2012 issue of the Genetics Society of Americas journal, GENETICS. The June issue is available online at http://www.genetics.org/content/current. Please credit GENETICS, Vol. 191, JUNE 2012, Copyright 2012.
Please feel free to forward to colleagues who may be interested in these articles.
ISSUE HIGHLIGHTS
APL-1, the Alzheimers amyloid precursor protein in Caenorhabditis elegans, modulates multiple metabolic pathways throughout development, pp. 493507 Collin Y. Ewald, Daniel A. Raps, and Chris Li A hallmark of Alzheimers disease is the deposition of senile plaques, whose major component is the beta-amyloid peptide, which is a cleavage product of the amyloid precursor protein (APP). The function of APP and its cleavage products is still unclear. This article reports that the Caenorhabditis elegans APP-related protein APL-1 has multiple functions during development, including modulating the insulin pathway.
Population genetics models of local ancestry, pp. 607619 Simon Gravel Genomes are mosaics of chromosomal tracts that originate from a finite number of ancestors. These mosaics, which are shaped by historical migration patterns, are key to understanding genomic diversity in complex populations. This article presents gene flow models for inferring migration history using such patterns. When applied to HapMap African-American (ASW) data, a two-epoch migration model agrees with the data better than the commonly used single-migration model.
Synaptic polarity depends on phosphatidylinositol signaling regulated by myo-inositol monophosphatase in Caenorhabditis elegans, pp. 509521 Tsubasa Kimata, Yoshinori Tanizawa, Yoko Can, Shingo Ikeda,Atsushi Kuhara, and Ikue Mori Lithium relieves bipolar disorder by inhibiting the evolutionarily conserved enzyme myo-inositol monophosphatase (IMPase), which is essential for polarized localization of synaptic molecules. These authors show that mutations in two enzymes that degrade membrane phosphatidylinositol 4,5-bisphosphate (PIP2) suppress the synaptic defects of IMPase mutants and confer resistance to lithium treatment. These results provide the first in vivo evidence that lithium impairs neuronal PIP2 synthesis through inhibition of IMPase.
Analysis of Cryptococcus neoformans sexual development reveals rewiring of the pheromone-response network by a change in transcription factor identity, pp. 435449 Emilia K. Kruzel, Steven S. Giles, and Christina M. Hull Gene regulatory networks evolve, sometimes radically. This article describes the pheromone response network of the human pathogen Cryptococcus neoformans. The authors map transcriptional regulatory changes that occur during sexual development leading to the discovery of a key cis-regulatory element and its binding protein. The resulting regulatory architecture could not have been predicted based on comparative sequence analyses.
A non-Mendelian MAPK-generated hereditary unit controlled by a second MAPK pathway in Podospora anserina, pp. 419433 Herv Lalucque, Fabienne Malagnac, Sylvain Brun, Sbastien Kicka,and Philippe Silar There are many ways to produce a prion, and this article describes yet another one. The Podospora anserina PaMpk1 MAP kinase signaling pathway can generate C, a hereditary unit resembling prions. These authors show that another MAP kinase pathway, PaMpk2, controls the generation of C by activating PaMpk1, revealing unexpectedly complex regulation of a prion-like trait.
Allopolyploidization lays the foundation for evolution of distinct populations: Evidence from analysis of synthetic Arabidopsis allohexaploids, pp. 535547 Starr C. Matsushita, Anand P. Tyagi, Gerad M. Thornton, J. Chris Pires, and Andreas Madlung Allopolyploidycarrying complete chromosome sets of at least two different specieshas been seen as a mechanism for instant speciation. This article shows that different somatic cells of the same neoallopolyploid individual can exhibit different karyotypes, and that somatic mosaics can persist in subsequent generations. The authors characterize and quantify aneuploidy over seven generations in several sibling lines of a synthetic allopolyploid. Their results suggest that this phenomenon has the potential to lead not only to instant speciation but also to instant radiation.
The nearly neutral and selection theories of molecular evolution under the Fisher geometrical framework: Substitution rate, population size, and complexity, pp. 523534 Pablo Razeto-Barry, Javier Daz, and Rodrigo A. Vsquez This article puts forth that nearly neutral evolution cannot explain the high rate of fixations driven by positive selection found in DNA sequences. The authors use Fishers geometrical model (FGM) to simulate evolution from biologically interpretable distributions of mutations. They find that nearly neutral and selection scenarios predict molecular patterns different from previous models. In a selective scenario in the FGM, evolutionary rate depends not on population size, but rather on the complexity of organisms and mutation size.
Read the rest here:
Genetics Society of America's GENETICS Journal Highlights
Recommendation and review posted by Bethany Smith
Seattle Genetics Highlights Updated Survival Data from ADCETRIS® Pivotal Trial in Patients with Relapsed or Refractory …
BOTHELL, Wash.--(BUSINESS WIRE)--
Seattle Genetics, Inc. (SGEN) today announced updated survival data from a pivotal clinical trial of single-agent ADCETRIS (brentuximab vedotin) in patients with relapsed or refractory Hodgkin lymphoma (HL) after autologous stem cell transplant (ASCT) showing that the median overall survival has not been reached after a 26.5 month median follow-up. The data will be reported during an oral presentation at the 17th European Hematology Association (EHA) Annual Meeting being held June 14-17, 2012 in Amsterdam, Netherlands. ADCETRIS is an antibody-drug conjugate (ADC) directed to CD30.
Heavily pretreated Hodgkin lymphoma patients who relapse following autologous stem cell transplant often have a poor prognosis and there is a high unmet medical need for effective treatment options, said Scott Smith M.D., Ph.D., Loyola University Medical Center. These updated overall survival results from the pivotal trial are encouraging and demonstrate that ADCETRIS may play an important role in the treatment of patients with relapsed or refractory disease.
Long-term Follow-up Results of an Ongoing Pivotal Study of Brentuximab Vedotin in Patients with Relapsed or Refractory Hodgkin Lymphoma
A pivotal trial was conducted in 102 patients with relapsed or refractory HL after ASCT. The primary endpoint was objective response rate (ORR) per independent review. The secondary endpoints were complete remission (CR) rate, duration of response, progression-free survival (PFS), overall survival (OS), and safety and tolerability. At the time of the long-term follow-up analysis, the median observation time from first dose was 26.5months. Data, to be presented by Dr. Smith, include:
Patients received 1.8milligrams per kilogram of ADCETRIS every 3 weeks as a 30-minute outpatient intravenous infusion for up to 16cycles. Patients received a median of nine cycles of ADCETRIS while on trial. The median age of patients in the pivotal trial was 31 years. Enrolled patients had received a median of 3.5 (range 113) prior cancer-related systemic therapies, excluding ASCT. Seventy-one percent of patients had primary refractory disease, defined in the study protocol as patients who relapsed within three months of attaining CR or failed to achieve a CR, and 42 percent had not responded to their most recent prior therapy.
Details of the oral presentation are as follows:
About ADCETRIS
ADCETRIS (brentuximab vedotin) is an ADC comprising an anti-CD30 monoclonal antibody attached by a protease-cleavable linker to a microtubule disrupting agent, monomethyl auristatin E (MMAE), utilizing Seattle Genetics proprietary technology. The ADC employs a linker system that is designed to be stable in the bloodstream but to release MMAE upon internalization into CD30-expressing tumor cells.
ADCETRIS received accelerated approval from the U.S. Food and Drug Administration (FDA) for two indications: (1) the treatment of patients with Hodgkin lymphoma after failure of autologous stem cell transplant (ASCT) or after failure of at least two prior multi-agent chemotherapy regimens in patients who are not ASCT candidates, and (2) the treatment of patients with systemic anaplastic large cell lymphoma (sALCL) after failure of at least one prior multi-agent chemotherapy regimen. The indications for ADCETRIS are based on response rate. There are no data available demonstrating improvement in patient-reported outcomes or survival with ADCETRIS.
Here is the original post:
Seattle Genetics Highlights Updated Survival Data from ADCETRIS® Pivotal Trial in Patients with Relapsed or Refractory ...
Recommendation and review posted by Bethany Smith
Robin Roberts’ Personal Story Highlights Need for More Bone Marrow Donors in the United States
BOCA RATON, Fla., June 13, 2012 (GLOBE NEWSWIRE) -- Good Morning America co-host Robin Roberts' decision to go public with the fact that she has a rare blood disorder was courageous and sheds light on the need for more bone marrow donors in the United States.
"In Robin's case, her sister turned out to be a perfect match, but the fact is, about two out of every three patients who need a transplant won't find a match in their family and will need to reach out to strangers to help save their lives," said Jay Feinberg, CEO of Gift of Life Bone Marrow Foundation, an international bone marrow registry based in Boca Raton, FL.
Approximately 10,000 people are diagnosed each year with a blood disease in which a bone marrow transplant could save their life, yet only half receive one. That is why the more people who are willing to donate, the better the chance of saving a life.
Feinberg knows that all too well. He was diagnosed with Leukemia in the early 1990s. He found his match in 1995 after more than 50,000 people were tested worldwide. He turned that grassroots movement into the not-for-profit Gift of Life Bone Marrow Foundation to get more donors into the worldwide registry and educate the public on the importance of donating. For its part, Gift of Life has facilitated more than 2,500 matches in its history and entered more than 200,000 people into the registry.
"It only takes one match to save a life, and that's what keeps us passionate and focused every day," said Feinberg, who found his match from a young woman who registered at the very last marrow drive organized for him. "The fact that someone as high profile as Robin Roberts is willing to share her personal story with the world will create a lot of new interest in people willing to become donors and to that end, that's a very positive thing. We wish her well in her upcoming treatments."
Gift of Life Bone Marrow Foundation, through its network of life-saving volunteers, organizes dozens of bone marrow drives per year around the world. Feinberg said becoming a donor is easy. A cotton swab is rubbed on the inside of the mouth to collect cells used for tissue typing. That information is then entered into the registry where anyone needing a transplant can turn to see if they find someone compatible. If a match is made, the donor is notified by phone and then undergoes one more test to confirm he or she is a perfect match. If so, the donor then undergoes a complete physical exam, and then the donation procedure, which involves either the taking of blood stem cells from the arms, or bone marrow from the hip. Those life-saving cells are then transplanted into the sick patient. The donor's marrow will eventually replenish itself. On average, one in 1,000 of Gift of Life donors is asked to donate every year.
For more information on bone marrow and blood stem cell transplants, and to see answers to frequently asked questions, please log onto http://www.giftoflife.org.
About the Gift of Life Bone Marrow Foundation
Gift of Life helps children and adults suffering from leukemia, lymphoma, other cancers and genetic disorders find donors for blood and marrow transplants. Headquartered in Boca Raton, Florida, Gift of Life is an internationally recognized bone marrow, blood stem cell, and umbilical cord blood registry. Through its life-saving work, Gift of Life is a world leader helping children and adults find the matches they need when they need them. For more information log on to http://www.giftoflife.org.
Read this article:
Robin Roberts' Personal Story Highlights Need for More Bone Marrow Donors in the United States
Recommendation and review posted by sam
Doctors transplant vein grown with patient’s own stem cells
For the first time, doctors have successfully transplanted a vein grown with a patients own stem cells, another example of scientists producing human body parts in the lab.
In this case, the patient was a 10-year-old girl in Sweden who was suffering from a severe vein blockage to her liver. In March, the girls doctors decided to make her a new blood vessel to bypass the blocked vein instead of using one of her own or considering a liver transplant.
They took a 3 1/2-inch section of vein from a deceased donor, which was stripped of all its cells, leaving just a hollow tube. Using stem cells from the girls bone marrow, scientists grew millions of cells to cover the vein, a process that took about two weeks. The new blood vessel was then transplanted into the patient.
Because the procedure used her own cells, the girl did not have to take any drugs to stop her immune system from attacking the new vein, as is usually the case in transplants involving donor tissue.
This is the future for tissue engineering, where we can make tailor-made organs for patients, said Suchitra Sumitran-Holgersson of the University of Gothenburg, one of the studys authors.
She and colleagues published the results of their work online Thursday in the British medical journal Lancet. The work was paid for by the Swedish government.
The science is still preliminary and one year after the vein was transplanted, it needed to be replaced with another lab-grown vein when doctors noticed the blood flow had dropped. Experts from University College London raised questions in an accompanying commentary about how cost-effective the procedure might be, citing acute pressures on health systems that might make these treatments impractical for many patients.
Ms. Sumitran-Holgersson estimated the cost at between $6,000 and $10,000.
Similar methods have already been used to make new windpipes and urethras for patients. Doctors in Poland have also made blood vessels grown from donated skin cells for dialysis patients.
Patients with the girls condition are usually treated with a vein transplant from their own leg, a donated vein, or a liver transplant. Those options can be complicated in children and using a donated vein or liver also requires taking anti-rejection medicines.
Read more:
Doctors transplant vein grown with patient's own stem cells
Recommendation and review posted by sam
Doctors make new vein using patient’s own stem cells for transplant into 10-year-old girl
LONDON For the first time doctors have successfully transplanted a vein grown with a patient's own stem cells, another example of scientists producing human body parts in the lab.
In this case, the patient was a 10-year-old girl in Sweden who was suffering from a severe vein blockage to her liver. Last March, the girl's doctors decided to make her a new blood vessel to bypass the blocked vein instead of using one of her own or considering a liver transplant.
They took a 9-centimeter (3 -inch) section of vein from a deceased donor, which was stripped of all its cells, leaving just a hollow tube. Using stem cells from the girl's bone marrow, scientists grew millions of cells to cover the vein, a process that took about two weeks. The new blood vessel was then transplanted into the patient.
Because the procedure used her own cells, the girl did not have to take any drugs to stop her immune system from attacking the new vein, as is usually the case in transplants involving donor tissue.
"This is the future for tissue engineering, where we can make tailor-made organs for patients," said Suchitra Sumitran-Holgersson of the University of Gothenburg, one of the study's authors.
She and colleagues published the results of their work online Thursday in the British medical journal Lancet. The work was paid for by the Swedish government.
The science is still preliminary and one year after the vein was transplanted, it needed to be replaced with another lab-grown vein when doctors noticed the blood flow had dropped. Experts from University College London raised questions in an accompanying commentary about how cost-effective the procedure might be, citing "acute pressures" on health systems that might make these treatments impractical for many patients.
Sumitran-Holgersson estimated the cost at between $6,000 and $10,000.
Similar methods have already been used to make new windpipes and urethras for patients. Doctors in Poland have also made blood vessels grown from donated skin cells for dialysis patients.
Patients with the girl's condition are usually treated with a vein transplant from their own leg, a donated vein, or a liver transplant. Those options can be complicated in children and using a donated vein or liver also requires taking anti-rejection medicines.
See the article here:
Doctors make new vein using patient's own stem cells for transplant into 10-year-old girl
Recommendation and review posted by sam
Girl’s stem cells used to make her a new vein
1:00 AM Since the new vein was transplanted, the 10-year-old with blockage to her liver is much improved.
The Associated Press
LONDON - For the first time doctors have successfully transplanted a vein grown with a patient's own stem cells, another example of scientists producing human body parts in the lab.
In this case, the patient was a 10-year-old girl in Sweden who was suffering from a severe vein blockage to her liver. Last March, the girl's doctors decided to make her a new blood vessel to bypass the blocked vein instead of using one of her own or considering a liver transplant.
They took a 3-inch section of vein from a deceased donor, which was stripped of all its cells, leaving just a hollow tube. Using stem cells from the girl's bone marrow, scientists grew millions of cells to cover the vein, a process that took about two weeks. The new blood vessel was then transplanted into the patient.
Because the procedure used her own cells, the girl did not have to take any drugs to stop her immune system from attacking the new vein, as is usually the case in transplants involving donor tissue.
"This is the future for tissue engineering, where we can make tailor-made organs for patients," said Suchitra Sumitran-Holgersson of the University of Gothenburg, one of the study's authors.
She and colleagues published the results of their work online Thursday in the medical journal Lancet. The work was paid for by the Swedish government.
The science is still preliminary, and one year after the vein was transplanted, it needed to be replaced with another lab-grown vein when doctors noticed the blood flow had dropped. Experts from University College London raised questions in an accompanying commentary about how cost-effective the procedure might be, citing "acute pressures" on health systems that might make these treatments impractical for many patients.
Similar methods have already been used to make new windpipes and urethras for patients. Doctors in Poland have also made blood vessels grown from donated skin cells for dialysis patients.
See the rest here:
Girl's stem cells used to make her a new vein
Recommendation and review posted by sam
Biomax Informatics AG Reaches First Milestone in European Systems and Personalized Medicine Project
PLANEGG, Germany--(BUSINESS WIRE)--
Within the last year Biomax Informatics has established the knowledge integration platform in a research project to develop a new generation of healthcare tools for predictive, personalized medicine. The Synergy-COPD project, funded by the European "Framework Programme 7", will generate a simulation environment and clinical decision support system enabling systems medicine. Though generally applicable, the tools created will be validated using data from patients with chronic obstructive pulmonary disease (COPD). The project's goal is to improve patient care and healthcare outcomes, reduce errors and increase efficiency.
Leveraging Biomax's BioXM technology, a comprehensive COPD knowledge base with a graphical frontend for visualizations is being established. The system integrates five well-established simulations of human physiology with biomedical data drawn from experimental studies, epidemiological data, clinical trials, physician interviews, a multi-center longitudinal study on COPD phenotyping, and public datasets. Integrating with a Simulation environment, researchers will be able to perform simulations linking symptoms and pathologies in organs and tissues with other features, such as metabolic pathways. Building on this foundation, a decision support system will allow doctors to anticipate disease progression and optimize therapy.
COPD was chosen to validate the projects systems biology approach because it is a complex, heterogeneous, multi-component disease. COPD is also a major public health problem: it is ranked as the fourth leading cause of death in Europe and one of Europe's leading causes of healthcare costs. "COPD is the ideal target for this project, which aims to realize patient-centered, integrated medicine in general healthcare," says Dr. Dieter Maier, Biomax Project Manager. "Our aim is to equip healthcare providers with innovative tools that lead to the best treatments for patients."
About the Synergy-COPD project
The Synergy-COPD project is funded by the European Union's Seventh Framework Programme for Research and Technological Development (FP7) to develop a simulation environment and a decision-support system enabling systems medicine. The project's research partners are leading experts in the field of COPD and relevant technologies and methods for advancing COPD research. More information about the consortium is available at http://www.synergy-copd.eu.
About Biomax
Biomax Informatics AG (Planegg, Germany), founded in 1997, is a leader in the development of computational solutions for the life sciences. Biomax developed the BioXM Knowledge Management Environment and markets the Viscovery technology for better decision-making and knowledge management in biomedical sciences. More information about Biomax is available atwww.biomax.com.
See the original post:
Biomax Informatics AG Reaches First Milestone in European Systems and Personalized Medicine Project
Recommendation and review posted by sam
Aiken boxer Paul Williams recovery updated
From Staff Reports
According to a report from USA Today, boxer Paul Williams is sliding himself in and out of bed after suffering a spinal cord injury May 27.
FILE PHOTO
Paul Williams
Williams, the three-time world champion boxer from Aiken, was paralyzed below his chest when he was thrown more than 100 feet from his motorcycle after losing control on a curve.
Williams was diagnosed with a thoracic level (T 10-11) spinal cord injury. He was admitted to Shepherd Centers Spinal Cord Injury Program for care and observation, where doctors have determined an appropriate treatment plan. Williams was undergoing rehabilitation this morning and was unable to attend a press conference, where doctors updated his progress.
In a previous article in The Augusta Chronicle, Williams said hes approaching his new obstacle like a title shot with the ultimate goal of proving to the experts he will walk again.
Its like were training for a fight, said George Peterson, Williams trainer since he turned professional 14 years ago. Like Paul has been so many times before, he likes proving people wrong. And hes been doubted so many times and proven people wrong so many times, he made a believer out of me. And if he says hes going to fight again, I cant do anything but believe him.
Read the original post:
Aiken boxer Paul Williams recovery updated
Recommendation and review posted by sam
Stratatech’s StrataGraft® Skin Substitute Granted FDA Orphan Drug Designation
MADISON, Wis.--(BUSINESS WIRE)--
Stratatech Corp., a leader in regenerative medicine, today announced that StrataGraft, the companys universal human skin substitute, has been designated an orphan drug by the U.S. Food and Drug Administration for the treatment of partial and full thickness skin burns.
Orphan drug designation provides a number of benefits to the company, including seven years of market exclusivity once StrataGraft receives FDA clearance, assistance from the FDA with guiding StrataGraft through the regulatory approval process, waiver or partial payment of application fees and tax credits for clinical testing expenses conducted after orphan designation is received.
This orphan drug designation marks an important milestone in Stratatechs regulatory strategy and complements the highly encouraging clinical results we reported at the end of April, said Lynn Allen-Hoffmann, Ph.D., Stratatechs chief executive and chief scientific officer. The FDAs designation underscores the need for new treatments for severely burned patients. We look forward to working with the agency to expedite the continuing clinical testing and regulatory review of StrataGraft.
StrataGraftskin substitute is a living, cell-based tissue with the physical, chemical and histological characteristics of human skin. It is being evaluated in a multicenter clinical study designed to assess its safety and utility in the treatment of patients with second-degree deep partial-thickness burns. The trial enables a direct comparison of a single treatment of StrataGraft on one burn site to a control autograft on a comparable burn site of each patient. None of the burns treated with StrataGraft tissue in the first cohort of 10 patients required autografting by day 28, the studys primary efficacy endpoint.
There is an urgent need for new treatment options for burns. Severe burns and other major skin trauma are life-threatening injuries that require immediate surgical intervention. Frequently, this involves temporary coverage of the wound site with cadaver skin or synthetic dressings to prevent infection and dehydration because there are no full-thickness skin substitutes commercially available for the treatment of burns. Permanent closure of the wound is generally accomplished through split-thickness skin autografting after the wound bed is sufficiently stable that it will accept the transplanted tissue. Although this regimen is the standard of care for severe burns, the limited availability of and potential for pathogen transmission from cadaver skin, as well as the painful surgery associated with autografting, are serious drawbacks to this approach. The American Burn Association estimates that 1.1 million people suffer burns annually in the United States. Approximately 45,000 patients require hospitalization.
About Stratatech Corp.
Stratatech Corp. is a privately held regenerative medicine company focused on the development and commercialization of cell-based, tissue-engineered skin substitute products for therapeutic and research applications. These products are made using the companys proprietary NIKS cells a human keratinocyte progenitor cell line that faithfully reproduces normal epidermal skin architecture and barrier function. The company is using this progenitor cell line to create a portfolio of therapeutic products to treat severe burns, non-healing ulcers, and other complex skin defects. The companys flagship product, StrataGraft tissue, is in human clinical testing for the treatment of severe burns and other traumatic skin loss. The companys second therapeutic product, ExpressGraft antimicrobial tissue, is expected to enter clinical testing in 2013 to treat non-healing diabetic foot ulcers.
For more information about Stratatech, its technology and product pipeline, please visit the companys website at http://www.stratatechcorp.com.
Originally posted here:
Stratatech’s StrataGraft® Skin Substitute Granted FDA Orphan Drug Designation
Recommendation and review posted by sam
New Applications in Drug Discovery Platforms to Fuel Advance of Stem Cells, Says Frost & Sullivan
Ethical, Clinical and Commercial Issues to be Navigated before Full Potential of Stem Cell Therapies can be Unleashed
LONDON, June 13, 2012 /PRNewswire-Asia/ -- Stem cells offer exciting potential in regenerative medicine, and are likely to be widely used by mid-2017. Pharmaceutical, biotech and medical device companies are showing increased interest in stem cell research.
New analysis from Frost & Sullivan (http://www.pharma.frost.com), Analysis of the Stem Cell Markets-Unlocking the New Era in Therapeutics, finds that the market will be driven by stem cell applications in drug discovery platforms and by successful academia commercial company partnership models.
"The high attrition rates of potential drug candidates has piqued the interest of pharmaceutical and biotech industries in stem cell use during the drug discovery phase," notes Frost & Sullivan Consulting Analyst Vinod Jyothikumar. "Previously, animal cell lines, tumours, or genetic transformation have been the traditional platform for testing drug candidates; however, these 'abnormal' cells have significantly contributed to a lack of translation into clinical studies."
Many academic institutes and research centres are collaborating with biotechnology and pharmaceutical companies in stem cell research. This will provide impetus to the emergence of novel cell-based therapies.
Key challenges to market development relate to reimbursement, ethics and the complexity of clinical trials.
Securing reimbursement for stem cell therapeutic products is expected to be critical for commercial success. However, stem cell therapies are likely to be expensive. Insurers, therefore, may be unwilling to pay for the treatment. At the same time, patients are unlikely to be able to afford these treatments.
"The use of embryonic stem cells raises a host of thorny ethical, legal, and social issues," adds Jyothikumar. "As a result, market prices for various products may be affected."
Moreover, many research institutes are adopting policies promoting the ethical use of human embryonic tissues. Such policies are hindering the overall research process for several companies working in collaboration with these institutes.
"In addition to apprehensions about how many products will actually make it through human-based clinical trials, companies are also worried about which financial model can be applied to stem cell therapies," cautions Jyothikumar. "Possibly low return on investment (ROI) is also resulting in pharmaceutical companies adopting a cautious approach to stem cell therapeutics."
Read the original here:
New Applications in Drug Discovery Platforms to Fuel Advance of Stem Cells, Says Frost & Sullivan
Recommendation and review posted by simmons
Stem cell scientist wins award
13 June 2012 Last updated at 08:31 ET
Japanese stem cell scientist Dr Shinya Yamanaka has been awarded the Millennium Technology Prize.
His award is for discovering how to reprogram human cells to mimic embryonic stem cells, which can become any cell in the body.
Called induced pluripotent stem (iPS) cells, these now aid research into regenerative medicine.
He was joint-winner with Linus Torvalds, who created a new open source operating system for computers.
This is the first time the prize has been shared by two scientists - they will split the 1.2m euros ($1.3m; 800,000) award.
My goals over the decade include to develop new drugs to treat intractable diseases by using iPS cell technology and to conduct clinical trials using it on a few patients with Parkinson's diseases, diabetes or blood diseases.
The President of the Republic of Finland, Sauli Niinisto, presented the prize at the Finnish National Opera in Helsinki.
Dr Ainomija Haarla, President of Technology Academy Finland - the foundation which awards the prize every two years - said: "The International Selection Committee has to judge whether an innovation has had a favourable impact on people's lives and assess its potential for further development to benefit humanity in the future.
"The innovations of both this year's winners embody that principle.
Read the original post:
Stem cell scientist wins award
Recommendation and review posted by simmons
Cell Therapeutics Appoints New Chief Medical Officer
June 14, 2012, SEATTLE /PRNewswire/ -- Cell Therapeutics, Inc. ("CTI") (NASDAQ and MTA: CTIC), a company focused on translating science into novel cancer therapies, today announced that former OncoMed Pharmaceuticals executive, Steven E. Benner, M.D., M.H.S., has joined CTI as Executive Vice President and Chief Medical Officer ("CMO"), reporting to James A. Bianco, M.D., Chief Executive Officer. Dr. Benner will take over all drug development activities at the company.Dr. Benner was previously senior vice president and chief medical officer at OncoMed, a venture-backed biotechnology company focused on the development of cancer stem cell targeting agents. Prior to OncoMed, he was CMO at Protein Design Labs ("PDL"), where he was accountable for all development activities including clinical development, clinical operations, biometry, regulatory affairs, and safety. He also served as Chair of the Portfolio and Clinical Development Management Committees of PDL. Before PDL he held several senior executive roles at Bristol-Myers Squibb in global development, life cycle management, and licensing and alliances.
"Dr. Benner brings to CTI his proven track record of success in advancing the development of innovative therapies for cancer patients," said Dr. Bianco. "His appointment is the first step in re-aligning our portfolio efforts, as we focus on advancing pacritinib into Phase III pivotal studies later this year."
With the new company initiative of the planned Pixuvri launch in Europe later this year, Jack W. Singer, M.D., will assume the newly-created role of Executive Vice President ("EVP") of Global Medical Affairs and Translational Medicine, responsible for cancer drug development strategy, global medical affairs, and life cycle management.
"Given Jack's impressive academic credentials, the respect he receives from an international network of key opinion leaders in the field, and his track record in oncology drug development, this was a natural promotion as we introduce Pixuvri in Europe," said Dr. Bianco.
"CTI has assembled an impressive late-stage portfolio of novel targeted therapies that address a spectrum of blood related cancers," said Dr. Benner. "With two drugs in Phase III and two more expected to enter Phase III trials within a year, this is an exciting and transformational time to join the team at CTI."
About Pixuvri (pixantrone)Pixuvri is a novel aza-anthracenedione with unique structural and physio-chemical properties. Unlike related compounds,Pixuvri forms stable DNA adducts and in preclinical models has superior anti-lymphoma activity compared to related compounds. Pixuvri was structurally designed so that it cannot bind iron and perpetuate oxygen radical production or form a long-lived hydroxyl metabolite -- both of which are the putative mechanisms for anthracycline induced acute and chronic cardiotoxicity. These novel pharmacologic properties allow Pixuvri to be administered to patients with near maximal lifetime exposure to anthracyclines without unacceptable rates of cardiotoxicity, and, because Pixuvri is not a vesicant, allow it to be safely delivered via a peripheral intravenous catheter.
In May 2012 Pixuvri received conditional marketing authorization in the EU as monotherapy for the treatment of adult patients with multiply relapsed or refractory aggressive NHL. The benefit of pixantrone treatment has not been established in patients when used as fifth line or greater chemotherapy in patients who are refractory to last therapy.The Summary of Product Characteristics ("SmPC") has the full prescribing information, including the safety and efficacy profile of Pixuvri in the approved indication. The SmPC is available at http://ec.europa.eu/health/documents/communityregister/html/h764.htm#ProcList.
Pixuvri is currently available in the EU through Named Patient Programs.
Pixuvri does not have marketing approval in the United States.
About Conditional Marketing AuthorizationSimilar to accelerated approval regulations inthe United States, conditional marketing authorizations are granted in the EU to medicinal products with a positive benefit/risk assessmentthat address unmet medical needs and whose availability would result in a significant public health benefit. A conditional marketing authorization is renewable annually. Under the provisions of the conditional marketing authorization for Pixuvri, CTI will be required to complete a post-marketing study aimed at confirming the clinical benefit previously observed.
The rest is here:
Cell Therapeutics Appoints New Chief Medical Officer
Recommendation and review posted by simmons