Page 148«..1020..147148149150..160170..»

The role of induction therapy before autologous stem cell transplantation in low disease burden AL amyloidosis patients – DocWire News

This article was originally published here

Amyloid. 2020 Oct 21:1-9. doi: 10.1080/13506129.2020.1835635. Online ahead of print.

ABSTRACT

BACKGROUND: Induction therapy is recommended before autologous stem cell transplantation (ASCT) for AL amyloidosis patients with high disease burden [bone marrow plasma cells (BMPCs) > 10%], but the role of induction therapy before ASCT in patients with low disease burden (BMPCs 10%) is still unknown.

METHODS: A total of 227 patients with AL amyloidosis were included in this study. Among 227 patients, 124 patients received bortezomib-based induction prior to ASCT and were defined as group A, 35 patients received other chemotherapeutic induction and were defined as group B, and the other 68 patients without induction were defined as group C. We compared the differences of efficacy and prognosis between the three groups.

RESULTS: The haematological overall response rates (ORR) of groups A, B and C were 91%, 67% and 75%, respectively. The complete response rates (CR) of groups A, B and C were 50%, 25% and 20%, respectively. Both the ORR and CR rates of group A were significantly higher than those of groups B and C. The renal response rates of groups A, B and C were 64%, 46% and 47%, respectively. The cardiac response rates of groups A, B and C were 74%, 45% and 40%, respectively. The renal and cardiac responses rates of group A were also significantly higher than those of the other two groups. After a median follow-up of 44 months, the median OS was not reached. The 5-year estimated overall survival (OS) rates of groups A, B and C were 81%, 57% and 67%, respectively. The median progression-free survival (PFS) was 83 months for all patients. The 5-year estimated PFS rates of groups A, B and C were 61%, 38% and 49%, respectively. Both the OS and PFS of group A were higher than those of both group B and group C. On multivariate analysis, baseline dFLC > 50 mg/L was associated with worse survival, but induction with bortezomib was associated with better survival.

CONCLUSION: Our study demonstrated that low disease burden AL patients who are eligible for ASCT may benefit from bortezomib-based induction therapy.

PMID:33084412 | DOI:10.1080/13506129.2020.1835635

More:
The role of induction therapy before autologous stem cell transplantation in low disease burden AL amyloidosis patients - DocWire News

Recommendation and review posted by Bethany Smith

COVID-19 can affect the heart – Science Magazine

The family of seven known human coronaviruses are known for their impact on the respiratory tract, not the heart. However, the most recent coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has marked tropism for the heart and can lead to myocarditis (inflammation of the heart), necrosis of its cells, mimicking of a heart attack, arrhythmias, and acute or protracted heart failure (muscle dysfunction). These complications, which at times are the only features of coronavirus disease 2019 (COVID-19) clinical presentation, have occurred even in cases with mild symptoms and in people who did not experience any symptoms. Recent findings of heart involvement in young athletes, including sudden death, have raised concerns about the current limits of our knowledge and potentially high risk and occult prevalence of COVID-19 heart manifestations.

The four common cold human coronavirusesHCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1have not been associated with heart abnormalities. There were isolated reports of patients with Middle East respiratory syndrome (MERS; caused by MERS-CoV) with myocarditis and a limited number of case series of cardiac disease in patients with SARS (caused by SARS-CoV) (1). Therefore, a distinct feature of SARS-CoV-2 is its more extensive cardiac involvement, which may also be a consequence of the pandemic and the exposure of tens of millions of people to the virus.

What appears to structurally differentiate SARS-CoV-2 from SARS is a furin polybasic site that, when cleaved, broadens the types of cells (tropism) that the virus can infect (2). The virus targets the angiotensin-converting enzyme 2 (ACE2) receptor throughout the body, facilitating cell entry by way of its spike protein, along with the cooperation of the cellular serine protease transmembrane protease serine 2 (TMPRSS2), heparan sulfate, and other proteases (3). The heart is one of the many organs with high expression of ACE2. Moreover, the affinity of SARS-CoV-2 to ACE2 is significantly greater than that of SARS (4). The tropism to other organs beyond the lungs has been studied from autopsy specimens: SARS-CoV-2 genomic RNA was highest in the lungs, but the heart, kidney, and liver also showed substantial amounts, and copies of the virus were detected in the heart from 16 of 22 patients who died (5). In an autopsy series of 39 patients dying from COVID-19, the virus was not detectable in the myocardium in 38% of patients, whereas 31% had a high viral load above 1000 copies in the heart (6).

Accordingly, SARS-CoV-2 infection can damage the heart both directly and indirectly (see the figure). SARS-CoV-2 exhibited a striking ability to infect cardiomyocytes derived from induced pluripotent stem cells (iPSCs) in vitro, leading to a distinctive pattern of heart muscle cell fragmentation, with complete dissolution of the contractile machinery (7). Some of these findings were verified from patient autopsy specimens. In another iPSC study, SARS-CoV-2 infection led to apoptosis and cessation of beating within 72 hours of exposure (8). Besides directly infecting heart muscle cells, viral entry has been documented in the endothelial cells that line the blood vessels to the heart and multiple vascular beds. A secondary immune response to the infected heart and endothelial cells (endothelitis) is just one dimension of many potential indirect effects. These include dysregulation of the renin-angiotensin-aldosterone system that modulates blood pressure, and activation of a proinflammatory response involving platelets, neutrophils, macrophages, and lymphocytes, with release of cytokines and a prothrombotic state. A propensity for clotting, both in the microvasculature and large vessels, has been reported in multiple autopsy series and in young COVID-19 patients with strokes.

There is a diverse spectrum of cardiovascular manifestations, ranging from limited necrosis of heart cells (causing injury), to myocarditis, to cardiogenic shock (an often fatal inability to pump sufficient blood). Cardiac injury, as reflected by concentrations of troponin (a cardiac musclespecific enzyme) in the blood, is common with COVID-19, occurring in at least one in five hospitalized patients and more than half of those with preexisting heart conditions. Such myocardial injury is a risk factor for in-hospital mortality, and troponin concentration correlates with risk of mortality. Furthermore, patients with higher troponin amounts have markers of increased inflammation [including C-reactive protein, interleukin-6 (IL-6), ferritin, lactate dehydrogenase (LDH), and high neutrophil count] and heart dysfunction (amino-terminal pro-Btype natriuretic peptide) (9).

More worrisome than the pattern of limited injury is myocarditis: diffuse inflammation of the heart, usually representing a variable admixture of injury and the inflammatory response to the injury that can extend throughout the three layers of the human heart to the pericardium (which surrounds the heart). Unlike SARS-associated myocarditis, which did not exhibit lymphocyte infiltration, this immune and inflammatory response is a typical finding at autopsy after SARS-CoV-2 infections. Involvement of myocytes, which orchestrate electrical conduction, can result in conduction block and malignant ventricular arrhythmias, both of which can lead to cardiac arrest.

Along with such in-hospital arrythmias, there have been reports of increased out-of-hospital cardiac arrest and sudden death in multiple geographic regions of high COVID-19 spread, such as the 77% increase in Lombardy, Italy, compared with the prior year (10). There have been many reports of myocarditis simulating a heart attack, owing to the cluster of chest pain symptoms, an abnormal electrocardiogram, and increased cardiac-specific enzymes in the blood, even in patients as young as a 16-year-old boy. When there is extensive and diffuse heart muscle damage, heart failure, acute cor pulmonale (right heart failure and possible pulmonary emboli), and cardiogenic shock can occur.

COVID-19associated heart dysfunction can also be attributed to other pathways, including Takotsubo syndrome (also called stress cardiomyopathy), ischemia from endothelitis and related atherosclerotic plaque rupture with thrombosis, and the multisystem inflammatory syndrome of children (MIS-C). The underlying mechanism of stress cardiomyopathy is poorly understood but has markedly increased during the pandemic. MIS-C is thought to be immune-mediated and manifests with a spectrum of cardiovascular features, including vasculitis, coronary artery aneurysms, and cardiogenic shock. This syndrome is not exclusive to children because the same clinical features have been the subject of case reports in adults, such as in a 45-year-old man (11).

Recent series of COVID-19 patients undergoing magnetic resonance imaging (MRI) or echocardiography of the heart have provided some new insights about cardiac involvement (1214). In a cohort of 100 patients recovered from COVID-19, 78 had cardiac abnormalities, including 12 of 18 patients without any symptoms, and 60 had ongoing myocardial inflammation, which is consistent with myocarditis (12). The majority of more than 1200 patients in a large prospective cohort with COVID-19 had echocardiographic abnormalities (13). This raises concerns about whether there is far more prevalent heart involvement than has been anticipated, especially because at least 30 to 40% of SARS-CoV-2 infections occur without symptoms. Such individuals may have underlying cardiac pathology.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has the potential to directly and indirectly induce cardiac damage.

To date, there have been four small series of asymptomatic individuals with bona fide infections who underwent chest computed tomography (CT) scans to determine whether there were lung abnormalities consistent with COVID-19. Indeed, half of the asymptomatic people showed lung CT features that were seen in patients with symptoms. But so far, there have been minimal cardiac imaging studies in people who test positive for SARS-CoV-2 or are seropositive but without symptoms. Furthermore, the time course of resolution or persistence of any organ abnormalities after SARS-CoV-2 infection has not yet been reported. With a high proportion of silent infections despite concurrent evidence of internal organ damage, there is a fundamental and large hole in our knowledge base.

In contrast to people without symptoms, there is a substantial proportion of people who suffer a long-standing, often debilitating illness, called long-COVID. Typical symptoms include fatigue, difficulty in breathing, chest pain, and abnormal heart rhythm. An immunologic basis is likely but has yet to be determined. Nor have such patients undergone systematic cardiovascular assessment for possible myocarditis or other heart abnormalities, such as fibrosis, which could account for some of the enduring symptoms. It would not be surprising in the future for patients to present with cardiomyopathy of unknown etiology and test positive for SARS-CoV-2 antibodies. However, attributing such cardiomyopathy to the virus may be difficult given the high prevalence of infections, and ultimately a biopsy might be necessary to identify virus particles to support causality.

Cardiac involvement in athletes has further elevated the concerns. A 27-year-old professional basketball player, recovered from COVID-19, experienced sudden death during training. Several college athletes have been found to have myocarditis (14), including 4 of 26 (15%) in a prospective study from Ohio State University (15), along with one of major league baseball's top pitchers. Collectively, these young, healthy individuals had mild COVID-19 but were subsequently found to have unsuspected cardiac pathology. This same demographic groupyoung and healthyare the most common to lack symptoms after SARS-CoV-2 infections, which raises the question of how many athletes have occult cardiac disease? Systematic assessment of athletes who test positive for SARS-CoV-2, irrespective of symptoms, with suitable controls through some form of cardiac imaging and arrhythmia screening seems prudent until more is understood.

The most intriguing question that arises is why do certain individuals have a propensity for heart involvement after SARS-CoV-2 infection? Once recognized a few months into the pandemic, the expectation was that cardiac involvement would chiefly occur in patients with severe COVID-19. Clearly, it is more common than anticipated, but the true incidence is unknown. It is vital to determine what drives this pathogenesis. Whether it represents an individual's inflammatory response, an autoimmune phenomenon, or some other explanation needs to be clarified. Beyond preventing SARS-CoV-2 infections, the goal of averting cardiovascular involvement is paramount. The marked heterogeneity of COVID-19, ranging from lack of symptoms to fatality, is poorly understood. A newly emerged virus, widely circulating throughout the human population, with a panoply of disease manifestations, all too often occult, has made this especially daunting to unravel.

Acknowledgments: E.J.T. is supported by National Institutes of Health grant UL1 TR001114.

View post:
COVID-19 can affect the heart - Science Magazine

Recommendation and review posted by Bethany Smith

Stem Cell Assay Market expected to Witness a Sustainable Growth over 2025 – TechnoWeekly

Stem Cell Assay Market: Snapshot

Stem cell assay refers to the procedure of measuring the potency of antineoplastic drugs, on the basis of their capability of retarding the growth of human tumor cells. The assay consists of qualitative or quantitative analysis or testing of affected tissues andtumors, wherein their toxicity, impurity, and other aspects are studied.

Get Exclusive PDF Sample Copy Of This Report:https://www.tmrresearch.com/sample/sample?flag=B&rep_id=40

With the growing number of successfulstem cell therapytreatment cases, the global market for stem cell assays will gain substantial momentum. A number of research and development projects are lending a hand to the growth of the market. For instance, the University of Washingtons Institute for Stem Cell and Regenerative Medicine (ISCRM) has attempted to manipulate stem cells to heal eye, kidney, and heart injuries. A number of diseases such as Alzheimers, spinal cord injury, Parkinsons, diabetes, stroke, retinal disease, cancer, rheumatoid arthritis, and neurological diseases can be successfully treated via stem cell therapy. Therefore, stem cell assays will exhibit growing demand.

Another key development in the stem cell assay market is the development of innovative stem cell therapies. In April 2017, for instance, the first participant in an innovative clinical trial at the University of Wisconsin School of Medicine and Public Health was successfully treated with stem cell therapy. CardiAMP, the investigational therapy, has been designed to direct a large dose of the patients own bone-marrow cells to the point of cardiac injury, stimulating the natural healing response of the body.

Newer areas of application in medicine are being explored constantly. Consequently, stem cell assays are likely to play a key role in the formulation of treatments of a number of diseases.

Global Stem Cell Assay Market: Overview

The increasing investment in research and development of novel therapeutics owing to the rising incidence of chronic diseases has led to immense growth in the global stem cell assay market. In the next couple of years, the market is expected to spawn into a multi-billion dollar industry as healthcare sector and governments around the world increase their research spending.

The report analyzes the prevalent opportunities for the markets growth and those that companies should capitalize in the near future to strengthen their position in the market. It presents insights into the growth drivers and lists down the major restraints. Additionally, the report gauges the effect of Porters five forces on the overall stem cell assay market.

Buy This Report @https://www.tmrresearch.com/checkout?rep_id=40<ype=S

Global Stem Cell Assay Market: Key Market Segments

For the purpose of the study, the report segments the global stem cell assay market based on various parameters. For instance, in terms of assay type, the market can be segmented into isolation and purification, viability, cell identification, differentiation, proliferation, apoptosis, and function. By kit, the market can be bifurcated into human embryonic stem cell kits and adult stem cell kits. Based on instruments, flow cytometer, cell imaging systems, automated cell counter, and micro electrode arrays could be the key market segments.

In terms of application, the market can be segmented into drug discovery and development, clinical research, and regenerative medicine and therapy. The growth witnessed across the aforementioned application segments will be influenced by the increasing incidence of chronic ailments which will translate into the rising demand for regenerative medicines. Finally, based on end users, research institutes and industry research constitute the key market segments.

The report includes a detailed assessment of the various factors influencing the markets expansion across its key segments. The ones holding the most lucrative prospects are analyzed, and the factors restraining its trajectory across key segments are also discussed at length.

Global Stem Cell Assay Market: Regional Analysis

Regionally, the market is expected to witness heightened demand in the developed countries across Europe and North America. The increasing incidence of chronic ailments and the subsequently expanding patient population are the chief drivers of the stem cell assay market in North America. Besides this, the market is also expected to witness lucrative opportunities in Asia Pacific and Rest of the World.

Global Stem Cell Assay Market: Vendor Landscape

A major inclusion in the report is the detailed assessment of the markets vendor landscape. For the purpose of the study the report therefore profiles some of the leading players having influence on the overall market dynamics. It also conducts SWOT analysis to study the strengths and weaknesses of the companies profiled and identify threats and opportunities that these enterprises are forecast to witness over the course of the reports forecast period.

Some of the most prominent enterprises operating in the global stem cell assay market are Bio-Rad Laboratories, Inc (U.S.), Thermo Fisher Scientific Inc. (U.S.), GE Healthcare (U.K.), Hemogenix Inc. (U.S.), Promega Corporation (U.S.), Bio-Techne Corporation (U.S.), Merck KGaA (Germany), STEMCELL Technologies Inc. (CA), Cell Biolabs, Inc. (U.S.), and Cellular Dynamics International, Inc. (U.S.).

To know more about the table of contents, you can click @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=40

About Us:

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

See more here:
Stem Cell Assay Market expected to Witness a Sustainable Growth over 2025 - TechnoWeekly

Recommendation and review posted by Bethany Smith

Exosome Therapeutic Market 2020-2026 Demand Analysis and Projected Huge Growth by Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH,…

To better structure this Exosome Therapeutic Market report, a nice blend of advanced industry insights, practical solutions, talent solutions and latest technology is utilized which gives an excellent experience to the readers or end users. The report is a valuable resource which provides current as well as upcoming technical and financial details of the industry to 2026. CAGR values for the market for an estimated forecast period of 2020 to 2026 are mentioned in the report which helps determine costing and investment For better understanding of the market and leading business growth, Exosome Therapeutic Market research report is the ideal solution.

Get Sample PDF (including COVID19 Impact Analysis) of Market Report @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-exosome-therapeutic-market&rp

Market Analysis and Insights:Global Exosome Therapeutic Market

Exosome therapeutic market is expected to gain market growth in the forecast period of 2019 to 2026. Data Bridge Market Research analyses that the market is growing with a CAGR of 21.9% in the forecast period of 2019 to 2026 and expected to reach USD 31,691.52 million by 2026 from USD 6,500.00 million in 2018. Increasing prevalence of lyme disease, chronic inflammation, autoimmune disease and other chronic degenerative diseases are the factors for the market growth.

The major players covered in theExosome Therapeutic Marketreport areevox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE Therapeutics, United Therapeutics Corporation, Codiak BioSciences, Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH, ReNeuron Group plc, Capricor Therapeutics, Avalon Globocare Corp., CREATIVE MEDICAL TECHNOLOGY HOLDINGS INC., Stem Cells Group among other players domestic and global.Exosome therapeutic market share data is available for Global, North America, Europe, Asia-Pacific, and Latin America separately. DBMR analysts understand competitive strengths and provide competitive analysis for each competitor separately.

Get Full TOC, Tables and Figures of Market Report @https://www.databridgemarketresearch.com/toc/?dbmr=global-exosome-therapeutic-market&rp

Exosomes are used to transfer RNA, DNA, and proteins to other cells in the body by making alteration in the function of the target cells. Increasing research activities in exosome therapeutic is augmenting the market growth as demand for exosome therapeutic has increased among healthcare professionals.

Increased number of exosome therapeutics as compared to the past few years will accelerate the market growth. Companies are receiving funding for exosome therapeutic research and clinical trials. For instance, In September 2018, EXOCOBIO has raised USD 27 million in its series B funding. The company has raised USD 46 million as series a funding in April 2017. The series B funding will help the company to set up GMP-compliant exosome industrial facilities to enhance production of exosomes to commercialize in cosmetics and pharmaceutical industry.

Increasing demand for anti-aging therapies will also drive the market. Unmet medical needs such as very few therapeutic are approved by the regulatory authority for the treatment in comparison to the demand in global exosome therapeutics market will hamper the market growth market. Availability of various exosome isolation and purification techniques is further creates new opportunities for exosome therapeutics as they will help company in isolation and purification of exosomes from dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, and urine and from others sources. Such policies support exosome therapeutic market growth in the forecast period to 2019-2026.

This exosome therapeutic market report provides details of market share, new developments, and product pipeline analysis, impact of domestic and localised market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, product approvals, strategic decisions, product launches, geographic expansions, and technological innovations in the market. To understand the analysis and the market scenario contact us for anAnalyst Brief, our team will help you create a revenue impact solution to achieve your desired goal.

Global Exosome Therapeutic Market Scope and Market Size

Global exosome therapeutic market is segmented of the basis of type, source, therapy, transporting capacity, application, route of administration and end user. The growth among segments helps you analyse niche pockets of growth and strategies to approach the market and determine your core application areas and the difference in your target markets.

Based on type, the market is segmented into natural exosomes and hybrid exosomes. Natural exosomes are dominating in the market because natural exosomes are used in various biological and pathological processes as well as natural exosomes has many advantages such as good biocompatibility and reduced clearance rate compare than hybrid exosomes.

Exosome is an extracellular vesicle which is released from cells, particularly from stem cells. Exosome functions as vehicle for particular proteins and genetic information and other cells. Exosome plays a vital role in the rejuvenation and communication of all the cells in our body while not themselves being cells at all. Research has projected that communication between cells is significant in maintenance of healthy cellular terrain. Chronic disease, age, genetic disorders and environmental factors can affect stem cells communication with other cells and can lead to distribution in the healing process. The growth of the global exosome therapeutic market reflects global and country-wide increase in prevalence of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases, along with increasing demand for anti-aging therapies. Additionally major factors expected to contribute in growth of the global exosome therapeutic market in future are emerging therapeutic value of exosome, availability of various exosome isolation and purification techniques, technological advancements in exosome and rising healthcare infrastructure.

Rising demand of exosome therapeutic across the globe as exosome therapeutic is expected to be one of the most prominent therapies for autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases treatment, according to clinical researches exosomes help to processes regulation within the body during treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases. This factor has increased the research activities in exosome therapeutic development around the world for exosome therapeutic. Hence, this factor is leading the clinician and researches to shift towards exosome therapeutic. In the current scenario the exosome therapeutic are highly used in treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases and as anti-aging therapy as it Exosomes has proliferation of fibroblast cells which is significant in maintenance of skin elasticity and strength.

Based on source, the market is segmented into dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, urine and others. Mesenchymal stem cells are dominating in the market because mesenchymal stem cells (MSCs) are self-renewable, multipotent, easily manageable and customarily stretchy in vitro with exceptional genomic stability. Mesenchymal stem cells have a high capacity for genetic manipulation in vitro and also have good potential to produce. It is widely used in treatment of inflammatory and degenerative disease offspring cells encompassing the transgene after transplantation.

Based on therapy, the market is segmented into immunotherapy, gene therapy and chemotherapy. Chemotherapy is dominating in the market because chemotherapy is basically used in treatment of cancer which is major public health issues. The multidrug resistance (MDR) proteins and various tumors associated exosomes such as miRNA and IncRNA are include in in chemotherapy associated resistance.

Based on transporting capacity, the market is segmented into bio macromolecules and small molecules. Bio macromolecules are dominating in the market because bio macromolecules transmit particular biomolecular information and are basically investigated for their delicate properties such as biomarker source and delivery system.

Based on application, the market is segmented into oncology, neurology, metabolic disorders, cardiac disorders, blood disorders, inflammatory disorders, gynecology disorders, organ transplantation and others. Oncology segment is dominating in the market due to rising incidence of various cancers such as lung cancer, breast cancer, leukemia, skin cancer, lymphoma. As per the National Cancer Institute, in 2018 around 1,735,350 new cases of cancer was diagnosed in the U.S. As per the American Cancer Society Inc in 2019 approximately 268,600 new cases of breast cancer diagnosed in the U.S.

Based on route of administration, the market is segmented into oral and parenteral. Parenteral route is dominating in the market because it provides low drug concentration, free from first fast metabolism, low toxicity as compared to oral route as well as it is suitable in unconscious patients, complicated to swallow drug etc.

The exosome therapeutic market, by end user, is segmented into hospitals, diagnostic centers and research & academic institutes. Hospitals are dominating in the market because hospitals provide better treatment facilities and skilled staff as well as treatment available at affordable cost in government hospitals.

Exosome therapeutic Market Country Level Analysis

The global exosome therapeutic market is analysed and market size information is provided by country by type, source, therapy, transporting capacity, application, route of administration and end user as referenced above.

The countries covered in the exosome therapeutic market report are U.S. and Mexico in North America, Turkey in Europe, South Korea, Australia, Hong Kong in the Asia-Pacific, Argentina, Colombia, Peru, Chile, Ecuador, Venezuela, Panama, Dominican Republic, El Salvador, Paraguay, Costa Rica, Puerto Rico, Nicaragua, Uruguay as part of Latin America.

Country Level Analysis, By Type

North America dominates the exosome therapeutic market as the U.S. is leader in exosome therapeutic manufacturing as well as research activities required for exosome therapeutics. At present time Stem Cells Group holding shares around 60.00%. In addition global exosomes therapeutics manufacturers like EXOCOBIO, evox THERAPEUTICS and others are intensifying their efforts in China. The Europe region is expected to grow with the highest growth rate in the forecast period of 2019 to 2026 because of increasing research activities in exosome therapeutic by population.

The country section of the report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points such as new sales, replacement sales, country demographics, regulatory acts and import-export tariffs are some of the major pointers used to forecast the market scenario for individual countries. Also, presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of sales channels are considered while providing forecast analysis of the country data.

Huge Investment by Automakers for Exosome Therapeutics and New Technology Penetration

Global exosome therapeutic market also provides you with detailed market analysis for every country growth in pharma industry with exosome therapeutic sales, impact of technological development in exosome therapeutic and changes in regulatory scenarios with their support for the exosome therapeutic market. The data is available for historic period 2010 to 2017.

Competitive Landscape and Exosome Therapeutic Market Share Analysis

Global exosome therapeutic market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, company strengths and weaknesses, product launch, product trials pipelines, concept cars, product approvals, patents, product width and breadth, application dominance, technology lifeline curve. The above data points provided are only related to the companys focus related to global exosome therapeutic market.

Many joint ventures and developments are also initiated by the companies worldwide which are also accelerating the global exosome therapeutic market.

For instance,

Partnership, joint ventures and other strategies enhances the company market share with increased coverage and presence. It also provides the benefit for organisation to improve their offering for exosome therapeutics through expanded model range.

Customization Available:Global Exosome Therapeutic Market

Data Bridge Market Researchis a leader in advanced formative research. We take pride in servicing our existing and new customers with data and analysis that match and suits their goal. The report can be customised to include price trend analysis of target brands understanding the market for additional countries (ask for the list of countries), clinical trial results data, literature review, refurbished market and product base analysis. Market analysis of target competitors can be analysed from technology-based analysis to market portfolio strategies. We can add as many competitors that you require data about in the format and data style you are looking for. Our team of analysts can also provide you data in crude raw excel files pivot tables (Factbook) or can assist you in creating presentations from the data sets available in the report.

Do You Have Any Query Or Specific Requirement? Ask to Our Industry Expert @https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-exosome-therapeutic-market&rp

About Data Bridge Market Research :

Data Bridge Market Researchis a versatile market research and consulting firm with over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Our coverage of industries include Medical Devices, Pharmaceuticals, Biotechnology, Semiconductors, Machinery, Information and Communication Technology, Automobiles and Automotive, Chemical and Material, Packaging, Food and Beverages, Cosmetics, Specialty Chemicals, Fast Moving Consumer Goods, Robotics, among many others.

Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude.We are content with our glorious 99.9 % client satisfying rate.

Contact Us :

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Mail:Corporatesales@databridgemarketresearch.com

Follow this link:
Exosome Therapeutic Market 2020-2026 Demand Analysis and Projected Huge Growth by Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH,...

Recommendation and review posted by Bethany Smith

Poor intimate hygiene linked to being one of the biggest causes of cervical cancer – Microbioz India

Cervical cancer is becoming one of the emerging health burdens for womanhood. Cervical canceris the fourth mostcommontype ofcancerfor women worldwide, but also one of the most preventable types ofcancer. Most cervical cancer cases are caused by the sexually transmittedhuman papilloma virus(HPV). According to the data released in 2018 by the HPV Centre, in India, cervical cancer is the second most common type of cancer amongst women. It is estimate that about 160 million women between the ages of 30 and 59 years are at a high risk of developing it. HPV is very common and it would be interesting to know that many women having the Human Papilloma virus, may end up not developing it. Therefore it has a lot to do with environmental and lifestyle factors.

It is seen that countries with low socio-demographic index have a high number of women traumatised by cervical cancer. Factors ranging from indulging in unprotected sex, sexually transmitted diseases, lack of hygiene during menstruation, chlamydia, a weak immune system, smoking, etccould be the probable causes. In India, there is a social stigma surrounding pelvic examinations. Lack of regular screening, also has a huge role to play in order to arrest the early onset of the disease. As cervicalcancer may take 20 years or longer to develop after anHPV infection. The best way to prevent this cancer is to get vaccinated and try to maintain proper intimate hygiene.

Development of cervical cancer is a stepwise process by which localized cervical intra-epithelial neoplasia develops in the cervix and progresses into invasive and metastatic carcinoma forms. Growing evidence suggests that microbes, human papillomavirus (HPV), and the immune system interact closelywith each other to govern homeostasis of the vaginal environment and the health of thelower genital tract of females. Beneficial vaginal microbial strains like lactobacilli plays a protective role in carcinogenesis of the cervix after HPV infection.

The female intimate area is delicate and is more prone to infections. It has an acidic pH (range from 3.8 to 4.5), which helps to keep good bacteria (such as lactobacilli) healthy and bad bacteria in check There are various factors that may affect vulvar pH, including endogenous factors (e.g. humidity, sweat, vaginal discharge, menstruation, urine and fecal contamination, anatomical folding, genetics, and age) and exogenous factors (e.g. soap, detergents, cosmetic products, lubricants and spermicides, occlusion with tight clothing or sanitary pads, shaving, and depilation products). So alteration in pH increases the risk of vaginal infection. However, keeping the intimate area clean can help to reduce the risk of cervical cancer. It might not be able to prevent cancer completely but, proper hygiene practices can definitely reduce the chances of getting infected with the disease. This not only means keeping the area clean but also maintaining good intimate and sexual hygiene.

Here are 5 useful tips to keep a check for womens intimate health:

1.Keep dry all the time: There will be times where you can get invariably drenched in the rains. It is all the more impinging upon oneself to wear dry clothes, especially the innerwear that tend to get moist due to the added atmospheric moisture, since we tend to sweat a lot during this season. As wearing innerwear or lingerie made of synthetic fabric for long durations may retain moisture leading to irritation and friction, it is important to consciously choose natural and breathable fabrics.

2.Safe sexual practices: Studies have shown that women who have many sexual partners increase their risk of developing HPV and their risk of cervical cancer.And if you are sexually active, use a contraceptiveevery timefor safety. Unprotected sexual intercourse leaves you at risk for contracting sexually transmitted diseases that can increase the risk of getting HPV and greatly increase chances of developing precancerous changes of the cervix.

3.Maintain cleanliness and hygiene: Frequently clean your intimate area to keep it free from microbial (bacterial and fungal) infection and odour. It is recommended to clean the intimate area twice a day, during morning bath and before bedtime. In the case of excessive sweating, it is better to clean and pat dry more often.

For cleansing the intimate area, always use specially designed intimate wash products that are safe with natural ingredients and free from harmful surfactants like Sodium lauryl sulphate.

Feminine intimate washes are considered more appropriate for intimate health, particularly those containing lactic acid, with an acidic pH it helps to augment vaginal mucosal homeostasis and serve as a helpful adjunct therapy in women with vaginal infections.

4.Keep yourself hydrated: Drink plenty of water and liquids to keep the urinary tract flushed and healthy. Water helps to clears out toxins from the body and maintains body pH balance. Due to excessive sweating and inadequate liquid intake, one tends to lose body fluids and salts that could potentially lead to burning sensation during urinating and irritate the intimate area. If not attended to, this could be another reason for urinary tract infection.

5.Maintain a healthy food habit and avoid smoking: Avoid eating excessive spicy food, since acidic food can cause a pH imbalance. Smoking also increases risk of developing cervical cancer. Studies have shown that tobacco damages the DNA of cervix cells and contribute to the development of cervical cancer.

Increase the intake of food that are rich in pre and probiotics like plain yoghurt, onion, garlic, strawberry, green leafy vegetables and ayurvedic herbs like Guduchi, that helps to support the growth of healthy bacteria in the vagina.

Regular care and preventive measures in vaginal health ensure staying fresh and clean all the time. While in this season it is important to wash 3-4 times a day, and all the more care during menstruating. Try and avoid soap and water, as they tend to dry up the vaginal skin which is extremely delicate as well as ensuring a maintenance PH balance in the range of 3.8 to 4.5. The use of vaginal washes that balances the pH levels is therefore recommended however, ensuring that is free from harmful sulphates and chemicals. Vaginal washes made of natural solutions that retain the layer good bacteria, which actually protects the vaginal area and kills bad bacteria are most apt. There are many OTC products fighting for space in the shelves, but it is advisable to be discerning and aware, so that you use the right product for your intimate hygiene.

View post:
Poor intimate hygiene linked to being one of the biggest causes of cervical cancer - Microbioz India

Recommendation and review posted by Bethany Smith

Breastfeeding Won’t Cause Your Breasts to Sag and Nine other Surprising Facts about Breasts – PR Web

Dr. Constance Chen

NEW YORK (PRWEB) October 21, 2020

More than any other organ in the human body, the breast occupies a place in our social and cultural landscape well beyond its physiological function to nourish our offspring. The soft tissue that we think of as a breast is actually a mammary gland, a complex system of fat cells and ducts that produce milk and deliver it to a baby via the nipple, says plastic surgeon and breast specialist Dr. Constance M. Chen. As much attention as we pay to the size, shape and appearance of a woman's breasts, there are many fascinating facts both important and trivial that most people don't know about breasts. Here are just a few of them.

1.Breast size is hereditary. Genetics do play a role in determining breast size but not necessarily as you'd expect and they don't tell the whole story. We inherit half our genes from each parent, so your breasts may not resemble your mother's, her mother's, or her sister's. Your father's genes have a say. Environmental factors also play a role, says Dr. Chen, especially weight. Breasts are partly made up of fatty tissue so as you gain and lose weight, your breast size will change.2.Humans are the only primates with permanent breasts. All mammals have breasts and produce milk for their young but we are the only ones who develop breasts at puberty and keep them throughout our lives. Others are temporary, growing when needed to nurse then receding until needed again.3.The ancient Egyptians knew about breast cancer as far back as 1600 B.C. Writings on papyrus describe tumors consistent with modern descriptions of the disease. Over the following centuries, many causes were suggested from imbalances of bodily fluids to compression from tight clothing and treatments ranged from cauterization to opium to arsenic.4.You cannot exercise your way to bigger breasts. Breasts are made of tissue, not muscle, says Dr. Chen. They may change in size with hormonal and weight changes. But even exercising the underlying chest muscles won't increase the size of your breasts any more than creams or lotions will. 5.Some animals get breast cancer. It is more common in dogs and in some breeds - than in cats but tends to be more aggressive in cats. Spaying female dogs before their first heat dramatically reduces their risk of developing a malignant mammary tumor.6.Breastfeeding won't cause your breasts to sag. Droopy breasts are a natural consequence of aging as skin loses elasticity and as dense breast tissue is replaced by fat, which is more prone to sagging. Smoking and multiple pregnancies are contributing factors but breastfeeding has no effect on elasticity and will not cause breasts to sag. Only corrective surgery can lift sagging breasts.7.The left breast is usually slightly larger than the right one. Very few women have perfectly symmetrical breasts. Differences in size up to 20% are normal. No one knows why the left breast is usually the larger one.8.Larger breasts don't produce more milk. Milk production does not depend on the size of the breasts. Large breasts are often large because they contain more fat cells, not more milk-producing cells. 9.Breasts are growing. The average bra size was 34B twenty years ago. Today, it is 34DD. Some of the change is due to companies inflating the sizes on their labels but increasing obesity, the number of women taking birth control pills, and exposure to environmental pollution are contributing factors.10.Breast implants won't last a lifetime. Breast augmentation is the most commonly performed cosmetic surgery in the U.S. But women who get implants in their 20s should not expect to still have them thirty years later. Most implants have a ten-year warranty, says Dr. Chen, but many develop problems well before then and have to be removed or replaced.

Constance M. Chen, MD, is a board-certified plastic surgeon with special expertise in the use of innovative natural techniques to optimize medical and cosmetic outcomes for women undergoing breast reconstruction. She is Clinical Assistant Professor of Surgery (Plastic Surgery) at Weill Cornell Medical College and Clinical Assistant Professor of Surgery (Plastic Surgery) at Tulane University School of Medicine. http://www.constancechenmd.com

Share article on social media or email:

View post:
Breastfeeding Won't Cause Your Breasts to Sag and Nine other Surprising Facts about Breasts - PR Web

Recommendation and review posted by Bethany Smith

Cell and Gene Therapy Market is anticipated to Reach USD 6,570.0 Million by 2027 Growing at a CAGR of 19.8% | Emergen Research – PRnews Leader

The latest market report published by Emergen Research, titled Global Cell and Gene Therapy Market, presents an accurate analysis of the estimated market size, share, revenue, and sales & distribution networks of the global Cell and Gene Therapy market over the forecast period. The report offers an exhaustive overview of the market, along with a precise summary of the markets leading regions. Our team of analysts has studied the existing competitive landscape of the market inside out, focusing on the leading companies and their business expansion strategies. The report ends with conclusive data offering useful insights into the market growth on both regional and global levels.

The report draws the focus of the reader on the grave impact of the ongoing COVID-19 pandemic on the Cell and Gene Therapy industry and its vital segments and sub-segments. It elaborates on the adverse effects of the pandemic on the global economic scenario, as well as this particular business sphere. The report takes into account the key influencing factors influencing market performance in the present COVID-19 times. The market has been substantially affected by the pandemic, and significant changes have been observed in the market dynamics and demand trends. The report examines the major financial difficulties brought about by the pandemic and offers a future COVID-19 impact assessment.

Get a free sample of the report @ https://www.emergenresearch.com/request-sample/27

Key Market Players:

Spark Therapeutics LLC, Novartis AG, Gilead Sciences Inc., Bluebird Bio, GlaxoSmithKline, Celgene Corporation, Shire PLC, Sangamo Biosciences, Voyager Therapeutics, and Dimension Therapeutics

Cell and Gene Therapy Market Segmentation:

The report categorizes the market into different key segments based on types and applications, along with key regional segmentation. The report offers insights into the segment expected to garner traction during the forecast period, and the region expected to dominate the market in the coming years.

Key Geographies Encompassed in the Report:

Request a discount on the report @ https://www.emergenresearch.com/request-discount/27

The market intelligence study takes the reader through the key parameters of the Cell and Gene Therapy market, including the strengths and weaknesses of the leading players, using analytical tools like the SWOT analysis and Porters Five Forces analysis. The report includes broad market segmentation based on the different product types, a wide application spectrum, the key regions, and the existing competition among players. The investigative study further assesses the market on the basis of market reach and consumer base in the key geographical segments. Alongside reviewing the sales network, distribution channels, pricing analysis, profit margins, cost and demand volatility, import/export dynamics, gross revenue, and various other aspects of the market, the report studies several factors affecting market growth over the forecast period, such as drivers, restraints, limitations, growth prospects, and numerous macro- and micro-economic indicators. Moreover, it extensively examines the top market players and their estimated market size and share, sales volume, production and consumption rates, expansion strategies, and competitive edge.

Additionally, the report analyzes the principal strategies implemented by the companies operating across this industry vertical, such as mergers and acquisitions, collaborations, joint ventures, product launches, and brand promotions, to strengthen their global footprint. The report aims to offer a holistic examination of the industrys relevant features to the interested readers in a bid to help them leverage future growth prospects.

Request customization of the report @ https://www.emergenresearch.com/request-for-customization/27

Key questions addressed in the report:

Get a broad analysis of the COVID19 impact on the Cell and Gene Therapy market @ https://www.emergenresearch.com/industry-report/cell-and-gene-therapy-market

Thank you for reading our report. For further queries regarding the report, please get in touch with us. Our team will ensure your report is customized as per your requirements.

About Emergen Research

At Emergen Research, we believe in advancing with technology. We are a growing market research and strategy consulting company with an exhaustive knowledge base of cutting-edge and potentially market-disrupting technologies that are predicted to become more prevalent in the coming decade.

Our expertise umbrellas the technological environment of all major industries, and our services help you map your actions to ensure optimal yield. Our analysts utilize their market proficiency to offer actionable insights that help our clients implement profitable strategies and optimize their return on investment. Our services are wide-ranging, right from technological environment analysis to technological profiling that highlights the existing opportunities in the market you can capitalize on to stay ahead of your competitors.

Contact Us:

Eric Lee

Corporate Sales Specialist

14671 110 Avenue, Surrey, British Columbia, V3R2A9

Emergen Research | Web: https://www.emergenresearch.com

E-mail: [emailprotected]

Follow this link:
Cell and Gene Therapy Market is anticipated to Reach USD 6,570.0 Million by 2027 Growing at a CAGR of 19.8% | Emergen Research - PRnews Leader

Recommendation and review posted by Bethany Smith

Premium Insights of Gene Therapy Market Size-Share Analysis and System Production (2020-2026) | Addressing the Potential Impact of COVID-19 by ZMR -…

According to the report the Zion Market Research Reports Premium Insights of Gene Therapy Market Size-Share Analysis and System Production (2020-2026) | Addressing the Potential Impact of COVID-19 by ZMR. The global Gene Therapy Market report offers an in-depth analysis of the Gene Therapy Market. It presents a succinct outline of theGene Therapy Marketand explains the major key elements of the market. Additionally, the report highlights significant players in the global Gene Therapy Market along with their investment in the market to assess their growth during the estimated time. The foremost market players in the industry are also included in this report for a better understanding of business strategies, growth analysis, sales and revenue and growth factors. The report discusses the most recent expansions while predicting the development of the key players in the near future.

FREE | Request Sample is Available @https://www.zionmarketresearch.com/sample/gene-therapy-market

Major Company Profiles Covered in This Report:

UniQure N.V, Spark Therapeutics LLC, Bluebird Bio, Juno Therapeutics, GlaxoSmithKline, Celgene Corporation, Shire Plc, Sangamo Biosciences, Dimension Therapeutics

Our team of experts is consistently working on up-to-date data and information on business processes related to key players who value the market. For future strategies and predictions, we have provided a special section on the covid-19 situation.

The report assesses the global Gene Therapy Market volume in the recent years. Additionally, the report also highlights key controllers and drivers determining the market expansions. It also uncovers the estimate of the market for the predicted time. The report emphasizes the emergent trends related to development possibilities of the global Gene Therapy Market. Moreover, the market report includes the main product category and industry key segments as well as the sub-segments of the global Gene Therapy Market.

Additionally, the total value sequence of the market is also portrayed in the report linked with the analysis of the downstream and upstream constituents of the market. The global Gene Therapy Market is divided based on the category of product and the customer request segments. The market analysis includes the growth of every segment of the global Gene Therapy Market. The data introduced in the report are gathered from varied industry bodies to estimate the growth of the segments in the upcoming time.

Request Free research report Brochure @https://www.zionmarketresearch.com/requestbrochure/gene-therapy-market

The global Gene Therapy Market research report evaluates the market expansion crosswise over major regional segments. It is sorted on the basis of topography such as Europe, Asia Pacific, Latin America, North America, and the Middle East & Africa.

Our free and free sample report accommodates a brief introduction to the research report, summary, list of tables and figures, competitive landscape and geographic segmentation, innovation and future developments based on the research method

Highlights of Gene Therapy Market Research Report:

Inquire more about this report @https://www.zionmarketresearch.com/inquiry/gene-therapy-market

This study will address some of the most critical questions which are listed below:

The Gene Therapy Market is growing at a rapid pace and with the rise in technological innovation, competition and M&A activities in the industry. Further, the research report is segmented on the basis of Application & Other with historical and projected market share and compounded annual growth rate (CAGR). In addition, the research provides key market features, revenue, capacity, capacity, price, growth rate, consumption, production, supply & demand, market share, and CAGR. The report offers a wide-ranging study of imperative market dynamics and their latest trends, coupled with pertinent market segments.

Request coronavirus impact analysis on sectors and market

Request impact analysis on this market @https://www.zionmarketresearch.com/custom/3218?covid19=true

Also, Research Report Examines:

Thanks for reading this article; you can also get individual chapter wise section or region wise report version like North America, Europe or Asia.

About Us:

Zion Market Research is an obligated company. We create futuristic, cutting edge, informative reports ranging from industry reports, company reports to country reports. We provide our clients not only with market statistics unveiled by avowed private publishers and public organizations but also with vogue and newest industry reports along with pre-eminent and niche company profiles. Our database of market research reports comprises a wide variety of reports from cardinal industries. Our database is been updated constantly in order to fulfill our clients with prompt and direct online access to our database. Keeping in mind the clients needs, we have included expert insights on global industries, products, and market trends in this database. Last but not the least, we make it our duty to ensure the success of clients connected to usafter allif you do well, a little of the light shines on us.

Contact Us:

Zion Market Research

244 Fifth Avenue, Suite N202

New York, 10001, United States

Tel: +49-322 210 92714

USA/Canada Toll Free No.1-855-465-4651

Email:sales@zionmarketresearch.com

Website:www.zionmarketresearch.com

See the original post:
Premium Insights of Gene Therapy Market Size-Share Analysis and System Production (2020-2026) | Addressing the Potential Impact of COVID-19 by ZMR -...

Recommendation and review posted by Bethany Smith

UCI-led study reveals significant restoration of retinal and visual function following gene therapy – UCI News

Irvine, Calif., October 19, 2020 A breakthrough study, led by researchers from the University of California, Irvine, results in the restoration of retinal and visual functions of mice models suffering from inherited retinal disease.

Published today in Nature Biomedical Engineering, the paper, titled, Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing, illustrates the use of a new generation CRISPR technology and lays the foundation for the development of a new therapeutic modality for a wide range of inherited ocular diseases caused by different gene mutations.

In this proof-of-concept study, we provide evidence of the clinical potential of base editors for the correction of mutations causing inherited retinal diseases and for restoring visual function, said Krzysztof Palczewski, PhD, the Irving H. Leopold chair and a distinguished professor in the Gavin Herbert Eye Institute, Department of Ophthalmology at the UCI School of Medicine. Our results demonstrate the most successful rescue of blindness to date using genome editing.

Inherited retinal diseases (IRDs) are a group of blinding conditions caused by mutations in more than 250 different genes. Previously, there was no avenue available for treating these devastating blinding diseases. Recently, the FDA approved the first gene augmentation therapy for Leber congenital amaurosis (LCA), a common form of IRD which originates during childhood.

As an alternative to gene augmentation therapy, we applied a new generation of CRISPR technology, referred to as base editing as a treatment for inherited retinal diseases, said first author Susie Suh, assistant specialist in the UCI School of Medicine Department of Ophthalmology. We overcame some of the barriers to the CRISPR-Cas9 system, such as unpredictable off-target mutations and low editing efficiency, by utilizing cytosine and adenine base editors (CBE and ABE). Use of these editors enabled us to correct point mutations in a precise and predictable manner while minimizing unintended mutations that could potentially cause undesirable side effects, said co-first author Elliot Choi, also an assistant specialist in the UCI Department of Ophthalmology.

Using an LCA mouse model harboring a clinically relevant pathogenic mutation in the Rpe65 gene, the UCI team successfully demonstrated the therapeutic potential of base editing for the treatment of LCA and by extension other inherited blinding diseases. Among other results, the base editing treatment restored retinal and visual function in LCA mice to near-normal levels. Base editing was developed at the Broad Institute of MIT and Harvard in the lab of David Liu, PhD.

After receiving treatment, the mice in our study could discriminate visual changes in terms of direction, size, contrast and spatial and temporal frequency, said Palczewski. These results are extremely encouraging and represent a major advance towards the development of treatments for inherited retinal diseases.

Gene therapy approaches to treating inherited retinal diseases are of special interest given the accessibility of the eye, its immune-privileged status and the successful clinical trials of RPE65 gene augmentation therapy that led to the first US Food and Drug Administration-approved gene therapy. Now, as demonstrated in this study, base-editing technology can provide an alternative treatment model of gene augmentation therapy to permanently rescue the function of a key vision-related protein disabled by mutations.

This research was supported in part by grants from the National Institutes of Health, the Research to Prevent Blindness Stein Innovation Award, Fight for Sight, the Eye and Tissue Bank Foundation (Finland), The Finnish Cultural Foundation, the Orion Research Foundation, the Helen Hay Whitney Foundation, US Department of Veterans Affairs, and a Research to Prevent Blindness unrestricted grant to the Department of Ophthalmology, University of California, Irvine.

About the University of California, Irvine: Founded in 1965, UCI is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UCI has more than 36,000 students and offers 222 degree programs. Its located in one of the worlds safest and most economically vibrant communities and is Orange Countys second-largest employer, contributing $5 billion annually to the local economy. For more on UCI, visit http://www.uci.edu.

Media access: Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UCI faculty and experts, subject to availability and university approval. For more UCI news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

About the UCI School of Medicine: Each year, the UCI School of Medicine educates more than 400 medical students, and nearly 150 doctoral and masters students. More than 700 residents and fellows are trained at UCI Medical Center and affiliated institutions. The School of Medicine offers an MD; a dual MD/PhD medical scientist training program; and PhDs and masters degrees in anatomy and neurobiology, biomedical sciences, genetic counseling, epidemiology, environmental health sciences, pathology, pharmacology, physiology and biophysics, and translational sciences. Medical students also may pursue an MD/MBA, an MD/masters in public health, or an MD/masters degree through one of three mission-based programs: the Health Education to Advance Leaders in Integrative Medicine (HEAL-IM), the Leadership Education to Advance Diversity-African, Black and Caribbean (LEAD-ABC), and the Program in Medical Education for the Latino Community (PRIME-LC). The UCI School of Medicine is accredited by the Liaison Committee on Medical Accreditation and ranks among the top 50 nationwide for research. For more information, visit som.uci.edu.

Read more here:
UCI-led study reveals significant restoration of retinal and visual function following gene therapy - UCI News

Recommendation and review posted by Bethany Smith

Hemophilia Gene Therapy Market 2020 Booming By Size, Revenue, Trend And Top Companies 2029 – PRnews Leader

A latest specialized intelligence report published by KandJ Market Research with the title2020-2029 Report on Global Hemophilia Gene Therapy Market by Player, Region, Type, Application and Sales Channelhas the ability to help the decision-makers in the most important market in the world that has played a significantly important role in making a progressive impact on the global economy. The Global Hemophilia Gene Therapy Research Report presents and showcases a vital vision of the global scenario in terms of Hemophilia Gene Therapy market size, market potentials, and competitive environment. The study is derivative from primary and secondary statistical data and consists of qualitative and quantitative analysis of the industry and key players.

The latest report includes post Coronavirus(Covid-19) Impact on the Hemophilia Gene Therapy Industry, it includes on Industry Upstream, Industry Downstream, Industry Channels, Industry Competition, and finally on Industry Employment.

The Final Report Will Comprise the Impact of COVID-19 Analysis in ThisHemophilia Gene Therapy Industry. For Sample Report & Graphs & Charts @:www.kandjmarketresearch.com/sample-request/517076

The global Hemophilia Gene Therapy market is showing promising signs that can be explored well in the coming days to achieve a notable valuation by the end of mentioned Forecast. The report is expected to consider the time-frame as the forecast period and it would deal with the market accordingly. Growth-inducing factors have been monitored closely in the report to gauge well the progress of the market. Each factor can play a significant role and has been given proper space on the basis of which the market can devise strategies. It has tracked various associated fields as well to get a proper map of how these end user industries are impacting the market and can take the market forward. The report has a credibility as it banks on the expertise of adept researchers who fetch numbers from a pool of information and sieve them as per the requirement. In the process, they have gone through the market by having it analyzed on top-down and bottom-up basis.

Key Segments Studied in the Global Hemophilia Gene Therapy Market:Market Analysis by Key Players such asSpark Therapeutics, Ultragenyx, Shire PLC, Sangamo Therapeutics, Bioverativ, BioMarin, uniQure (CSL Behring), Freeline Therapeutics, Pfizer, Novo Nordisk

Market Analysis by Type of Hemophilia Gene Therapy:Hemophilia A Gene Therapy, Hemophilia B Gene Therapy, Others

Market Analysis by Applications of Hemophilia Gene Therapy:Hospital, Non-Hospital

Ask Discount for this premium report @www.kandjmarketresearch.com/discount/517076

Analysis by Regions of Hemophilia Gene Therapy Market: North America (United States, Canada and Mexico), Europe (Germany, UK, France, Italy, Russia and Spain etc.), Asia-Pacific (China, Japan, Korea, India, Australia and Southeast Asia etc.), South America (Brazil, Argentina and Colombia etc.), Middle East & Africa (South Africa, UAE and Saudi Arabia etc.)

The segmentation plays a prominent role in dealing with the growth of the Hemophilia Gene Therapy market where various types and applications are promoting better understanding of the market. This segmentation has a strong foundation in volume-wise and value-wise data which backs the process of understanding the market scenario with numbers. The market has been combed through properly to get all the factors in line. The report has been enriched interviews as a first hand method of getting data. These interviews include chats with top market players, market analysts, distributors, people in the field of research and development and others owing to which the reliability of the report has increased significantly.

Regional market analysis of the report has backed the study of different regions as an attempt to understand growth pockets that can be beneficial for the market. The regional analysis has import, export, and other processes covered. Players who are getting involved in the market for a better growth are looking for these growth pockets to capitalize on the opportunities provided and find new scopes for growth. Certain countries have been tracked in detail to monitor them closely as they can be major markets in the coming years. Benefits like better infrastructure, cost-effective labor, access to raw materials, they offer have become luring factors for many market players and they want to expand their business to these regions to increase their profit margin.

Read More Detailed Information regardingHemophilia Gene Therapy Industry with Covid-19 Updates@www.kandjmarketresearch.com/reports/517076

About Us:Kandjmarketresearch.com is part of the KnowledgeNJournals Research Firm which provides premium progressive market research reports, statistical surveying, analysis & forecast data for industries and governments from hundreds of publishers around the world. We have almost all top publishers reports in our collection to provide you with instant online access to the worlds most complete and fresh database on a Daily Basis. We are at KandJ Market Research are inspired to help our clients grow by providing appropriate business insight with our huge market intelligence source.

Contact us:Yash KandJ Market Research (Part of KnowledgeNJournals Research)

USA:+1 (661) 636 6162 |IND:+91 9325802062Email:[emailprotected];Web:www.kandjmarketresearch.com

See the article here:
Hemophilia Gene Therapy Market 2020 Booming By Size, Revenue, Trend And Top Companies 2029 - PRnews Leader

Recommendation and review posted by Bethany Smith

Ultragenyx and Solid Biosciences Announce Strategic Collaboration to Develop and Commercialize New Gene Therapies for Duchenne Muscular Dystrophy -…

-Collaboration combines Solids differentiated microdystrophin construct and Ultragenyxs HeLa PCL manufacturing platform for use with AAV8 and variants-

-Solid receives $40 million upfront via equity investment at a premium; up to $255 million in milestones plus royalty payments-

-Solid retains exclusive rights to all other uses of its microdystrophins, including its existing SGT-001 program-

NOVATO, Calif. and CAMBRIDGE, Mass., Oct. 23, 2020 (GLOBE NEWSWIRE) -- Ultragenyx Pharmaceutical Inc. (Nasdaq: RARE), a biopharmaceutical company focused on the development and commercialization of novel products for serious rare and ultra-rare diseases, and Solid Biosciences Inc. (Nasdaq: SLDB), a life sciences company focused on advancing meaningful therapies for Duchenne muscular dystrophy (Duchenne), today announced a strategic collaboration and license agreement to focus on the development and commercialization of new gene therapies for Duchenne. The parties will collaborate to develop products that combine Solids differentiated microdystrophin construct, Ultragenyxs HeLa producer cell line (PCL) manufacturing platform, and AAV8 variants. The collaboration also brings together Solids expertise in muscle biology and Ultragenyxs expertise in bringing novel therapies to patients with rare diseases.

Under the terms of the collaboration, Solid granted Ultragenyx an exclusive license for any pharmaceutical product that expresses Solids proprietary microdystrophin construct from AAV8 and variants thereof in clade E for use in the treatment of Duchenne and other diseases resulting from lack of functional dystrophin, including Becker muscular dystrophy. Ultragenyx has made a $40 million investment in Solid and has agreed to pay up to $255 million in cumulative milestone payments per product upon achievement of specified milestone events, and tiered royalties on worldwide net sales at low double digit to mid-teens percentages. Upon achievement of proof-of-concept, Solid has the right to opt-in to co-fund collaboration programs in return for participation in a profit share or increased royalty payments.

We believe that Solids microdystrophin is best-in-class with its unique neuronal nitric oxide synthase binding domain, said Emil D. Kakkis, MD, PhD, Chief Executive Officer and President of Ultragenyx. By using an AAV8 variant validated in prior human and other studies combined with our scalable, efficient HeLa producer cell line platform, we believe we can leverage our mutual strengths to develop a high-quality AAV-based treatment alternative for Duchenne.

Ultragenyx has a demonstrated track record of success in developing and commercializing innovative therapies for rare diseases, said Ilan Ganot, Co-Founder, President and Chief Executive Officer at Solid Biosciences. We believe it is the partner of choice for exploring new gene therapy opportunities for patients with Duchenne.

Solids proprietary microdystrophin construct has exhibited functional benefit in preclinical models. In preclinical studies, animals expressing a microdystrophin capable of restoring neuronal nitric oxide synthase (nNOS) resisted fatigue better than those expressing a microdystrophin that does not. Patients dosed with Solids proprietary microdystrophin construct at the 2E14 vg/kg dose in Solids ongoing IGNITE DMD clinical trial have also preliminarily demonstrated nNOS activity and function, further validating these preclinical results. Solid expects to dose the next patient in the IGNITE DMD clinical trial, using SGT-001 produced using its improved HSV manufacturing process, in the first quarter of 2021.

Ultragenyx intends to use its AAV-based HeLa PCL platform including HeLa 3.0 improvements for the development of product candidates. The platform enables large 2,000 liter commercial-scale AAV-based gene therapy product manufacturing. The PCL platform yields high-quality product from a highly reproducible, highly scalable, and less expensive process a distinct vantage in higher dose indications like Duchenne. The capsid planned is an AAV8 variant with a favorable immunological profile that has been used successfully in the large scale 2,000 liter production process.

About Ultragenyx

Ultragenyx is a biopharmaceutical company committed to bringing novel products to patients for the treatment of serious rare and ultra-rare genetic diseases. The company has built a diverse portfolio of approved therapies and product candidates aimed at addressing diseases with high unmet medical need and clear biology for treatment, for which there are typically no approved therapies treating the underlying disease.

The company is led by a management team experienced in the development and commercialization of rare disease therapeutics. Ultragenyxs strategy is predicated upon time- and cost-efficient drug development, with the goal of delivering safe and effective therapies to patients with the utmost urgency and ensuring majority access to its therapies for patients who can benefit.

Ultragenyx currently has three AAV gene therapies in clinical development, including DTX201 that uses an AAV8 variant in the HeLa PCL platform and that is partnered with Bayer, who has released positive Phase 1/2 data in Hemophilia A. The companys other clinical AAV8 gene therapies, DTX301 and DTX401, are in Phase 1/2 studies for ornithine transcarbamylase (OTC) deficiency and glycogen storage disease type Ia (GSDIa), respectively. An investigational new drug (IND) application is expected by the end of 2020 for a fourth AAV gene therapy for Wilson disease, which will also use the HeLa PCL AAV manufacturing platform.

For more information on Ultragenyx, please visit the companys website at http://www.ultragenyx.com.

About Solid Biosciences

Solid Biosciences is a life sciences company focused on advancing transformative treatments to improve the lives of patients living with Duchenne. Disease-focused and founded by a family directly impacted by Duchenne, our mandate is simple yet comprehensive work to address the disease at its core by correcting the underlying mutation that causes Duchenne with our lead gene therapy candidate, SGT-001.

Solids SGT-001 is a novel adeno-associated viral (AAV) vector-mediated gene transfer therapy designed to address the underlying genetic cause of Duchenne. Duchenne is caused by mutations in the dystrophin gene that result in the absence or near absence of dystrophin protein. SGT-001 is a systemically administered candidate that delivers a synthetic dystrophin gene, called microdystrophin, to the body. This microdystrophin encodes for a functional protein surrogate that is expressed in muscles and stabilizes essential associated proteins, including nNOS. Data from Solids preclinical program suggests that SGT-001 has the potential to slow or stop the progression of Duchenne, regardless of genetic mutation or disease stage.

SGT-001 is based on pioneering research in dystrophin biology by Dr. Jeffrey Chamberlain of the University of Washington and Dr. Dongsheng Duan of the University of Missouri. SGT-001 has been granted Rare Pediatric Disease Designation, or RPDD, and Fast Track Designation in the United States and Orphan Drug Designations in both the United States and European Union.

For more information, please visit http://www.solidbio.com.

Ultragenyx Forward-Looking Statements

Except for the historical information contained herein, the matters set forth in this press release, including statements related to Ultragenyx's expectations and projections regarding its future operating results and financial performance, anticipated cost or expense reductions,the timing, progress and plans for its clinical programs and clinical studies, future regulatory interactions, and the components and timing of regulatory submissions are forward-looking statements within the meaning of the "safe harbor" provisions of the Private Securities Litigation Reform Act of 1995. Such forward-looking statements involve substantial risks and uncertainties that could cause our clinical development programs, collaboration with third parties, future results, performance or achievements to differ significantly from those expressed or implied by the forward-looking statements. Such risks and uncertainties include, among others, the effects from the COVID-19 pandemic on the companys clinical activities, business and operating results, uncertainty and potential delays related to clinical drug development, smaller than anticipated market opportunities for the companys products and product candidates, manufacturing risks, competition from other therapies or products, and other matters that could affect sufficiency of existing cash, cash equivalents and short-term investments to fund operations, the companys future operating results and financial performance, the timing of clinical trial activities and reporting results from same, and the availability or commercial potential of Ultragenyxs products and drug candidates. Ultragenyx undertakes no obligation to update or revise any forward-looking statements. For a further description of the risks and uncertainties that could cause actual results to differ from those expressed in these forward-looking statements, as well as risks relating to the business of Ultragenyx in general, see Ultragenyx's Quarterly Report on Form 10-Q filed with theSecurities and Exchange CommissiononJuly 30, 2020, and its subsequent periodic reports filed with theSecurities and Exchange Commission.

Solid Biosciences Forward-Looking StatementsThis press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, including statements regarding whether the collaboration will yield any viable product candidates, potential milestone payments or royalty payments in connection with the collaboration, the potential benefits of the collaboration, the safety or potential efficacy of SGT-001 and other statements containing the words anticipate, believe, continue, could, estimate, expect, intend, may, plan, potential, predict, project, should, target, would, working and similar expressions. Any forward-looking statements are based on managements current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in, or implied by, such forward-looking statements. These risks and uncertainties include, but are not limited to, risks associated with each partys ability to perform its obligations under the collaboration, the Companys ability to resume and/or continue IGNITE DMD on the timeline expected or at all; obtain and maintain necessary approvals from the FDA and other regulatory authorities; obtain and maintain the necessary approval from investigational review boards at IGNITE DMD clinical trial sites and the IGNITE DMD independent data safety monitoring board; enroll patients in IGNITE DMD; continue to advance SGT-001 in clinical trials; replicate in clinical trials positive results found in preclinical studies and earlier stages of clinical development; advance the development of its product candidates under the timelines it anticipates in current and future clinical trials; successfully optimize and scale its manufacturing process; obtain, maintain or protect intellectual property rights related to its product candidates; compete successfully with other companies that are seeking to develop DMD/Duchenne treatments and gene therapies; manage expenses; and raise the substantial additional capital needed, on the timeline necessary, to continue development of SGT-001, achieve its other business objectives and continue as a going concern. For a discussion of other risks and uncertainties, and other important factors, any of which could cause the Companys actual results to differ from those contained in the forward-looking statements, see the Risk Factors section, as well as discussions of potential risks, uncertainties and other important factors, in the Companys most recent filings with the Securities and Exchange Commission. In addition, the forward-looking statements included in this press release represent the Companys views as of the date hereof and should not be relied upon as representing the Companys views as of any date subsequent to the date hereof. The Company anticipates that subsequent events and developments will cause the Company's views to change. However, while the Company may elect to update these forward-looking statements at some point in the future, the Company specifically disclaims any obligation to do so.

Contacts:

Ultragenyx Joshua Higa(415) 475-6370

Solid BiosciencesInvestor Contact:David CareyFINN Partners212-867-1768David.Carey@finnpartners.com

Media Contact:Erich SandovalFINN Partners917-497-2867Erich.Sandoval@finnpartners.com

See original here:
Ultragenyx and Solid Biosciences Announce Strategic Collaboration to Develop and Commercialize New Gene Therapies for Duchenne Muscular Dystrophy -...

Recommendation and review posted by Bethany Smith

Selecta Biosciences and AskBio Receive FDA Rare Pediatric Disease Designation for their Gene Therapy for Methylmalonic Acidemia – GlobeNewswire

WATERTOWN, Mass. and RESEARCH TRIANGLE PARK, N.C., Oct. 20, 2020 (GLOBE NEWSWIRE) -- Selecta Biosciences, Inc. (NASDAQ: SELB) and Asklepios BioPharmaceutical, Inc. (AskBio), today announced the U.S. Food and Drug Administration (FDA) has granted Rare Pediatric Disease Designation to MMA-101 for the treatment of isolated methylmalonic acidemia (MMA) due to methylmalonyl-CoA mutase (MMUT) gene mutations. The FDA grants Rare Pediatric Disease Designation to incentivize development of new treatments for serious and life-threatening diseases that primarily affect children ages 18 years or younger with fewer than 200,000 people affected in the U.S. The Rare Pediatric Disease designation program allows for a Sponsor who receives an approval for a product to potentially qualify for a voucher that can be redeemed to receive a priority review of a subsequent marketing application for a different product.

This Rare Pediatric Disease designation from the FDA highlights the significant unmet medical need that Selecta and AskBio are seeking to address with MMA-101 for this rare metabolic disorder, said Carsten Brunn, Ph.D., chief executive officer of Selecta Biosciences. When used with AAV gene therapy vectors, Selectas ImmTOR aims to inhibit the immune response to the AAV vector, potentially allowing re-dosing of gene therapies. Ongoing clinical programs will focus on evaluating product candidate performance in patients who may have been underdosed or those who may lose transgene expression over time. Were honored to receive this recognition and look forward to advancing this program in hopes of helping young patients affected by MMA and their families.

MMA is a serious and potentially life-threatening inherited metabolic disorder that presents in patients from newborns to adulthood, said Sheila Mikhail, J.D., CEO and co-founder of AskBio. AskBio is committed to delivering transformative genetic medicines for rare diseases like this one, and the Rare Pediatric Disease designation helps us continue development of MMA-101.

AskBio and Selecta expect to initiate a Phase 1 clinical trial of MMA-101 and ImmTOR for patients with MMA in 1H 2021.

About Methylmalonic AcidemiaMethylmalonic Acidemia (MMA) is a rare monogenic disorder in which the body cannot break down certain proteins and fats. This metabolic disease may lead to hyperammonemia and is associated with long-term complications including feeding problems, intellectual disability, chronic kidney disease and inflammation of the pancreas. Symptoms of MMA usually appear in early infancy and vary from mild to life-threatening. Without treatment, this disorder can lead to coma and in some cases death.

About Selecta Biosciences, Inc.Selecta Biosciences, Inc. (NASDAQ: SELB) is leveraging its clinically validated ImmTOR platform to develop tolerogenic therapies that selectively mitigate unwanted immune responses. With a proven ability to induce tolerance to highly immunogenic proteins, ImmTOR has the potential to amplify the efficacy of biologic therapies, including redosing of life-saving gene therapies, as well as restore the bodys natural self-tolerance in autoimmune diseases. The companys first program aimed at addressing immunogenicity to AAV gene therapies is expected to enter clinical trials in early 2021 in partnership with AskBio for the treatment of methylmalonic acidemia (MMA), a rare metabolic disorder. A wholly-owned program focused on addressing IgA nephropathy driven by ImmTOR and a therapeutic enzyme is also in development among additional product candidates. Selecta recently licensed its Phase 3 clinical product candidate, SEL-212, in chronic refractory gout to Sobi. For more information, please visit http://www.selectabio.com. About AskBioFounded in 2001, Asklepios BioPharmaceutical, Inc. (AskBio) is a privately held, fully integrated AAV gene therapy company dedicated to developing life-saving medicines that cure genetic diseases. Its pipeline includes clinical-stage programs in Pompe disease and congestive heart failure and a diverse preclinical portfolio of therapeutics targeting neuromuscular, CNS and other diseases, as well as out-licensed clinical indications for hemophilia (Chatham Therapeutics, acquired by Takeda) and Duchenne muscular dystrophy (Bamboo Therapeutics, acquired by Pfizer). AskBios gene therapy platform includes Pro10, an industry-leading proprietary cell line manufacturing process, and an extensive AAV capsid and promoter library. With global headquarters in Research Triangle Park, North Carolina, and European headquarters in Edinburgh, UK, the company has generated hundreds of proprietary third generation AAV capsids and promoters, several of which have entered clinical testing. An early innovator in the space, the company holds more than 500 patents in areas such as AAV production and chimeric and self-complementary capsids.

Selecta Forward-Looking StatementsAny statements in this press release about the future expectations, plans and prospects of Selecta Biosciences, Inc. (the company), including without limitation, statements regarding the unique proprietary technology platform of the company, and the unique proprietary platform of its partners, the potential of ImmTOR to enable re-dosing of AAV gene therapy, the potential treatment applications of product candidates utilizing the ImmTOR platform in areas such as gene therapy and MMA, the companys plans to initiate a clinical trial for a product candidate to treat MMA, the ability of the company and AskBio to develop gene therapy products using ImmTOR and AskBios technology, any development plans of the company and AskBio have for product candidates to treat serious and life-threatening diseases and the intention to seek regulatory approval thereof, the novelty of treatment paradigms that the Company is able to develop, the potential of any therapies developed by the company and AskBio to fulfill unmet medical needs, the companys plan to apply its ImmTOR technology platform to a range of biologics for rare and orphan genetic diseases, the potential of the companys intellectual property to enable repeat administration in gene therapy product candidates and products, the ability to re-dose patients and the potential of ImmTOR to allow for re-dosing, the potential to safely re-dose AAV, the ability to restore transgene expression, the potential of the ImmTOR technology platform generally and the companys ability to grow its strategic partnerships, and other statements containing the words anticipate, believe, continue, could, estimate, expect, hypothesize, intend, may, plan, potential, predict, project, should, target, would, and similar expressions, constitute forward-looking statements within the meaning of The Private Securities Litigation Reform Act of 1995. Actual results may differ materially from those indicated by such forward-looking statements as a result of various important factors, including, but not limited to, the following: the uncertainties inherent in the initiation, completion and cost of clinical trials including proof of concept trials, including the uncertain outcomes, the availability and timing of data from ongoing and future clinical trials and the results of such trials, whether preliminary results from a particular clinical trial will be predictive of the final results of that trial or whether results of early clinical trials will be indicative of the results of later clinical trials, the unproven approach of the companys ImmTOR technology, potential delays in enrollment of patients, undesirable side effects of the companys product candidates, its reliance on third parties to manufacture its product candidates and to conduct its clinical trials, the companys inability to maintain its existing or future collaborations, licenses or contractual relationships, its inability to protect its proprietary technology and intellectual property, potential delays in regulatory approvals, the availability of funding sufficient for its foreseeable and unforeseeable operating expenses and capital expenditure requirements, the companys recurring losses from operations and negative cash flows from operations raise substantial doubt regarding its ability to continue as a going concern, substantial fluctuation in the price of its common stock, and other important factors discussed in the Risk Factors section of the companys most recent Quarterly Report on Form 10-Q, and in other filings that the company makes with the Securities and Exchange Commission. In addition, any forward-looking statements included in this press release represent the companys views only as of the date of its publication and should not be relied upon as representing its views as of any subsequent date. The company specifically disclaims any intention to update any forward-looking statements included in this press release.

AskBio Forward-Looking StatementsThis press release contains forward-looking statements regarding AskBio. Any statements contained in this press release that are not statements of historical fact may be deemed to be forward-looking statements. Words such as believes, anticipates, plans, expects, will, intends, potential, possible and similar expressions are intended to identify forward-looking statements. These forward-looking statements include statements regarding MMA-101, including the potential timing of the Phase 1 clinical trial for patients with MMA, AskBios pipeline of development candidates; AskBios goal of developing life-saving medicines aimed at curing genetic diseases; the potential benefits of AskBios development candidates to patients.

These forward-looking statements involve risks and uncertainties, many of which are beyond AskBios control. Known risks include, among others: AskBio may not be able to execute on its business plans and goals, including meeting its expected or planned regulatory milestones and timelines, clinical development plans and bringing its product candidates to market, due to a variety of reasons, including the ongoing COVID-19 pandemic, possible limitations of company financial and other resources, manufacturing limitations that may not be anticipated or resolved in a timely manner, potential disagreements or other issues with our third-party collaborators and partners, and regulatory, court or agency feedback or decisions, such as feedback and decisions from the United States Food and Drug Administration or the United States Patent and Trademark Office.

Any of the foregoing risks could materially and adversely affect AskBios business and results of operations. You should not place undue reliance on the forward-looking statements contained in this press release. AskBio does not undertake any obligation to publicly update its forward-looking statements based on events or circumstances after the date hereof.

For more information please contact:

Selecta: For Investors:Lee M. SternSolebury Trout+1-646-378-2922lstern@soleburytrout.com

For Media: Meredith Sosulski, Ph.D.LifeSci Communications, LLC+1-929-469-3851msosulski@lifescicomms.com

AskBio:Robin FastenauVice President, Communications+1-984-275-2705rfastenau@askbio.com

Read more:
Selecta Biosciences and AskBio Receive FDA Rare Pediatric Disease Designation for their Gene Therapy for Methylmalonic Acidemia - GlobeNewswire

Recommendation and review posted by Bethany Smith

Competitive Landscape Analysis of Recent Cell and Gene Therapy Innovations, H2 2020 Report – Yahoo Finance UK

France 24

More than 50 million Americans have cast ballots in the presidential election, an early-voting expert said on Friday, signaling a potential record turnout out for the Nov. 3 matchup between President Donald Trump and challenger Joe Biden. According to Michael McDonald of the University of Florida's Elections Project, at least 51 million people had cast ballots in person or by mail 11 days before Election Day.That is roughly 21% of all eligible U.S. voters. Some 137 million ballots were cast in the 2016 election, and McDonald and other experts predict that figure could be above 150 million this year.The massive early-vote total gives the Republican Trump less leeway to change minds before voting concludes. Opinion polls show him trailing Biden, a Democrat, both nationally and in several battleground states that will decide who sits in the White House on Jan. 20, 2021.Trump's handling of the coronavirus pandemic that has killed more than 221,000 people in the United States and cost millions their jobs has remained the key issue in voters minds.In a reminder of the COVID-19's accelerated spread as winter approaches, researchers at the University of Washington's Institute for Health Metrics and Evaluation warned the virus could kill more than half a million people in the United States by the end of February 2021.They said that roughly 130,000 lives could be saved if everybody wore masks, according to a study released on Friday.Biden, 77, plans a speech in Delaware on Friday to discuss his plans to beat back the coronavirus pandemic. Biden said Trump, 74, has bungled the response and says he will listen to the advice of health officials and scientists, with whom Trump often feuds. Trump has defended his handling of the health crisis, saying the worst was over.Trump, who was diagnosed with COVID-19 in early October and spent three nights in the hospital, mocks Biden for his cautiousness.'Everything's up'Trump has frequently assailed absentee voting, which is surging in the pandemic, as unreliable, and his campaign has fought states' efforts to expand a practice that analysts say is as secure as any other method.Trump himself has voted by mail in past elections, but plans to vote in person in Florida on Saturday, the White House said. Vice President Mike Pence cast his early-vote ballot in Indianapolis on Friday morning.Democrats have cast roughly 5 million more votes than Republicans so far, though their margin has shrunk in recent days, according to TargetSmart, a Democratic analytics firm.Democratic analysts say they are cheered by those numbers but caution that they expect a late surge of Republican votes on Election Day.Republican strategists say strong in-person turnout in Florida, North Carolina and Iowa gives them hope that Trump can win those battleground states again this year."It's really, really hard to compare this to anything," Democratic strategist Steve Schale told reporters. "Everything's up from 2016."Americans may find themselves waiting days or weeks to know who won as election officials count tens of millions of mail-in votes.In Texas, a traditionally Republican state that has been growing more competitive, turnout has already reached 71 percent of the 2016 total, according to McDonald's figures. It has reached 50 percent in three southern battleground states: Georgia, North Carolina and Florida.Election officials in battleground states like Pennsylvania are scrambling to minimize the possibility of a disputed outcome.Focus on FloridaBoth candidates have showered attention on Florida, where a Reuters/Ipsos poll this week found Biden moving into a slight lead after being in a statistical tie a week earlier.Trump will begin his visit at the Villages, a sprawling retirement center. Trump won voters above the age of 65 by 17 percentage points in 2016, but polls show him running even or trailing Biden with senior voters this year in the state.In the evening, Trump will hold an airport rally in Pensacola in northwestern Florida's heavily Republican panhandle, to urge supporters to vote early. Trump will spend the night in Florida before casting his vote in West Palm Beach.Former President Barack Obama, with whom Biden served as vice president for eight years, will campaign in Florida on Saturday. Obama made his campaign-trail debut for Biden in Pennsylvania on Wednesday.Biden entered the final days of the race with more cash than Trump. The Democrat raised about $130 million during the Oct. 1-14 period, about three times the roughly $44 million raised by Trump's campaign.(REUTERS)

Read more from the original source:
Competitive Landscape Analysis of Recent Cell and Gene Therapy Innovations, H2 2020 Report - Yahoo Finance UK

Recommendation and review posted by Bethany Smith

The view of the gene editing pioneer: Shedding light on CRISPR’s role in the COVID-19 pandemic and tackling chemotherapy resistance -…

The recent news that the Nobel Prize in Chemistry has been awarded to Emmanuelle Charpentier and Jennifer Doudna for their seminal discovery in 2012, the CRISPR-Cas9 gene editing tool, shows the impact the technology has had on the life sciences, with many potential applications in medicine and in agriculture.

Research labs quickly picked up the tool for experiments. It also triggered the development of innumerable startups, which have attracted hundreds of millions of dollars in investment in search of new cancer, hemophilia and cystic-fibrosis treatments.

In a webinar yesterday, gene editing pioneer, Dr Eric Kmiec, director of the Gene Editing Institute at ChristianaCares Helen F Graham Cancer Center, discussed the broader implications of the use of CRISPR.

He spoke about an upcoming lung cancer trial, relying on CRISPR, led by his Delaware, USA-based institute, and also acknowledged the Nobel Prize win.

CRISPR in bacterial cells was known for many years but Emmanuelle and Jennifer democratized it, they brought forward the CRISPR idea. There is also recognition of two women winning the Nobel prize solely, without a man being attached, and we certainly appreciate that.

Like many other CRISPR labs, when the COVID-19 pandemic hit, Kmiecs institute started evaluating CRISPR-based diagnostic tools. We have been particularly focused on the SHERLOCK and DETECTR tests, which come from MIT and [the University of California] Berkeley and associated companies.

These CRISPR based tests have great potential for point-of-care diagnosis as they work well and are relatively easy to use; moreover, they do not require complex instrumentation, he said.

What we have contributing to the field is [our work looking at] other types of COVID-19 variations that are likely coming. If you look at the epidemiological data of viral infections around the world, there are variants all the time. And, obviously, as a virus emerges into the human population, it changes and mutates, so we are making sure that CRISPR diagnostic tests are going to be able to detect the virus we have now but also the next wave of COVID-19 and other associated viruses.

In terms of supporting the evolution of CRISPR-based medical treatments, the gene editing pioneer said the institute continues to work, with funding from the US National Institutes of Health (NIH) and various foundations, on teasing the basic mechanisms of CRISPR apart and finding its weaknesses, then feeding that knowledge into drug and therapeutic development.

"Everyone talks about the strengths of CRISPR and the associated off-site mutagenesis but there are some other peculiar things that CRISPR does that we've been able to discover and move forward."

And understanding the full picture in terms of the gene editing tool, quantifying the diversity of genetic outcomes, is critical for moving CRISPR to therapeutic application, he said.

We want to correct mutations in sickle cell disease, we want to effectively knock genes out that are causing chemotherapy resistance in cancer cells. But, in fact, we also want to understand what else CRISPR does, what the rest of the story is."

To do that, the team has developed its own software tool, called Decoder. "We are now actively shopping for licenses and have a few clients that are probably going to license it. It shows that not only are we in mechanism and regulation mode, but we are tool makers as well, and that, if we have something that we need, we will go and make it. It is teaching us to be self-sufficient but also not afraid of the answers."

There are tremendous obstacles to using CRISPR therapeutically, stressed the scientist.

A lot of the work in the gene therapy world has come up a bit short; we have learnt a lot, and that is important, but we believe that CRISPR is going to be most effective in the therapeutic realm if it can disable genes that are causing chemotherapy resistance.We have been working for the past 18 months on that and we had our first formal meeting with the US Food and Drug Administration (FDA) last Thursday.

"The FDA has provided us with guidance to come down the home stretch and it suggested that [our approach] might not only be a specific treatment for squamous cell carcinoma, which is a major form of lung cancer, but could also be used as a platform for other forms of cancer such as esophageal.

In a groundbreaking partnership, the Gene Editing Institute, along with Delaware Technical Community College and Rockland Immunochemicals Inc, have announced a move to market and sell an educational kit, CRISPR in a Box, globally.

CRISPR in a Box is designed for use in educational sessions in high schools, community colleges, universities and companies and is also suitable for remote learning.

The partnership is likely the first-ever collaboration among scientists, educators and a life-science company to train the next generation of genetic scientists and technicians in the revolutionary CRISPR gene-editing technology.

But Kmiec wants to go one step further in terms of educating students.

He believes that sickle cell disease, which is more common in certain ethnic groups, can be cured by CRISPR.

So we're putting together a program that not only talks about gene editing and using CRISPR in a Box to demonstrate [the technique] but also asking why sickle cell disease has remained uncured.Is it because these diseases don't affect the mainstream culture? We're going to engage in those kind of conversations [with students] because we have the courage to do so. We'll also be providing them with a bird's eye view of our own work, as we just received US$1m grant to continue looking at the diversity of responses of African American regenerative cells to various forms of CRISPR and we're going to let the students follow us along, hopefully by a weekly or bi weekly live stream.

Ethnic diversity is an important consideration as studies continue on the new gene technologies, said the scientist.

The underlying genetic sequence among different races and ethnicities is often different, and the vast amount of DNA in the research database is from people of European descent, said Kmiec, when talking tolocal outlet, Delaware Public Media, in February.

If were going to develop universal therapies, where breakthrough therapies reach minority communities, which is our major objective here, were going to have input from minority groups to be able to build those databases so we can devise the tools to actually make them work in a universal waythe whole population."

See original here:
The view of the gene editing pioneer: Shedding light on CRISPR's role in the COVID-19 pandemic and tackling chemotherapy resistance -...

Recommendation and review posted by Bethany Smith

Can B cells break the boundaries of cell therapy? Longwood startup has $52M to prove a new engineering tech – Endpoints News

Back in December 2017, as the cell therapy world was still basking in the virtually back-to-back approvals of two pioneering CAR-Ts, researchers at Seattle Childrens Research Institute reported a scientific first in a different corner of the field: engineer B cells to treat disease.

The team, led by David Rawlings and Richard James, eventually worked with Longwood Fund to start a biotech around those findings. And now Atlas Venture and RA Capital Management are coming on board to lead a $52 million launch round, joined by Alta Partners, for Be Biopharma.

B cells have been such an attractive cell type, Aleks Radovic-Moreno, an entrepreneur-in-residence who co-founded the biotech, told Endpoints News. It just wasnt their time yet. But now we feel confident that its their time to step into the limelight.

The two classic stumbling blocks, he added, are figuring out how to engineer them efficiently and culture them in sufficient quantities.

But once Rawlings and James cracked the code through homology-directed repair, it opened up potential applications beyond what current cell therapies can do. While T cells are designed to kill cells marked by certain antigens, B cells unique function is that they make unbelievable quantities of proteins from antibodies to immune modulating factors.

You can also program a B cell to go to a specific tissue, without the need for conditioning or lymphodepletion, while retaining an option to titrate and redose if you dont get it right the first time.

If you think about what disease you want where you want a protein to be secreted in a targeted fashion, thats actually a really big list, Radovic-Moreno said, listing cancer, autoimmune diseases, monogenic disorders and infectious diseases as areas being explored.

In a previous interview, James also gave hemophilia B as an example of a protein deficiency disease where a B cell therapy can potentially cure patients.

Be Bio benefits from the trail that hundreds of T cell therapy players have now traveled, stepping into a world where logistics, genetic modification and cell purification tools are readily available. But its core area of expertise mapping out the biology of B cells and manipulating them remains one thats only housing academic groups so far.

Currently managed by an interim team consisting of Radovic-Moreno as president and David Steinberg as CEO, the team is growing every week at the Alexandria LaunchLabs in Kendall Square. In addition to the scientific founders, its also guided by an illustrious scientific advisory board, consisting of Frances Eun-Hyung Lee, an asthma expert at Emory, as well as Harvards Shiv Pillai and UCSFs Jason Cyster, who bring years of experience studying B cells.

He may not be ready to discuss concrete drug targets or timelines yet, but for Radovic-Moreno, who played a leading role in getting Siddhartha Mukherjees engineered hematopoietic stem cells off the ground at Vor Bio, its all reminiscent of the early days of T cell work.

I wouldnt be surprised if we see a similar trajectory 5 years from today, he said. I dont think there will be hundreds of B cell companies, but Im gonna bet its more than one.

Continue reading here:
Can B cells break the boundaries of cell therapy? Longwood startup has $52M to prove a new engineering tech - Endpoints News

Recommendation and review posted by Bethany Smith

Cancer Gene Therapy Market Size 2020, Share, Global Industry Analysis and Competitive Landscape (Effect of the COVID-19 Pandemic) – The Think…

Overview for Cancer Gene Therapy Market Helps in providing scope and definitions, Key Findings, Growth Drivers, and Various Dynamics.

Cancer Gene Therapy Market Data and Acquisition Research Study with Trends and Opportunities 2019-2024The study of Cancer Gene Therapy market is a compilation of the market of Cancer Gene Therapy broken down into its entirety on the basis of types, application, trends and opportunities, mergers and acquisitions, drivers and restraints, and a global outreach. The detailed study also offers a board interpretation of the Cancer Gene Therapy industry from a variety of data points that are collected through reputable and verified sources. Furthermore, the study sheds a lights on a market interpretations on a global scale which is further distributed through distribution channels, generated incomes sources and a marginalized market space where most trade occurs.

Along with a generalized market study, the report also consists of the risks that are often neglected when it comes to the Cancer Gene Therapy industry in a comprehensive manner. The study is also divided in an analytical space where the forecast is predicted through a primary and secondary research methodologies along with an in-house model.

Download PDF Sample of Cancer Gene Therapy Market report @ https://hongchunresearch.com/request-a-sample/91685

Key players in the global Cancer Gene Therapy market covered in Chapter 4:H.B.S. FoodsArimexArcher Daniels MidlandOlam InternationalHines Nut CompanySunbeam FoodsKanegradeGracelandDiamond FoodsSun-Maid

In Chapter 11 and 13.3, on the basis of types, the Cancer Gene Therapy market from 2015 to 2026 is primarily split into:Gene Induced ImmunotherapyOncolytic VirotherapyGene Transfer

In Chapter 12 and 13.4, on the basis of applications, the Cancer Gene Therapy market from 2015 to 2026 covers:HospitalsDiagnostics CentersResearch Institutes

Geographically, the detailed analysis of consumption, revenue, market share and growth rate, historic and forecast (2015-2026) of the following regions are covered in Chapter 5, 6, 7, 8, 9, 10, 13:North America (Covered in Chapter 6 and 13)United StatesCanadaMexicoEurope (Covered in Chapter 7 and 13)GermanyUKFranceItalySpainRussiaOthersAsia-Pacific (Covered in Chapter 8 and 13)ChinaJapanSouth KoreaAustraliaIndiaSoutheast AsiaOthersMiddle East and Africa (Covered in Chapter 9 and 13)Saudi ArabiaUAEEgyptNigeriaSouth AfricaOthersSouth America (Covered in Chapter 10 and 13)BrazilArgentinaColumbiaChileOthers

For a global outreach, the Cancer Gene Therapy study also classifies the market into a global distribution where key market demographics are established based on the majority of the market share. The following markets that are often considered for establishing a global outreach are North America, Europe, Asia, and the Rest of the World. Depending on the study, the following markets are often interchanged, added, or excluded as certain markets only adhere to certain products and needs.

Here is a short glance at what the study actually encompasses:Study includes strategic developments, latest product launches, regional growth markers and mergers & acquisitionsRevenue, cost price, capacity & utilizations, import/export rates and market shareForecast predictions are generated from analytical data sources and calculated through a series of in-house processes.

However, based on requirements, this report could be customized for specific regions and countries.

Brief about Cancer Gene Therapy Market Report with [emailprotected]https://hongchunresearch.com/report/cancer-gene-therapy-market-size-2020-91685

Some Point of Table of Content:

Chapter One: Report Overview

Chapter Two: Global Market Growth Trends

Chapter Three: Value Chain of Cancer Gene Therapy Market

Chapter Four: Players Profiles

Chapter Five: Global Cancer Gene Therapy Market Analysis by Regions

Chapter Six: North America Cancer Gene Therapy Market Analysis by Countries

Chapter Seven: Europe Cancer Gene Therapy Market Analysis by Countries

Chapter Eight: Asia-Pacific Cancer Gene Therapy Market Analysis by Countries

Chapter Nine: Middle East and Africa Cancer Gene Therapy Market Analysis by Countries

Chapter Ten: South America Cancer Gene Therapy Market Analysis by Countries

Chapter Eleven: Global Cancer Gene Therapy Market Segment by Types

Chapter Twelve: Global Cancer Gene Therapy Market Segment by Applications 12.1 Global Cancer Gene Therapy Sales, Revenue and Market Share by Applications (2015-2020) 12.1.1 Global Cancer Gene Therapy Sales and Market Share by Applications (2015-2020) 12.1.2 Global Cancer Gene Therapy Revenue and Market Share by Applications (2015-2020) 12.2 Hospitals Sales, Revenue and Growth Rate (2015-2020) 12.3 Diagnostics Centers Sales, Revenue and Growth Rate (2015-2020) 12.4 Research Institutes Sales, Revenue and Growth Rate (2015-2020)

Chapter Thirteen: Cancer Gene Therapy Market Forecast by Regions (2020-2026) continued

Check [emailprotected] https://hongchunresearch.com/check-discount/91685

List of tablesList of Tables and Figures Table Global Cancer Gene Therapy Market Size Growth Rate by Type (2020-2026) Figure Global Cancer Gene Therapy Market Share by Type in 2019 & 2026 Figure Gene Induced Immunotherapy Features Figure Oncolytic Virotherapy Features Figure Gene Transfer Features Table Global Cancer Gene Therapy Market Size Growth by Application (2020-2026) Figure Global Cancer Gene Therapy Market Share by Application in 2019 & 2026 Figure Hospitals Description Figure Diagnostics Centers Description Figure Research Institutes Description Figure Global COVID-19 Status Overview Table Influence of COVID-19 Outbreak on Cancer Gene Therapy Industry Development Table SWOT Analysis Figure Porters Five Forces Analysis Figure Global Cancer Gene Therapy Market Size and Growth Rate 2015-2026 Table Industry News Table Industry Policies Figure Value Chain Status of Cancer Gene Therapy Figure Production Process of Cancer Gene Therapy Figure Manufacturing Cost Structure of Cancer Gene Therapy Figure Major Company Analysis (by Business Distribution Base, by Product Type) Table Downstream Major Customer Analysis (by Region) Table H.B.S. Foods Profile Table H.B.S. Foods Production, Value, Price, Gross Margin 2015-2020 Table Arimex Profile Table Arimex Production, Value, Price, Gross Margin 2015-2020 Table Archer Daniels Midland Profile Table Archer Daniels Midland Production, Value, Price, Gross Margin 2015-2020 Table Olam International Profile Table Olam International Production, Value, Price, Gross Margin 2015-2020 Table Hines Nut Company Profile Table Hines Nut Company Production, Value, Price, Gross Margin 2015-2020 Table Sunbeam Foods Profile Table Sunbeam Foods Production, Value, Price, Gross Margin 2015-2020 Table Kanegrade Profile Table Kanegrade Production, Value, Price, Gross Margin 2015-2020 Table Graceland Profile Table Graceland Production, Value, Price, Gross Margin 2015-2020 Table Diamond Foods Profile Table Diamond Foods Production, Value, Price, Gross Margin 2015-2020 Table Sun-Maid Profile Table Sun-Maid Production, Value, Price, Gross Margin 2015-2020 Figure Global Cancer Gene Therapy Sales and Growth Rate (2015-2020) Figure Global Cancer Gene Therapy Revenue ($) and Growth (2015-2020) Table Global Cancer Gene Therapy Sales by Regions (2015-2020) Table Global Cancer Gene Therapy Sales Market Share by Regions (2015-2020) Table Global Cancer Gene Therapy Revenue ($) by Regions (2015-2020) Table Global Cancer Gene Therapy Revenue Market Share by Regions (2015-2020) Table Global Cancer Gene Therapy Revenue Market Share by Regions in 2015 Table Global Cancer Gene Therapy Revenue Market Share by Regions in 2019 Figure North America Cancer Gene Therapy Sales and Growth Rate (2015-2020) Figure Europe Cancer Gene Therapy Sales and Growth Rate (2015-2020) Figure Asia-Pacific Cancer Gene Therapy Sales and Growth Rate (2015-2020) Figure Middle East and Africa Cancer Gene Therapy Sales and Growth Rate (2015-2020) Figure South America Cancer Gene Therapy Sales and Growth Rate (2015-2020) Figure North America Cancer Gene Therapy Revenue ($) and Growth (2015-2020) Table North America Cancer Gene Therapy Sales by Countries (2015-2020) Table North America Cancer Gene Therapy Sales Market Share by Countries (2015-2020) Figure North America Cancer Gene Therapy Sales Market Share by Countries in 2015 Figure North America Cancer Gene Therapy Sales Market Share by Countries in 2019 Table North America Cancer Gene Therapy Revenue ($) by Countries (2015-2020) Table North America Cancer Gene Therapy Revenue Market Share by Countries (2015-2020) Figure North America Cancer Gene Therapy Revenue Market Share by Countries in 2015 Figure North America Cancer Gene Therapy Revenue Market Share by Countries in 2019 Figure United States Cancer Gene Therapy Sales and Growth Rate (2015-2020) Figure Canada Cancer Gene Therapy Sales and Growth Rate (2015-2020) Figure Mexico Cancer Gene Therapy Sales and Growth (2015-2020) Figure Europe Cancer Gene Therapy Revenue ($) Growth (2015-2020) Table Europe Cancer Gene Therapy Sales by Countries (2015-2020) Table Europe Cancer Gene Therapy Sales Market Share by Countries (2015-2020) Figure Europe Cancer Gene Therapy Sales Market Share by Countries in 2015 Figure Europe Cancer Gene Therapy Sales Market Share by Countries in 2019 Table Europe Cancer Gene Therapy Revenue ($) by Countries (2015-2020) Table Europe Cancer Gene Therapy Revenue Market Share by Countries (2015-2020) Figure Europe Cancer Gene Therapy Revenue Market Share by Countries in 2015 Figure Europe Cancer Gene Therapy Revenue Market Share by Countries in 2019 Figure Germany Cancer Gene Therapy Sales and Growth Rate (2015-2020) Figure UK Cancer Gene Therapy Sales and Growth Rate (2015-2020) Figure France Cancer Gene Therapy Sales and Growth Rate (2015-2020) Figure Italy Cancer Gene Therapy Sales and Growth Rate (2015-2020) Figure Spain Cancer Gene Therapy Sales and Growth Rate (2015-2020) Figure Russia Cancer Gene Therapy Sales and Growth Rate (2015-2020) Figure Asia-Pacific Cancer Gene Therapy Revenue ($) and Growth (2015-2020) Table Asia-Pacific Cancer Gene Therapy Sales by Countries (2015-2020) Table Asia-Pacific Cancer Gene Therapy Sales Market Share by Countries (2015-2020) Figure Asia-Pacific Cancer Gene Therapy Sales Market Share by Countries in 2015 Figure Asia-Pacific Cancer Gene Therapy Sales Market Share by Countries in 2019 Table Asia-Pacific Cancer Gene Therapy Revenue ($) by Countries (2015-2020) Table Asia-Pacific Cancer Gene Therapy Revenue Market Share by Countries (2015-2020) Figure Asia-Pacific Cancer Gene Therapy Revenue Market Share by Countries in 2015 Figure Asia-Pacific Cancer Gene Therapy Revenue Market Share by Countries in 2019 Figure China Cancer Gene Therapy Sales and Growth Rate (2015-2020) Figure Japan Cancer Gene Therapy Sales and Growth Rate (2015-2020) Figure South Korea Cancer Gene Therapy Sales and Growth Rate (2015-2020) Figure Australia Cancer Gene Therapy Sales and Growth Rate (2015-2020) Figure India Cancer Gene Therapy Sales and Growth Rate (2015-2020) Figure Southeast Asia Cancer Gene Therapy Sales and Growth Rate (2015-2020) Figure Middle East and Africa Cancer Gene Therapy Revenue ($) and Growth (2015-2020) continued

About HongChun Research: HongChun Research main aim is to assist our clients in order to give a detailed perspective on the current market trends and build long-lasting connections with our clientele. Our studies are designed to provide solid quantitative facts combined with strategic industrial insights that are acquired from proprietary sources and an in-house model.

Contact Details: Jennifer GrayManager Global Sales+ 852 8170 0792[emailprotected]

NOTE: Our report does take into account the impact of coronavirus pandemic and dedicates qualitative as well as quantitative sections of information within the report that emphasizes the impact of COVID-19.

As this pandemic is ongoing and leading to dynamic shifts in stocks and businesses worldwide, we take into account the current condition and forecast the market data taking into consideration the micro and macroeconomic factors that will be affected by the pandemic.

Follow this link:
Cancer Gene Therapy Market Size 2020, Share, Global Industry Analysis and Competitive Landscape (Effect of the COVID-19 Pandemic) - The Think...

Recommendation and review posted by Bethany Smith

Bo Cumbo jumps from the top commercial post at Sarepta to the helm of a gene therapy startup with some influential backers, big plans and $107M -…

Its been a record year for biotech IPOs, and the execs at Nasdaq would like nothing better than to see that momentum continue into the first half of next year.

Since January, 72 biotech and biopharma companies have hit Wall Street, according to Nasdaq head of healthcare listings Jordan Saxe, together raising $13.2 billion.

The latest is Flagships Foghorn Therapeutics, which priced its shares last night at $16 apiece, the midpoint of a $15 to $17 range. The Cambridge, MA-based biotech which initially filed for a $100 million raise on Oct. 2 is netting $120 million from a 7.5 million-share offering. The proceeds will go right into its gene traffic control platform, including two lead preclinical oncology candidates.

Read More

Read more from the original source:
Bo Cumbo jumps from the top commercial post at Sarepta to the helm of a gene therapy startup with some influential backers, big plans and $107M -...

Recommendation and review posted by Bethany Smith

Getting to the Roots of Fragile X Syndrome – Tufts Now

The cause of fragile X syndrome (FXS), the most common inherited intellectual disability, is easy to see in the lab. Under electron microscopy, an affected X chromosome exhibits a deformed tip that gives the disorder its name and pinpoints the causative gene malfunction. Theres no cure for the disease, whose symptoms include learning deficits and hyperactivity and which has been linked with autism. FXS occurs in 1 in 4,000 to 7,000 males and 1 in 8,000 to 11,000 females in the United States.

Most research on FXS has focused on the brains neurons, the cells that transmit electrical and chemical impulses. But for a decade Yongjie Yang, associate professor of neuroscience at Tufts University School of Medicine, has pursued a different path, investigating the involvement of glia cells, particularly astroglia, which support neuron function and make up more than half the brain. In the past month, hes published in the Proceedings of the National Academy of Sciences (PNAS) and Glia. Tufts Now spoke with Yang about his work.

Tufts Now: What do we know about FXS?

Yongjie Yang: Fragile X syndrome is caused by the mutation of a single gene, FMR1, that codes for the FMRP protein, which is found in all brain cells and is essential for normal cognitive development. The mutation doesnt actually change the genetic code. Instead it causes part of the gene, specifically the chemical bases CGG, to repeat. We all carry those repeats in different numbers. If you carry roughly 50 or fewer, your brain development will be normal, but if the repeats go beyond 200, you will have the full mutation and your brain will produce only 10 to 20 percent of the needed level of FMRP, especially if youre male. FXS was characterized in 1943 but the genetic mutation wasnt identified until 1991, almost half a century a later.

What is the relationship between autism spectrum disorder (ASD) and FXS?

The two are intermingled. ASD is much more common, occurring in 1 in 54 children according to new estimates. Its believed that 1 to 6 percent of people with ASD have the FXS mutation, and that mutation accounts for the largest genetic subset of those with ASD. Many people with FXS are also autistic. FXS is a learning and intellectual disability, while ASD includes a wide range of social and communications challenges.

What are the key findings of your most recent research?

The study in Glia shows that some physical symptoms of FXS can be induced in mice by eliminating FMRP from astroglia alone. So in thinking about gene therapy for FXS, we need to consider glia cells, not just neurons. Our PNAS paper is exciting because it defines a unique, distinct FMRP-dependent pathway in mouse and human astroglia that regulates communications from astroglia to neurons through mGluR5, an important receptor for glutamate, the neurotransmitter that triggers brain activity. Interestingly, this regulation pathway isnt found in neurons. Its also the first study to demonstrate how overall protein expression is changed in FMR1-deficient astroglia. Unveiling astroglia-specific molecular mechanisms involved in FXS development could give us new targets for potential therapeutics.

Whats next?

We want to better understand the pathophysiology of FXS and identify new avenues for drugs and other interventions to attenuate the effects of the disease. Of course gene therapy would be wonderful but it often takes a long, long time and carries a lot of risk. Most other studies have focused on the neuron side, and drug trials based on these studies have failed so far. Our glia/astroglia perspective gives a fresh view to search for new targets.

See the original post here:
Getting to the Roots of Fragile X Syndrome - Tufts Now

Recommendation and review posted by Bethany Smith

Mum’s heartfelt reason for backing children’s brain tumour research – The University of Manchester

Carla said: The radiotherapy was really tough and Luca had to be sedated every day for six weeks so that he could receive the treatment. It was also hard to separate the boys for those six weeks as Rocco is non-verbal autistic and the two brothers are extremely close. We made sure we FaceTimed as often as possible so the boys could wave to each other.

I havent spoken to Luca about cancer as hes too young to understand it properly. But he knows that he needs to take medicine to get better, and thats enough for now.

Weve had our challenges, but he shows amazing bravery and courage and has a huge smile on his face every day. He is my strength and inspires me to keep on going. Even when his hair fell out from the chemotherapy, he was so happy not to have to go for haircuts! I'm just so proud of him.

Carla added: Luca is living proof of why research into cancer is so important as, thanks to treatment, he is still here today. But although his tumour has been successfully targeted with treatment, he has sadly been left with side effects which will need monitoring for many years to come. Radiotherapy for childrens cancers is very effective, but what many people dont realise is how harsh the treatment can be on youngsters, especially when they are blasting an area as sensitive as the brain.

Lucas short-term memory and attention span has definitely been affected by what hes been through. Sometimes when were chatting, hell just zone out as though he doesnt understand what Im saying. And hes also more forgetful, I can tell him something one minute thats totally forgotten the next. As he gets older, he will need to be monitored for any more effects of the treatments.

The Manchester-based scientists are benefitting from the new Stand Up To Cancer-Cancer Research UK Paediatric Cancer New Discoveries Challenge awards. Their work has been recognised because it reflects Stand Up To Cancer and Cancer Research UKs shared ambition to accelerate the development of new treatments for some of the rarest and hardest to treat cancers in children and young people.

Lead scientist Dr Martin McCabe, who is based at The Christie, said: Its great news for Manchester that we have been awarded this funding. Its an ambitious goal, but we hope this research could lead to safer radiotherapy treatments for childhood brain tumours treatments that arent as tough on young people as the ones we use now, and maybe new treatments that could help more young people to survive this type of cancer in the future. This research could be a real game-changer for generations to come as we develop ways to deliver radiotherapy accurately to tumours but avoid sensitive areas of the brain and ultimately give patients much better lives.

He continued: The award is also a proud recognition of Manchesters reputation as a world-leading centre in cancer research. Manchester remains an international leader in the fields of proton beam therapy, gene therapy and immunotherapy and is home to The Royal Manchester Childrens Hospital, the biggest childrens hospital in Europe and The Christie, the biggest single-site, dedicated cancer hospital in Europe. Were excited to have been awarded this funding and were looking forward to bringing our expertise to a global team to help more young people across the world with this devastating disease.

Stand Up To Cancer in the UK is a joint national fundraising initiative from Cancer Research UK and Channel 4.This Friday October 23 will see special editions of Celebrity Gogglebox, and The Last Leg to raise awareness of the cause

Anna Taylor, Cancer Research UK spokesperson for the North West, said: People in Manchester have every right to feel proud of the groundbreaking research being carried out on their doorstep, and of their fundraising efforts, which are helping to beat the disease.

Every year, over 40,000 people are diagnosed with cancer in the North West**. So, were working every day to get new cancer tests and treatments to people who need them the most. Cancer doesnt stop in the face of a pandemic. It can affect anyones life, at any time so we only have one option: speed up life-saving research.

Thats why now is the time to Stand Up To Cancer. Were asking everyone to donate or fundraise in any way they can, so we can keep funding incredible scientists like Dr McCabe and his team and help save more lives.

To get involved visit su2c.org.uk

More:
Mum's heartfelt reason for backing children's brain tumour research - The University of Manchester

Recommendation and review posted by Bethany Smith

A Pizza Hut Prescription for Gene Therapy Companies | Roots Analysis – Eurowire

As we enter 2020, one drug class that is set to take-off is gene therapy. With three approvals (Zolgensma (US), Zynteglo (Europe) and Beperminogene Perplasmid (Japan), 2019 was a break out year for gene therapy developers. The $16 billion-plus investment by various investors finally seems to be paying off as we enter 2020 with am.,

For More Insights Click Here

While several positives make us all very optimistic about the future of gene therapies, there are a few challenges that must be addressed before these therapies can achieve their true potential. Challenges related to pipeline development, platform selection, manufacturing, and reimbursement are amongst the top hurdles that these companies are currently facing. Also, the challenges related to supply chain and logistics are beginning to arise as these therapies reach the market.

These logistical challenges are more pronounced when products are to be distributed to international markets. Given the lack of experience specific to gene therapies in the industry, the networks may not be as developed, and delay times at ports of entry may be ruinous to products with limited shelf lives. A few other industries that have faced such logistic issues in the past are the food delivery market, and the rental cabs or bookings market. Earlier, it had become so difficult to track the status of your pizza order. But now, with the rise of mobile applications, you can track the progress in real-time.

Let us imagine a scenario wherein you are celebrating the new years eve with your family. You have decided to order pizzas for the family from this amazing restaurant. You call the restaurant and place the order. The restaurant confirms your order and then the wait begins. 10 minutes.20 minutes30 minutes pass and you have no idea where your order is. The new year celebration excitement suddenly turns to anxiety and you are worried and unsure about when can you exactly expect your pizza.

Now let us think about what happens to a patient that is eligible for a gene therapy treatment. Given the exhaustive inclusion criteria, only a limited number of patients qualify for these therapies, and once they qualify, the wait begins. And it is not just the patient who is waiting, their entire family, along with the doctors are anxiously waiting for that personalized dose of cells to be delivered at the hospital bed that can finally cure the disease. If we are ready to stretch our imaginations, this wait and anxiety that the patient faces can easily be compared to the pizza hut craving that you were having on the new years eve.

The solution simple. Get an App!!

Do what every company seems to be doing these days. Make personalized therapies even more personalized. Get an app that tells the patient the whereabouts of their therapy across the supply chain. Give the patient some control and deliver not just a therapy, but an experience.

Some of the players, such as (illustrative list) Trakcel, Veeva, Be the Match BioTherapies, are already deploying solutions that can be used to efficiently manage and streamline various aspects of the complex supply chains of cell and advanced therapies. Presently, there are more than 160 innovative software-enabled systems for managing the cell and advanced therapies supply chain.

For further information, check out the report here

Read more insights at

Roots Analysis Leaders in Pharmaceutical & Biotechnology Market Research

You may also be interested in the following titles:

About Roots Analysis

Roots Analysis is one of the fastest growing market research companies, sharing fresh and independent perspectives in the bio-pharmaceutical industry. The in-depth research, analysis and insights are driven by an experienced leadership team which has gained many years of significant experience in this sector. If youd like help with your growing business needs, get in touch at [emailprotected]

Contact Information

Roots Analysis Private Limited

Gaurav Chaudhary

+1 (415) 800 3415

[emailprotected]

Continued here:
A Pizza Hut Prescription for Gene Therapy Companies | Roots Analysis - Eurowire

Recommendation and review posted by Bethany Smith

Innovation Wrap: Cell-Based Meat, AI Less-Than-One-Shot Learning, Gene Therapy & Autism – ShareCafe

Heres your wrap of the latest technology, innovation, and finance news.

Alternative Foods

How far are cell-based meats from commercialisation? Verdict talked with Memphis Meats about where they are on commercialisation journey.

We need to find clever process solutions and cell feed formulations to ensure that were translating our raw materials into meat in the most cost-effective ways.

For the vegans who dont like soy milk, Impossible Foods is developing a plant-based alternative to cows milk.

As with Impossible Foods meat products, the goal of the milk alternative is to preserve the experience of consuming dairy products, including the texture, mouth feel, and flavour, while reducing the demand for raising animals like cattle.

Gaming

Alexandria Ocasio-Cortez played Among Us on Twitch and 430,000 people tuned in, making her the third most popular streamer on the site ever.

More important, the event offered a glimpse at the future of political campaigning. In the waning weeks of 2020s volatile American election campaign, Democrats are increasingly turning to Twitch streams of popular video games to reach out to young voters and urge every last one of them to show up and vote.

Video games are helping veterans with PTSD.

Amazons cloud-gaming service, Luna, is now available to select gamers in the United States.

Cyberpunk 2077 is using procedurally-generated facial animations to provide full lip-sync for every character in all 10 dubbed languages. See Judy speak English, French, German, and Japanese at the 17:05 point.

Artificial Intelligence

Facebook has developed a new AI thats capable of directly translating between any pair of 100 languages without first translating to English, as many systems do, and its performing pretty well.

The AI outperforms such systems by 10 points on a 100-point scale used by academics to automatically evaluate the quality of machine translations. Translations produced by the model were also assessed by humans, who scored it as around 90 per cent accurate.

A new paper outlines less than one-shot learning, a new technique designed to let AI learn with practically no data.

This is what most interests Tongzhou Wang, an MIT PhD student who led the earlier research on data distillation. The paper builds upon a really novel and important goal: learning powerful models from small data sets, he says of Sucholutskys contribution.

Landing AI is a company founded by Andrew Ng, one of the cofounders of Google Brain and the former chief scientist at Baidu. Theyve recently launched LandingLens, a computer vision platform that enables manufacturers to train AI models.

I feel like this is where the field of AI needs to go. Rather than highly skilled engineers at Landing AI or Google or wherever doing all the machine learning work to build verticalized platforms, someone in a platform [who] really understands what is a dent versus what is a sensible-minded blemish can do the customization. I think this is important for machine learning to reach its full potential, Ng said.

Biology

For the first time, scientists have improved the resolution of cryo-electron microscopes to the point where they can see individual atoms (see paper 1, paper 2).

Now, with the help of improvements in electron beam technology, detectors, and software, two groups of researchersfrom the United Kingdom and Germanyhave narrowed that to 1.25 angstroms or better,sharp enough to work out the position of individual atoms, they report today inNature.

Space

Microsoft is taking Azure cloud computing to outer space.

The goal is to serve as a bridge between satellites and new services from both the public and private sectors, spanning military, telecommunications, agriculture, energy, and more.

NASA has awarded Nokia a $14.1 million contract to build a 4G network on the moon.

Blue Origin has found a business niche with NASA and private science experiments.

Tucked under the collar at the top of the booster on Tuesdays launch were prototypes of sensors that could help NASA astronauts safely reach the lunar surface in a few years. It is part of NASAs Tipping Point program, which seeks to push innovative technologies.

Head of NASAs Pluto mission, Alan Stern, is going to space with Virgin Galactic.

Stern will oversee two different experiments while on board the flight, each meant to take advantage of the brief stay in the space environment.

OSIRIS-REx, a NASA spacecraft, has sampled material from the asteroid Bennu.

Surveillance

Activists around the world are building facial recognition tools to identify police officers that arent wearing identification.

I am involved with developing facial recognition to in fact use on Portland police officers, since they are not identifying themselves to the public, Mr. Howell said. Over the summer, with the city seized by demonstrations against police violence, leaders of the department had told uniformed officers that they couldtape over their name. Mr. Howell wanted to know: Would his use of facial recognition technology become illegal?

Mobility

Boom Supersonic unveiled XB-1, a subscale prototype of their planned supersonic passenger jet.

Dubbed XB-1, the 71-foot-long, single-seat test vehicle was built to validate the design and technology of the companys planned eventual final product, a $200 million airliner called Overture that will be three times XB-1s size and carry 55 passengers to Mach 2.2.

Health

Can gene therapy be used to treat some forms of autism?

Gene therapies are now moving into the autism space, and the Angelman trial is a sign of things to come. A success in this space will completely change the way that we think about genetic testing in autism, saysTimothy Yu, a neurologist and geneticist atBoston Childrens Hospital in Massachusetts. It will hold out the idea that if you can name the disease, you can actually do something to improve the quality of life for that child.

Researchers are using lab-grown tissue grafts for personalised joint replacements.

A team at the University of Leeds have developed a robotic arm to perform colonoscopies.

The researchers successfully tested this method in an artificial colon as well as in two pigs. They believe the magnetically controlled procedure may be lesspainfulthan conventional colonoscopies and could be used on patients without sedation.

Ecommerce

Alibaba is spending $3.6 billion to double its stake in Sun Art Retail Group, Chinas largest big-box retailer with more than 480 large supermarket-department stores.

Gavin Baker argues that leading brick-and-mortar retailers are likely to be the biggest long-term Covid beneficiaries.

Finance

China is experiencing a boom in share sales.

So far this year, exchanges in Shanghai and Shenzhen have hosted more than $47.5 billion of IPOs and listings for firms that have shares already trading elsewhere, Refinitiv data shows.

That is already the highest annual tally compared with any full year since 2010 and an unprecedented 27% of the global total, the data shows. If deals in Hong Kong by Chinese companies are added, the proportion rises to 43%.

Other Snippets

MIT Technology Review looked at Singapores huge bet on vertical farming.

Since then, food security has raced up the agenda. Now the governments stated policy is that it wants to produce enough food to supply 30% of its own nutritional needs by 2030, up from just 10% now. To get there, it says, Singapore will need to grow 50% of all fruits and vegetables consumed domestically, 25% of all proteins, and 25% of all staples, such as brown rice. The commitment effectively aims to triple production by volume in the next 10 years. And since the country is short of land, it has pinned its hopes on technology.

Zoom has begun rolling out end-to-end encryption.

All Zoom users free or paid can now host a meeting with up to 200 participants with end-to-end encryption on the platform, meaning the company cannot access any of the data it is hosting.

The New York Times discussed the problem of free speech in an age of disinformation, and how democracies in Europe and Canada balance free speech with other democratic values.

A Japanese politician is battling to vanquish the ink stamp, the printer, and the fax machine.

Why do we need to print out paper? Mr. Kono asked rhetorically at a news conference soon after taking charge of the issue in September. In many cases, it is simply because the hanko is required. So if we can put a stop to that culture, then it will naturally eliminate the need for printouts and faxes.

Fast Company outlined 25 moments in tech that defined the past 25 years.

Read more:
Innovation Wrap: Cell-Based Meat, AI Less-Than-One-Shot Learning, Gene Therapy & Autism - ShareCafe

Recommendation and review posted by Bethany Smith

Covid-19 plasma therapy has shown little benefit in patients in India, study finds – ETHealthworld.com

NEW DELHI: Convalescent plasma therapy, which uses the blood of recovered Covid-19 patients as a potential treatment, has shown limited effect in reducing the progression to severe disease or death in a trial conducted in India, scientists say. The study, published in the British Medical Journal (BMJ) involved 464 adults with moderate Covid-19 who were admitted to hospitals in India between April and July.

As many as 239 adult patients received two transfusions of convalescent plasma, 24 hours apart, alongside standard care, while the control group comprising of 229 patients received standard care only.

One month later, 44 patients or 19 per cent of those who received the plasma had progressed to severe disease or had died of any cause, compared with 41 patients or 18 per cent in the control group.

"Convalescent plasma was not associated with a reduction in progression to severe Covid-19 or all cause mortality," the researchers wrote in the journal.

"This trial has high generalisability and approximates convalescent plasma use in real life settings with limited laboratory capacity," they said.

The researchers noted that a prior measurement of neutralising antibody titres in donors and participants might further clarify the role of convalescent plasma in the management of Covid-19.

Patients in the study were aged at least 18 years who had confirmed Covid-19 based on a RT-PCR result for SARS-CoV-2, the virus that causes the disease.

Participants in the intervention arm received two doses of 200 millilitre (mL) of convalescent plasma, transfused 24 hours apart, in addition to the best standard of care.

Although the observational studies conducted previously suggested clinical benefits in recipients of convalescent plasma, the trials were stopped early and failed to ascertain any mortality benefit from plasma treatment in patients with Covid-19, the researchers said.

Although plasma treatment was associated with earlier resolution of shortness of breath and fatigue and higher negative conversion of SARS-CoV-2 RNA on day 7 of enrolment, as a potential treatment for patients with moderate Covid-19 it showed limited effectiveness.

View original post here:
Covid-19 plasma therapy has shown little benefit in patients in India, study finds - ETHealthworld.com

Recommendation and review posted by Bethany Smith

Cell and Gene Therapy Manufacturing: Rising Demand Forces Companies to Look Beyond Viral Vectors | Roots Analysis – Eurowire

The rise in the popularity of cell and Gene Therapy has been widely talked about in recent years. The rise in this popularity has come with its own challenges, a number of which were identified in a recent report by Root Analysis. The challenges vary from the high cost of manufacturing to low capacity. In fact, the Roots Analysis team interviewed several stakeholders to understand their perspective about the key challenges in the vector manufacturing market. The key points from the interviews have been highlighted in this article. In the figure, I have added some of these challenges:

For More Insights Click Here

Capacity constraints remain a key challenge and have been talked about quite actively. In fact, we have seen several players invest heavily in enhancing their vector manufacturing capacity. However, one other area that has silently emerged as a potentially hot topic is the novel vectors (beyond traditional AAV vectors).

Currently, the vector manufacturing market is dominated by viral vectors, such as those based on AAV, adenovirus, lentivirus, and retrovirus. However, certain non-viral vectors, such as plasmid DNA, also hold a considerable share. Roots Analysis, in their report, talked about the rise of these non-viral vectors and identified the key emerging vectors types. Some of the vectors highlighted in the report are alphavirus, Anc80 vector, B. longum, Listeria monocytogenes, minicircle DNA, myxoma virus, Sendai virus, self-complementary vectors (which are essentially improved versions of AAV vectors) Sleeping Beauty transposon-based non-viral vectors, and Vaccinia virus-based vectors.

In fact, several players in the biopharmaceutical industry have already begun using some of the novel vector types mentioned above for the development of their respective pipeline therapy candidates. A few of the players involved in the novel vectors space are highlighted below:

The stakeholders interviewed by Roots Analysis agreed to the rising demand for novel vector types. Here are the excerpts from some of the interviews:

We believe that a few novel vectors, having low immunogenicities and targeting different cell types, are likely to soon be introduced into the market. I am also aware of companies that are researching different (better) versions of adeno-associated viral vectors. Executive & Scientific Officer, A small-sized company based in Belgium

We have worked with a couple of transposons and the Vaccinia viruses as vectors, the latter cannot exactly be regarded as a novel approach. I believe, transposons and Sendai virus are the only novel vector systems that are likely to soon become popular. Managing Director, A management consulting firm for regenerative medicines based in Japan

To overcome the challenges associated with the production of contaminant free final product using conventional plasmids, we are developing a minicircle DNA vector, which are devoid of antibiotic resistance genes and prokaryotic plasmid components, which are crucial for the replication of constructs in bacteria. Project Manager and Marketing Manager, a small-sized company based in Germany

For further information, check out the report here

Read more insights at

Roots Analysis Leaders in Pharmaceutical & Biotechnology Market Research

You may also be interested in the following titles:

About Roots Analysis

Roots Analysis is one of the fastest growing market research companies, sharing fresh and independent perspectives in the bio-pharmaceutical industry. The in-depth research, analysis and insights are driven by an experienced leadership team which has gained many years of significant experience in this sector. If youd like help with your growing business needs, get in touch at [emailprotected]

Contact Information

Roots Analysis Private Limited

Gaurav Chaudhary

+1 (415) 800 3415

[emailprotected]

Read more from the original source:
Cell and Gene Therapy Manufacturing: Rising Demand Forces Companies to Look Beyond Viral Vectors | Roots Analysis - Eurowire

Recommendation and review posted by Bethany Smith

Chinese investors wager $105M on an IPO-bound biotech looking to push RNAi as mainstream cancer therapy – Endpoints News

Shortly after Sirnaomics brought in a $47 million Series C for its small interfering RNA pipeline last year, Patrick Lu the founder, president and CEO was asked to outline the scientific advances that will be necessary to make better drugs out of RNA tech.

The next step in the evolution of RNAi as a leading therapeutic will be the ability to safely target organs outside the liver such as lung, brain, etc, he had offered. This will revolutionize disease treatments if the industry can demonstrate similar data sets for non-liver targets as we have seen in liver-based diseases.

Then in April, the trans-Pacific biotech did just that. In a Phase II open-label dose escalation study, Sirnaomics reported interim results suggesting that its lead drug, STP705, helped certain cancer patients clear their squamous cell carcinoma.

Investors now say its time for a Series D, pumping $105 million into the STP705 program as well as another lead drug named STP707. The clinical focus, Sirnaomics added, will be evaluating these dual-targeted siRNA inhibitors, which hit TGF-1 and COX-2 either locally or systemically, together with checkpoint inhibitors. But with almost 10 other programs in the pipeline, the company remains on track to explore not just RNAis application in cancer but also in fibrosis diseases, metabolic diseases and viral infections.

Rotating Boulder Fund, an existing investor, led the round alongside new backers Walvax Biotechnology and Sunshine Riverhead Capital. Others on the syndicate include Sangel Capital, Longmen Capital, HongTao Capital and Alpha Win Capital.

In addition to a potential collaboration with Walvax on technical transfer and commercialization, Lu is open about preparing for an IPO in near future.

The company is the only biopharma venture conducting innovative R&D and clinical development in the field of RNAi therapeutics in both the US and China, the two largest markets for cancer and fibrosis disease treatments, Donald (Xiaochang) Dai, managing partner of Rotating Boulder Fund, noted in a statement.

With offices in Gaithersburg, MD and Suzhou BioBay just west of Shanghai, Sirnaomics recognizes that it is traveling down a path blazed by the likes of Alnylam and Arrowhead. But it boasts of a platform comprising a new polypeptide nanoparticle delivery system and a way to hit two targets at once promising to push RNAi beyond rare diseases or even cardiovascular conditions.

At Sirnaomics specifically, we are forging a path to bring RNAi therapeutics to the mainstream as therapeutic modalities for treatment of many diseases, such as non-melanoma skin cancer, liver cancer, liver fibrosis and NASH, Lu said in his 2019 interview.

Read this article:
Chinese investors wager $105M on an IPO-bound biotech looking to push RNAi as mainstream cancer therapy - Endpoints News

Recommendation and review posted by Bethany Smith

U.S. Food and Drug Administration Accepts for Priority Review Applications for OPDIVO (nivolumab) in Combination with CABOMETYX (cabozantinib) in…

PRINCETON, N.J. & ALAMEDA, Calif.--(BUSINESS WIRE)--Oct 19, 2020--

Bristol Myers Squibb (NYSE: BMY) and Exelixis, Inc. (NASDAQ: EXEL) today announced that the U.S. Food and Drug Administration (FDA) has accepted the supplemental Biologics License Application (sBLA) and supplemental New Drug Application (sNDA), respectively, for OPDIVO (nivolumab) in combination with CABOMETYX (cabozantinib) for patients with advanced renal cell carcinoma (RCC). The FDA granted Priority Review to both applications and assigned a Prescription Drug User Fee Act (PDUFA) goal date, or target action date, of February 20, 2021.

These filings were based on results from the Phase 3 CheckMate -9ER trial, which evaluated OPDIVO in combination with CABOMETYX in patients with previously untreated advanced RCC versus sunitinib. In CheckMate -9ER, OPDIVO in combination with CABOMETYX demonstrated significant improvements across all efficacy endpoints, including overall survival (OS), progression-free survival (PFS) and objective response rate (ORR), versus the comparator, sunitinib.

We have witnessed practice-changing advancements in the treatment of renal cell carcinoma in recent years, but we recognize the importance of providing patients and physicians with additional options that can help them take control of the disease, said Mark Rutstein, vice president, development program lead, OPDIVO, Bristol Myers Squibb. In the CheckMate -9ER trial, combining OPDIVO and CABOMETYX, two proven agents with strong clinical legacies in advanced renal cell carcinoma, led to superior efficacy across all endpoints. We look forward to working with the FDA to bring this potential treatment option to physicians and their patients who choose an immunotherapy plus tyrosine kinase inhibitor regimen.

With their complementary mechanisms of action and evidence that CABOMETYX may promote a more immune-permissive environment, we believe there is opportunity for additive or synergistic effects with this potential combination regimen, said Gisela Schwab, M.D., president, product development and medical affairs and chief medical officer, Exelixis. Based on strong supporting data from CheckMate -9ER, the acceptance of our application is important progress in our efforts to make CABOMETYX in combination with OPDIVO available to patients with advanced kidney cancer who need additional treatment options. We look forward to working with the FDA throughout the ongoing review process.

The combination of OPDIVO plus CABOMETYX was well tolerated, with a low rate of treatment-related discontinuations, and reflected the known safety profiles of the immunotherapy and tyrosine kinase inhibitor components in patients with previously untreated advanced RCC. In addition, patient-reported outcomes data from CheckMate -9ER showed that OPDIVO in combination with CABOMETYX was associated with statistically significant improvements in health-related quality of life at most time points versus sunitinib. On September 19, 2020, results from the trial were presented as a Proffered Paper during a Presidential Symposium at the European Society for Medical Oncology (ESMO) Virtual Congress 2020.

Bristol Myers Squibb and Exelixis thank the patients and investigators who were involved in the CheckMate -9ER clinical trial.

About CheckMate -9ER

CheckMate -9ER is an open-label, randomized, multi-national Phase 3 trial evaluating patients with previously untreated advanced or metastatic renal cell carcinoma (RCC). A total of 651 patients (23% favorable risk, 58% intermediate risk, 20% poor risk; 25% PD-L11%) were randomized to receive OPDIVO plus CABOMETYX (n=323) vs. sunitinib (n=328). The primary endpoint is progression-free survival (PFS). Secondary endpoints include overall survival (OS) and objective response rate (ORR). The primary efficacy analysis is comparing the doublet combination vs. sunitinib in all randomized patients. The trial is sponsored by Bristol Myers Squibb and Ono Pharmaceutical Co and co-funded by Exelixis, Ipsen and Takeda Pharmaceutical Company Limited.

About Renal Cell Carcinoma

Renal cell carcinoma (RCC) is the most common type of kidney cancer in adults, accounting for more than 140,000 deaths worldwide each year. RCC is approximately twice as common in men as in women, with the highest rates of the disease in North America and Europe. The five-year survival rate for those diagnosed with metastatic, or advanced, kidney cancer is 12.1%.

Bristol Myers Squibb: Advancing Cancer Research

At Bristol Myers Squibb, patients are at the center of everything we do. The goal of our cancer research is to increase patients quality of life, long-term survival and make cure a possibility. We harness our deep scientific experience, cutting-edge technologies and discovery platforms to discover, develop and deliver novel treatments for patients.

Building upon our transformative work and legacy in hematology and Immuno-Oncology that has changed survival expectations for many cancers, our researchers are advancing a deep and diverse pipeline across multiple modalities. In the field of immune cell therapy, this includes registrational CAR T cell agents for numerous diseases, and a growing early-stage pipeline that expands cell and gene therapy targets, and technologies. We are developing cancer treatments directed at key biological pathways using our protein homeostasis platform, a research capability that has been the basis of our approved therapies for multiple myeloma and several promising compounds in early- to mid-stage development. Our scientists are targeting different immune system pathways to address interactions between tumors, the microenvironment and the immune system to further expand upon the progress we have made and help more patients respond to treatment. Combining these approaches is key to delivering potential new options for the treatment of cancer and addressing the growing issue of resistance to immunotherapy. We source innovation internally, and in collaboration with academia, government, advocacy groups and biotechnology companies, to help make the promise of transformational medicines a reality for patients.

About Opdivo

Opdivo is a programmed death-1 (PD-1) immune checkpoint inhibitor that is designed to uniquely harness the bodys own immune system to help restore anti-tumor immune response. By harnessing the bodys own immune system to fight cancer, Opdivo has become an important treatment option across multiple cancers.

Opdivo s leading global development program is based on Bristol Myers Squibbs scientific expertise in the field of Immuno-Oncology and includes a broad range of clinical trials across all phases, including Phase 3, in a variety of tumor types. To date, the Opdivo clinical development program has treated more than 35,000 patients. The Opdivo trials have contributed to gaining a deeper understanding of the potential role of biomarkers in patient care, particularly regarding how patients may benefit from Opdivo across the continuum of PD-L1 expression.

In July 2014, Opdivo was the first PD-1 immune checkpoint inhibitor to receive regulatory approval anywhere in the world. Opdivo is currently approved in more than 65 countries, including the United States, the European Union, Japan and China. In October 2015, the Companys Opdivo and Yervoy combination regimen was the first Immuno-Oncology combination to receive regulatory approval for the treatment of metastatic melanoma and is currently approved in more than 50 countries, including the United States and the European Union.

About CABOMETYX

In the U.S., CABOMETYX tablets are approved for the treatment of patients with advanced RCC and for the treatment of patients with HCC who have been previously treated with sorafenib. CABOMETYX tablets have also received regulatory approvals in the European Union, Japan and additional countries and regions worldwide. In 2016, Exelixis granted Ipsen exclusive rights for the commercialization and further clinical development of cabozantinib outside of the United States and Japan. In 2017, Exelixis granted exclusive rights to Takeda Pharmaceutical Company Limited for the commercialization and further clinical development of cabozantinib for all future indications in Japan. Exelixis holds the exclusive rights to develop and commercialize cabozantinib in the United States.

OPDIVO INDICATIONS

OPDIVO (nivolumab), as a single agent, is indicated for the treatment of patients with unresectable or metastatic melanoma.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with unresectable or metastatic melanoma.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of adult patients with metastatic non-small cell lung cancer (NSCLC) whose tumors express PD-L1 (1%) as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab) and 2 cycles of platinum-doublet chemotherapy, is indicated for the first-line treatment of adult patients with metastatic or recurrent non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

OPDIVO (nivolumab) is indicated for the treatment of patients with metastatic non-small cell lung cancer (NSCLC) with progression on or after platinum-based chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving OPDIVO.

OPDIVO (nivolumab) is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with progression after platinum-based chemotherapy and at least one other line of therapy. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of adult patients with unresectable malignant pleural mesothelioma (MPM).

OPDIVO (nivolumab) is indicated for the treatment of patients with advanced renal cell carcinoma (RCC) who have received prior anti-angiogenic therapy.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with intermediate or poor risk, previously untreated advanced renal cell carcinoma (RCC).

OPDIVO (nivolumab) is indicated for the treatment of adult patients with classical Hodgkin lymphoma (cHL) that has relapsed or progressed after autologous hematopoietic stem cell transplantation (HSCT) and brentuximab vedotin or after 3 or more lines of systemic therapy that includes autologous HSCT. This indication is approved under accelerated approval based on overall response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of patients with recurrent or metastatic squamous cell carcinoma of the head and neck (SCCHN) with disease progression on or after platinum-based therapy.

OPDIVO (nivolumab) is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma who have disease progression during or following platinum-containing chemotherapy or have disease progression within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab), as a single agent, is indicated for the treatment of adult and pediatric (12 years and older) patients with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer (CRC) that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of adults and pediatric patients 12 years and older with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer (CRC) that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

OPDIVO (nivolumab) is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph nodes or metastatic disease who have undergone complete resection.

OPDIVO (nivolumab) is indicated for the treatment of patients with unresectable advanced, recurrent or metastatic esophageal squamous cell carcinoma (ESCC) after prior fluoropyrimidine- and platinum-based chemotherapy.

OPDIVO IMPORTANT SAFETY INFORMATION

Severe and Fatal Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions listed herein may not be inclusive of all possible severe and fatal immune-mediated adverse reactions.

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue. While immune-mediated adverse reactions usually manifest during treatment, they can also occur at any time after starting or discontinuing YERVOY. Early identification and management are essential to ensure safe use of YERVOY. Monitor for signs and symptoms that may be clinical manifestations of underlying immune-mediated adverse reactions. Evaluate clinical chemistries including liver enzymes, creatinine, adrenocorticotropic hormone (ACTH) level, and thyroid function at baseline and before each dose. Institute medical management promptly, including specialty consultation as appropriate.

Withhold or permanently discontinue YERVOY depending on severity. In general, if YERVOY requires interruption or discontinuation, administer systemic corticosteroid therapy (1 to 2 mg/kg/day prednisone or equivalent) until improvement to Grade 1 or less followed by corticosteroid taper for at least 1 month. Consider administration of other systemic immunosuppressants in patients whose immune-mediated adverse reaction is not controlled with corticosteroid therapy. Institute hormone replacement therapy for endocrinopathies as warranted.

Immune-Mediated Pneumonitis

OPDIVO can cause immune-mediated pneumonitis. Fatal cases have been reported. Monitor patients for signs with radiographic imaging and for symptoms of pneumonitis. Administer corticosteroids for Grade 2 or more severe pneumonitis. Permanently discontinue for Grade 3 or 4 and withhold until resolution for Grade 2. In patients receiving OPDIVO monotherapy, fatal cases of immune-mediated pneumonitis have occurred. Immune-mediated pneumonitis occurred in 3.1% (61/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated pneumonitis occurred in 6% (25/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated pneumonitis occurred in 10% (5/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated pneumonitis occurred in 4.4% (24/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated pneumonitis occurred in 1.7% (2/119) of patients. In NSCLC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated pneumonitis occurred in 9% (50/576) of patients, including Grade 4 (0.5%), Grade 3 (3.5%), and Grade 2 (4.0%) immune-mediated pneumonitis. Four patients (0.7%) died due to pneumonitis. The incidence and severity of immune-mediated pneumonitis in patients with NSCLC treated with OPDIVO 360 mg every 3 weeks in combination with YERVOY 1 mg/kg every 6 weeks and 2 cycles of platinum-doublet chemotherapy were comparable to treatment with OPDIVO in combination with YERVOY only. The incidence and severity of immune-mediated pneumonitis in patients with malignant pleural mesothelioma treated with OPDIVO 3 mg/kg every 2 weeks with YERVOY 1 mg/kg every 6 weeks were similar to those occurring in NSCLC.

In Checkmate 205 and 039, pneumonitis, including interstitial lung disease, occurred in 6.0% (16/266) of patients receiving OPDIVO. Immune-mediated pneumonitis occurred in 4.9% (13/266) of patients receiving OPDIVO: Grade 3 (n=1) and Grade 2 (n=12).

Immune-Mediated Colitis

OPDIVO can cause immune-mediated colitis. Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 (of more than 5 days duration), 3, or 4 colitis. Withhold OPDIVO monotherapy for Grade 2 or 3 and permanently discontinue for Grade 4 or recurrent colitis upon re-initiation of OPDIVO. When administered with YERVOY, withhold OPDIVO and YERVOY for Grade 2 and permanently discontinue for Grade 3 or 4 or recurrent colitis. In patients receiving OPDIVO monotherapy, immune-mediated colitis occurred in 2.9% (58/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated colitis occurred in 26% (107/407) of patients including three fatal cases. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated colitis occurred in 10% (5/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated colitis occurred in 10% (52/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated colitis occurred in 7% (8/119) of patients.

In a separate Phase 3 trial of YERVOY 3 mg/kg, immune-mediated diarrhea/colitis occurred in 12% (62/511) of patients, including Grade 3-5 (7%).

Cytomegalovirus (CMV) infection/reactivation has been reported in patients with corticosteroid-refractory immune-mediated colitis. In cases of corticosteroid-refractory colitis, consider repeating infectious workup to exclude alternative etiologies. Addition of an alternative immunosuppressive agent to the corticosteroid therapy, or replacement of the corticosteroid therapy, should be considered in corticosteroid-refractory immune-mediated colitis if other causes are excluded.

Immune-Mediated Hepatitis

OPDIVO can cause immune-mediated hepatitis. Monitor patients for abnormal liver tests prior to and periodically during treatment. Administer corticosteroids for Grade 2 or greater transaminase elevations. For patients without HCC, withhold OPDIVO for Grade 2 and permanently discontinue OPDIVO for Grade 3 or 4. For patients with HCC, withhold OPDIVO and administer corticosteroids if AST/ALT is within normal limits at baseline and increases to >3 and up to 5 times the upper limit of normal (ULN), if AST/ALT is >1 and up to 3 times ULN at baseline and increases to >5 and up to 10 times the ULN, and if AST/ALT is >3 and up to 5 times ULN at baseline and increases to >8 and up to 10 times the ULN. Permanently discontinue OPDIVO and administer corticosteroids if AST or ALT increases to >10 times the ULN or total bilirubin increases >3 times the ULN. In patients receiving OPDIVO monotherapy, immune-mediated hepatitis occurred in 1.8% (35/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated hepatitis occurred in 13% (51/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated hepatitis occurred in 20% (10/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated hepatitis occurred in 7% (38/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated hepatitis occurred in 8% (10/119) of patients.

In Checkmate 040, immune-mediated hepatitis requiring systemic corticosteroids occurred in 5% (8/154) of patients receiving OPDIVO.

In a separate Phase 3 trial of YERVOY 3 mg/kg, immune-mediated hepatitis occurred in 4.1% (21/511) of patients, including Grade 3-5 (1.6%).

Immune-Mediated Endocrinopathies

OPDIVO can cause immune-mediated hypophysitis, immune-mediated adrenal insufficiency, autoimmune thyroid disorders, and Type 1 diabetes mellitus. Monitor patients for signs and symptoms of hypophysitis, signs and symptoms of adrenal insufficiency, thyroid function prior to and periodically during treatment, and hyperglycemia. Withhold for Grades 2, 3, or 4 endocrinopathies if not clinically stable. Administer hormone replacement as clinically indicated and corticosteroids for Grade 2 or greater hypophysitis. Withhold for Grade 2 or 3 and permanently discontinue for Grade 4 hypophysitis. Administer corticosteroids for Grade 3 or 4 adrenal insufficiency. Withhold for Grade 2 and permanently discontinue for Grade 3 or 4 adrenal insufficiency. Administer hormone-replacement therapy for hypothyroidism. Initiate medical management for control of hyperthyroidism. Withhold OPDIVO for Grade 3 and permanently discontinue for Grade 4 hyperglycemia.

In patients receiving OPDIVO monotherapy, hypophysitis occurred in 0.6% (12/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, hypophysitis occurred in 9% (36/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, hypophysitis occurred in 4% (2/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, hypophysitis occurred in 4.6% (25/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated hypophysitis occurred in 3.4% (4/119) of patients. In patients receiving OPDIVO monotherapy, adrenal insufficiency occurred in 1% (20/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, adrenal insufficiency occurred in 5% (21/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, adrenal insufficiency occurred in 18% (9/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, adrenal insufficiency occurred in 7% (41/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, adrenal insufficiency occurred in 5.9% (7/119) of patients. In patients receiving OPDIVO monotherapy, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 9% (171/1994) of patients. Hyperthyroidism occurred in 2.7% (54/1994) of patients receiving OPDIVO monotherapy. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 22% (89/407) of patients. Hyperthyroidism occurred in 8% (34/407) of patients receiving this dose of OPDIVO with YERVOY. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 22% (11/49) of patients. Hyperthyroidism occurred in 10% (5/49) of patients receiving this dose of OPDIVO with YERVOY. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 22% (119/547) of patients. Hyperthyroidism occurred in 12% (66/547) of patients receiving this dose of OPDIVO with YERVOY. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 15% (18/119) of patients. Hyperthyroidism occurred in 12% (14/119) of patients. In patients receiving OPDIVO monotherapy, diabetes occurred in 0.9% (17/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, diabetes occurred in 1.5% (6/407) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, diabetes occurred in 2.7% (15/547) of patients.

In a separate Phase 3 trial of YERVOY 3 mg/kg, severe to life-threatening endocrinopathies occurred in 9 (1.8%) patients. All 9patients had hypopituitarism, and some had additional concomitant endocrinopathies such as adrenal insufficiency, hypogonadism, and hypothyroidism. Six of the 9 patients were hospitalized for severe endocrinopathies.

Immune-Mediated Nephritis and Renal Dysfunction

OPDIVO can cause immune-mediated nephritis. Monitor patients for elevated serum creatinine prior to and periodically during treatment. Administer corticosteroids for Grades 2-4 increased serum creatinine. Withhold OPDIVO for Grade 2 or 3 and permanently discontinue for Grade 4 increased serum creatinine. In patients receiving OPDIVO monotherapy, immune-mediated nephritis and renal dysfunction occurred in 1.2% (23/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated nephritis and renal dysfunction occurred in 2.2% (9/407) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated nephritis and renal dysfunction occurred in 4.6% (25/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated nephritis and renal dysfunction occurred in 1.7% (2/119) of patients.

Immune-Mediated Skin and Dermatologic Adverse Reactions

OPDIVO can cause immune-mediated rash, including Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), some cases with fatal outcome. Administer corticosteroids for Grade 3 or 4 rash. Withhold for Grade 3 and permanently discontinue for Grade 4 rash. For symptoms or signs of SJS or TEN, withhold OPDIVO and refer the patient for specialized care for assessment and treatment; if confirmed, permanently discontinue. In patients receiving OPDIVO monotherapy, immune-mediated rash occurred in 9% (171/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated rash occurred in 22.6% (92/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated rash occurred in 35% (17/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated rash occurred in 16% (90/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated rash occurred in 14% (17/119) of patients.

YERVOY can cause immune-mediated rash or dermatitis, including bullous and exfoliative dermatitis, Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate non-bullous exfoliative rashes. Withhold YERVOY until specialist assessment for Grade 2 and permanently discontinue for Grade 3 or 4 exfoliative or bullous dermatologic conditions.

In a separate Phase 3 trial of YERVOY 3 mg/kg, immune-mediated rash occurred in 15% (76/511) of patients, including Grade 3-5 (2.5%).

Immune-Mediated Encephalitis

OPDIVO can cause immune-mediated encephalitis. Fatal cases have been reported. Evaluation of patients with neurologic symptoms may include, but not be limited to, consultation with a neurologist, brain MRI, and lumbar puncture. Withhold OPDIVO in patients with new-onset moderate to severe neurologic signs or symptoms and evaluate to rule out other causes. If other etiologies are ruled out, administer corticosteroids and permanently discontinue OPDIVO for immune-mediated encephalitis. In patients receiving OPDIVO monotherapy, encephalitis occurred in 0.2% (3/1994) of patients. Fatal limbic encephalitis occurred in one patient after 7.2 months of exposure despite discontinuation of OPDIVO and administration of corticosteroids. Encephalitis occurred in one melanoma patient receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg (0.2%) after 1.7 months of exposure. Encephalitis occurred in one RCC patient receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg (0.2%) after approximately 4 months of exposure. Encephalitis occurred in one MSI-H/dMMR mCRC patient (0.8%) receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg after 15 days of exposure.

Other Immune-Mediated Adverse Reactions

Based on the severity of the adverse reaction, permanently discontinue or withhold OPDIVO, administer high-dose corticosteroids, and, if appropriate, initiate hormone-replacement therapy. Dose modifications for YERVOY for adverse reactions that require management different from these general guidelines are summarized as follows. Withhold for Grade 2 and permanently discontinue YERVOY for Grade 3 or 4 neurological toxicities. Withhold for Grade 2 and permanently discontinue YERVOY for Grade 3 or 4 myocarditis. Permanently discontinue YERVOY for Grade 2, 3, or 4 ophthalmologic adverse reactions that do not improve to Grade 1 within 2 weeks while receiving topical therapy OR that require systemic therapy. Across clinical trials of OPDIVO monotherapy or in combination with YERVOY , the following clinically significant immune-mediated adverse reactions, some with fatal outcome, occurred in <1.0% of patients receiving OPDIVO: myocarditis, rhabdomyolysis, myositis, uveitis, iritis, pancreatitis, facial and abducens nerve paresis, demyelination, polymyalgia rheumatica, autoimmune neuropathy, Guillain-Barr syndrome, hypopituitarism, systemic inflammatory response syndrome, gastritis, duodenitis, sarcoidosis, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), motor dysfunction, vasculitis, aplastic anemia, pericarditis, myasthenic syndrome, hemophagocytic lymphohistiocytosis (HLH), and autoimmune hemolytic anemia. In addition to the immune-mediated adverse reactions listed above, across clinical trials of YERVOY monotherapy or in combination with OPDIVO, the following clinically significant immune-mediated adverse reactions, some with fatal outcome, occurred in <1% of patients unless otherwise specified: autoimmune neuropathy (2%), meningitis, encephalitis, myelitis and demyelination, myasthenic syndrome/myasthenia gravis, nerve paresis, angiopathy, temporal arteritis, pancreatitis (1.3%), arthritis, polymyositis, conjunctivitis, cytopenias (2.5%), eosinophilia (2.1%), erythema multiforme, hypersensitivity vasculitis, neurosensory hypoacusis, psoriasis, blepharitis, episcleritis, orbital myositis, scleritis, and solid organ transplant rejection. Some cases of ocular IMARs have been associated with retinal detachment.

If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Harada-like syndrome, which has been observed in patients receiving OPDIVO and YERVOY and may require treatment with systemic steroids to reduce the risk of permanent vision loss.

Infusion-Related Reactions

OPDIVO can cause severe infusion-related reactions, which have been reported in <1.0% of patients in clinical trials. Discontinue OPDIVO in patients with Grade 3 or 4 infusion-related reactions. Interrupt or slow the rate of infusion in patients with Grade 1 or 2. Severe infusion-related reactions can also occur with YERVOY. Discontinue YERVOY in patients with severe or life-threatening infusion reactions and interrupt or slow the rate of infusion in patients with mild or moderate infusion reactions. In patients receiving OPDIVO monotherapy as a 60-minute infusion,infusion-relatedreactions occurred in 6.4%(127/1994) of patients. In a separate trial in which patients received OPDIVO monotherapy as a 60-minute infusion or a 30-minute infusion, infusion-related reactions occurred in 2.2% (8/368) and 2.7% (10/369) of patients, respectively. Additionally, 0.5% (2/368) and 1.4% (5/369) of patients, respectively, experienced adverse reactions within 48 hours of infusion that led to dose delay, permanent discontinuation or withholding of OPDIVO. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, infusion-related reactions occurred in 2.5% (10/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, infusion-related reactions occurred in 8% (4/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, infusion-related reactions occurred in 5.1% (28/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, infusion-related reactions occurred in 4.2% (5/119) of patients. In MPM patients receiving OPDIVO 3 mg/kg every 2 weeks with YERVOY 1 mg/kg every 6 weeks, infusion-related reactions occurred in 12% (37/300) of patients.

In separate Phase 3 trials of YERVOY 3 mg/kg and 10 mg/kg, infusion-related reactions occurred in 2.9% (28/982).

Complications of Allogeneic Hematopoietic Stem Cell Transplantation

Fatal and other serious complications can occur in patients who receive allogeneic hematopoietic stem cell transplantation (HSCT) before or after being treated with a PD-1 receptor blocking antibody or YERVOY. Transplant-related complications include hyperacute graft-versus-host-disease (GVHD), acute GVHD, chronic GVHD, hepatic veno-occlusive disease (VOD) after reduced intensity conditioning, and steroid-requiring febrile syndrome (without an identified infectious cause). These complications may occur despite intervening therapy between PD-1 or CTLA-4 receptor blockade and allogeneic HSCT.

Follow patients closely for evidence of transplant-related complications and intervene promptly. Consider the benefit versus risks of treatment with a PD-1 receptor blocking antibody or YERVOY prior to or after an allogeneic HSCT.

Embryo-Fetal Toxicity

Based on mechanism of action, OPDIVO and YERVOY can cause fetal harm when administered to a pregnant woman. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment with OPDIVO or YERVOY and for at least 5 months after the last dose.

Increased Mortality in Patients with Multiple Myeloma when OPDIVO is Added to a Thalidomide Analogue and Dexamethasone

In clinical trials in patients with multiple myeloma, the addition of OPDIVO to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of patients with multiple myeloma with a PD-1 or PD-L1 blocking antibody in combination with a thalidomide analogue plus dexamethasone is not recommended outside of controlled clinical trials.

Lactation

It is not known whether OPDIVO or YERVOY is present in human milk. Because many drugs, including antibodies, are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from OPDIVO or YERVOY, advise women not to breastfeed during treatment and for at least 5 months after the last dose.

Serious Adverse Reactions

In Checkmate 037, serious adverse reactions occurred in 41% of patients receiving OPDIVO (n=268). Grade 3 and 4 adverse reactions occurred in 42% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse drug reactions reported in 2% to <5% of patients receiving OPDIVO were abdominal pain, hyponatremia, increased aspartate aminotransferase, and increased lipase. In Checkmate 066, serious adverse reactions occurred in 36% of patients receiving OPDIVO (n=206). Grade 3 and 4 adverse reactions occurred in 41% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse reactions reported in 2% of patients receiving OPDIVO were gamma-glutamyltransferase increase (3.9%) and diarrhea (3.4%). In Checkmate 067, serious adverse reactions (74% and 44%), adverse reactions leading to permanent discontinuation (47% and 18%) or to dosing delays (58% and 36%), and Grade 3 or 4 adverse reactions (72% and 51%) all occurred more frequently in the OPDIVO plus YERVOY arm (n=313) relative to the OPDIVO arm (n=313). The most frequent (10%) serious adverse reactions in the OPDIVO plus YERVOY arm and the OPDIVO arm, respectively, were diarrhea (13% and 2.2%), colitis (10% and 1.9%), and pyrexia (10% and 1.0%). In Checkmate 227, serious adverse reactions occurred in 58% of patients (n=576). The most frequent (2%) serious adverse reactions were pneumonia, diarrhea/colitis, pneumonitis, hepatitis, pulmonary embolism, adrenal insufficiency, and hypophysitis. Fatal adverse reactions occurred in 1.7% of patients; these included events of pneumonitis (4 patients), myocarditis, acute kidney injury, shock, hyperglycemia, multi-system organ failure, and renal failure. In Checkmate 9LA, serious adverse reactions occurred in 57% of patients (n=358). The most frequent (>2%) serious adverse reactions were pneumonia, diarrhea, febrile neutropenia, anemia, acute kidney injury, musculoskeletal pain, dyspnea, pneumonitis, and respiratory failure. Fatal adverse reactions occurred in 7 (2%) patients, and included hepatic toxicity, acute renal failure, sepsis, pneumonitis, diarrhea with hypokalemia, and massive hemoptysis in the setting of thrombocytopenia. In Checkmate 017 and 057, serious adverse reactions occurred in 46% of patients receiving OPDIVO (n=418). The most frequent serious adverse reactions reported in 2% of patients receiving OPDIVO were pneumonia, pulmonary embolism, dyspnea, pyrexia, pleural effusion, pneumonitis, and respiratory failure. In Checkmate 032, serious adverse reactions occurred in 45% of patients receiving OPDIVO (n=245). The most frequent serious adverse reactions reported in 2% of patients receiving OPDIVO were pneumonia, dyspnea, pneumonitis, pleural effusion, and dehydration. In Checkmate 743, serious adverse reactions occurred in 54% of patients receiving OPDIVO plus YERVOY. The most frequent serious adverse reactions reported in 2% of patients were pneumonia, pyrexia, diarrhea, pneumonitis, pleural effusion, dyspnea, acute kidney injury, infusion-related reaction, musculoskeletal pain, and pulmonary embolism. Fatal adverse reactions occurred in 4 (1.3%) patients and included pneumonitis, acute heart failure, sepsis, and encephalitis. In Checkmate 025, serious adverse reactions occurred in 47% of patients receiving OPDIVO (n=406). The most frequent serious adverse reactions reported in 2% of patients were acute kidney injury, pleural effusion, pneumonia, diarrhea, and hypercalcemia. In Checkmate 214, serious adverse reactions occurred in 59% of patients receiving OPDIVO plus YERVOY. The most frequent serious adverse reactions reported in 2% of patients were diarrhea, pyrexia, pneumonia, pneumonitis, hypophysitis, acute kidney injury, dyspnea, adrenal insufficiency, and colitis. In Checkmate 205 and 039, adverse reactions leading to discontinuation occurred in 7% and dose delays due to adverse reactions occurred in 34% of patients (n=266). Serious adverse reactions occurred in 26% of patients. The most frequent serious adverse reactions reported in 1% of patients were pneumonia, infusion-related reaction, pyrexia, colitis or diarrhea, pleural effusion, pneumonitis, and rash. Eleven patients died from causes other than disease progression: 3 from adverse reactions within 30 days of the last OPDIVO dose, 2 from infection 8 to 9 months after completing OPDIVO, and 6 from complications of allogeneic HSCT. In Checkmate 141, serious adverse reactions occurred in 49% of patients receiving OPDIVO (n=236). The most frequent serious adverse reactions reported in 2% of patients receiving OPDIVO were pneumonia, dyspnea, respiratory failure, respiratory tract infection, and sepsis. In Checkmate 275, serious adverse reactions occurred in 54% of patients receiving OPDIVO (n=270). The most frequent serious adverse reactions reported in 2% of patients receiving OPDIVO were urinary tract infection, sepsis, diarrhea, small intestine obstruction, and general physical health deterioration. In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO with YERVOY, serious adverse reactions occurred in 47% of patients. The most frequent serious adverse reactions reported in 2% of patients were colitis/diarrhea, hepatic events, abdominal pain, acute kidney injury, pyrexia, and dehydration. In Checkmate 040, serious adverse reactions occurred in 49% of patients receiving OPDIVO (n=154). The most frequent serious adverse reactions reported in 2% of patients were pyrexia, ascites, back pain, general physical health deterioration, abdominal pain, pneumonia, and anemia. In Checkmate 040, serious adverse reactions occurred in 59% of patients receiving OPDIVO with YERVOY (n=49). Serious adverse reactions reported in 4% of patients were pyrexia, diarrhea, anemia, increased AST, adrenal insufficiency, ascites, esophageal varices hemorrhage, hyponatremia, increased blood bilirubin, and pneumonitis. In Checkmate 238, Grade 3 or 4 adverse reactions occurred in 25% of OPDIVO-treated patients (n=452). The most frequent Grade 3 and 4 adverse reactions reported in 2% of OPDIVO-treated patients were diarrhea and increased lipase and amylase. Serious adverse reactions occurred in 18% of OPDIVO-treated patients. In Attraction-3, serious adverse reactions occurred in 38% of patients receiving OPDIVO (n=209). Serious adverse reactions reported in 2% of patients who received OPDIVO were pneumonia, esophageal fistula, interstitial lung disease and pyrexia. The following fatal adverse reactions occurred in patients who received OPDIVO: interstitial lung disease or pneumonitis (1.4%), pneumonia (1.0%), septic shock (0.5%), esophageal fistula (0.5%), gastrointestinal hemorrhage (0.5%), pulmonary embolism (0.5%), and sudden death (0.5%).

Common Adverse Reactions

In Checkmate 037, the most common adverse reaction (20%) reported with OPDIVO (n=268) was rash (21%). In Checkmate 066, the most common adverse reactions (20%) reported with OPDIVO (n=206) vs dacarbazine (n=205) were fatigue (49% vs 39%), musculoskeletal pain (32% vs 25%), rash (28% vs 12%), and pruritus (23% vs 12%). In Checkmate 067, the most common (20%) adverse reactions in the OPDIVO plus YERVOY arm (n=313) were fatigue (62%), diarrhea (54%), rash (53%), nausea (44%), pyrexia (40%), pruritus (39%), musculoskeletal pain (32%), vomiting (31%), decreased appetite (29%), cough (27%), headache (26%), dyspnea (24%), upper respiratory tract infection (23%), arthralgia (21%), and increased transaminases (25%). In Checkmate 067, the most common (20%) adverse reactions in the OPDIVO arm (n=313) were fatigue (59%), rash (40%), musculoskeletal pain (42%), diarrhea (36%), nausea (30%), cough (28%), pruritus (27%), upper respiratory tract infection (22%), decreased appetite (22%), headache (22%), constipation (21%), arthralgia (21%), and vomiting (20%). In Checkmate 227, the most common (20%) adverse reactions were fatigue (44%), rash (34%), decreased appetite (31%), musculoskeletal pain (27%), diarrhea/colitis (26%), dyspnea (26%), cough (23%), hepatitis (21%), nausea (21%), and pruritus (21%). In Checkmate 9LA, the most common (>20%) adverse reactions were fatigue (49%), musculoskeletal pain (39%), nausea (32%), diarrhea (31%), rash (30%), decreased appetite (28%), constipation (21%), and pruritus (21%). In Checkmate 017 and 057, the most common adverse reactions (20%) in patients receiving OPDIVO (n=418) were fatigue, musculoskeletal pain, cough, dyspnea, and decreased appetite. In Checkmate 032, the most common adverse reactions (20%) in patients receiving OPDIVO (n=245) were fatigue (45%), decreased appetite (27%), musculoskeletal pain (25%), dyspnea (22%), nausea (22%), diarrhea (21%), constipation (20%), and cough (20%). In Checkmate 743, the most common adverse reactions (20%) in patients receiving OPDIVO and YERVOY were fatigue (43%), musculoskeletal pain (38%), rash (34%), diarrhea (32%), dyspnea (27%), nausea (24%), decreased appetite (24%), cough (23%), and pruritus (21%). In Checkmate 025, the most common adverse reactions (20%) reported in patients receiving OPDIVO (n=406) vs everolimus (n=397) were fatigue (56% vs 57%), cough (34% vs 38%), nausea (28% vs 29%), rash (28% vs 36%), dyspnea (27% vs 31%), diarrhea (25% vs 32%), constipation (23% vs 18%), decreased appetite (23% vs 30%), back pain (21% vs 16%), and arthralgia (20% vs 14%). In Checkmate 214, the most common adverse reactions (20%) reported in patients treated with OPDIVO plus YERVOY (n=547) were fatigue (58%), rash (39%), diarrhea (38%), musculoskeletal pain (37%), pruritus (33%), nausea (30%), cough (28%), pyrexia (25%), arthralgia (23%), decreased appetite (21%), dyspnea (20%), and vomiting (20%). In Checkmate 205 and 039, the most common adverse reactions (20%) reported in patients receiving OPDIVO (n=266) were upper respiratory tract infection (44%), fatigue (39%), cough (36%), diarrhea (33%), pyrexia (29%), musculoskeletal pain (26%), rash (24%), nausea (20%) and pruritus (20%). In Checkmate 141, the most common adverse reactions (10%) in patients receiving OPDIVO (n=236) were cough and dyspnea at a higher incidence than investigators choice. In Checkmate 275, the most common adverse reactions (20%) reported in patients receiving OPDIVO (n=270) were fatigue (46%), musculoskeletal pain (30%), nausea (22%), and decreased appetite (22%). In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO as a single agent, the most common adverse reactions (20%) were fatigue (54%), diarrhea (43%), abdominal pain (34%), nausea (34%), vomiting (28%), musculoskeletal pain (28%), cough (26%), pyrexia (24%), rash (23%), constipation (20%), and upper respiratory tract infection (20%). In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO with YERVOY, the most common adverse reactions (20%) were fatigue (49%), diarrhea (45%), pyrexia (36%), musculoskeletal pain (36%), abdominal pain (30%), pruritus (28%), nausea (26%), rash (25%), decreased appetite (20%), and vomiting (20%). In Checkmate 040, the most common adverse reactions (20%) in patients receiving OPDIVO (n=154) were fatigue (38%), musculoskeletal pain (36%), abdominal pain (34%), pruritus (27%), diarrhea (27%), rash (26%), cough (23%), and decreased appetite (22%). In Checkmate 040, the most common adverse reactions (20%) in patients receiving OPDIVO with YERVOY (n=49), were rash (53%), pruritus (53%), musculoskeletal pain (41%), diarrhea (39%), cough (37%), decreased appetite (35%), fatigue (27%), pyrexia (27%), abdominal pain (22%), headache (22%), nausea (20%), dizziness (20%), hypothyroidism (20%), and weight decreased (20%). In Checkmate 238, the most common adverse reactions (20%) reported in OPDIVO-treated patients (n=452) vs ipilimumab-treated patients (n=453) were fatigue (57% vs 55%), diarrhea (37% vs 55%), rash (35% vs 47%), musculoskeletal pain (32% vs 27%), pruritus (28% vs 37%), headache (23% vs 31%), nausea (23% vs 28%), upper respiratory infection (22% vs 15%), and abdominal pain (21% vs 23%). The most common immune-mediated adverse reactions were rash (16%), diarrhea/colitis (6%), and hepatitis (3%). In Attraction-3, the most common adverse reactions occurring in 20% of OPDIVO-treated patients (n=209) were rash (22%) and decreased appetite (21%).

In a separate Phase 3 trial of YERVOY 3 mg/kg, the most common adverse reactions (5%) in patients who received YERVOY at 3 mg/kg were fatigue (41%), diarrhea (32%), pruritus (31%), rash (29%), and colitis (8%).

Please see U.S. Full Prescribing Information for OPDIVO and YERVOY.

Checkmate Trials and Patient Populations

Checkmate 037previously treated metastatic melanoma; Checkmate 066previously untreated metastatic melanoma; Checkmate 067previously untreated metastatic melanoma, as a single agent or in combination with YERVOY; Checkmate 227previously untreated metastatic non-small cell lung cancer, in combination with YERVOY; Checkmate 9LApreviously untreated recurrent or metastatic non-small cell lung cancer in combination with YERVOY and 2 cycles of platinum-doublet chemotherapy by histology; Checkmate 017second-line treatment of metastatic squamous non-small cell lung cancer; Checkmate 057second-line treatment of metastatic non-squamous non-small cell lung cancer; Checkmate 032small cell lung cancer; Checkmate 743 previously untreated unresectable malignant pleural mesothelioma, in combination with YERVOY; Checkmate 025previously treated renal cell carcinoma; Checkmate 214previously untreated renal cell carcinoma, in combination with YERVOY; Checkmate 205/039classical Hodgkin lymphoma; Checkmate 141recurrent or metastatic squamous cell carcinoma of the head and neck; Checkmate 275urothelial carcinoma; Checkmate 142MSI-H or dMMR metastatic colorectal cancer, as a single agent or in combination with YERVOY; Checkmate 040hepatocellular carcinoma, as a single agent or in combination with YERVOY; Checkmate 238adjuvant treatment of melanoma; Attraction-3esophageal squamous cell carcinoma

CABOMETYX Important Safety Information

Warnings and Precautions

Hemorrhage: Severe and fatal hemorrhages occurred with CABOMETYX. The incidence of Grade 3 to 5 hemorrhagic events was 5% in CABOMETYX patients in RCC and HCC studies. Discontinue CABOMETYX for Grade 3 or 4 hemorrhage. Do not administer CABOMETYX to patients who have a recent history of hemorrhage, including hemoptysis, hematemesis, or melena.

Perforations and Fistulas: Gastrointestinal (GI) perforations, including fatal cases, occurred in 1% of CABOMETYX patients. Fistulas, including fatal cases, occurred in 1% of CABOMETYX patients. Monitor patients for signs and symptoms of perforations and fistulas, including abscess and sepsis. Discontinue CABOMETYX in patients who experience a Grade 4 fistula or a GI perforation.

Thrombotic Events: CABOMETYX increased the risk of thrombotic events. Venous thromboembolism occurred in 7% (including 4% pulmonary embolism) and arterial thromboembolism in 2% of CABOMETYX patients. Fatal thrombotic events occurred in CABOMETYX patients. Discontinue CABOMETYX in patients who develop an acute myocardial infarction or serious arterial or venous thromboembolic event requiring medical intervention.

Hypertension and Hypertensive Crisis: CABOMETYX can cause hypertension, including hypertensive crisis. Hypertension occurred in 36% (17% Grade 3 and <1% Grade 4) of CABOMETYX patients. Do not initiate CABOMETYX in patients with uncontrolled hypertension. Monitor blood pressure regularly during CABOMETYX treatment. Withhold CABOMETYX for hypertension that is not adequately controlled with medical management; when controlled, resume at a reduced dose. Discontinue CABOMETYX for severe hypertension that cannot be controlled with anti-hypertensive therapy or for hypertensive crisis.

Diarrhea: Diarrhea occurred in 63% of CABOMETYX patients. Grade 3 diarrhea occurred in 11% of CABOMETYX patients. Withhold CABOMETYX until improvement to Grade 1 and resume at a reduced dose for intolerable Grade 2 diarrhea, Grade 3 diarrhea that cannot be managed with standard antidiarrheal treatments, or Grade 4 diarrhea.

Palmar-Plantar Erythrodysesthesia (PPE): PPE occurred in 44% of CABOMETYX patients. Grade 3 PPE occurred in 13% of CABOMETYX patients. Withhold CABOMETYX until improvement to Grade 1 and resume at a reduced dose for intolerable Grade 2 PPE or Grade 3 PPE.

Proteinuria: Proteinuria occurred in 7% of CABOMETYX patients. Monitor urine protein regularly during CABOMETYX treatment. Discontinue CABOMETYX in patients who develop nephrotic syndrome.

Osteonecrosis of the Jaw (ONJ): ONJ occurred in <1% of CABOMETYX patients. ONJ can manifest as jaw pain, osteomyelitis, osteitis, bone erosion, tooth or periodontal infection, toothache, gingival ulceration or erosion, persistent jaw pain, or slow healing of the mouth or jaw after dental surgery. Perform an oral examination prior to CABOMETYX initiation and periodically during treatment. Advise patients regarding good oral hygiene practices. Withhold CABOMETYX for at least 3 weeks prior to scheduled dental surgery or invasive dental procedures, if possible. Withhold CABOMETYX for development of ONJ until complete resolution.

Original post:
U.S. Food and Drug Administration Accepts for Priority Review Applications for OPDIVO (nivolumab) in Combination with CABOMETYX (cabozantinib) in...

Recommendation and review posted by Bethany Smith


Archives