Page 252«..1020..251252253254..260270..»

HealthDay Reports: Lockdown Got You Down? Experts Offer Tips to De-Stress – HealthDay Coronavirus Liveblog

Each week, HealthDay's Physician's Briefing division rounds up the most important COVID-19 developments in the medical field. See this week's edition below for May 25-May 29.

VA Slashes Use of Hydroxychloroquine to Treat COVID-19 Patients

FRIDAY, May 29, 2020 (HealthDay News) -- The VA health system has stopped nearly all use of hydroxychloroquine to treat COVID-19 patients, Veterans Affairs Secretary Robert Wilkie said at a House hearing on Thursday.

Read Full Article

Deferment of Elective Surgeries Due to COVID-19 Will Have Lasting Impact

FRIDAY, May 29, 2020 (HealthDay News) -- At two years after the end of the elective orthopedic surgery deferment related to the COVID-19 pandemic, there will be a cumulative backlog of more than 1 million surgical cases in an optimistic scenario, according to a study published online May 12 in The Journal of Bone and Joint Surgery.

Read Full Article

Remdesivir Use Growing Globally in COVID-19 Patients

FRIDAY, May 29, 2020 (HealthDay News) -- Worldwide more physicians are using remdesivir to treat COVID-19 patients, according to a survey released May 21 by Sermo, a global health care polling company and social platform for physicians.

Read Full Article

Five-Day Course of Remdesivir Beneficial in Severe COVID-19

FRIDAY, May 29, 2020 (HealthDay News) -- There seems to be no significant difference between a five- and 10-day course of remdesivir for patients with severe COVID-19 not requiring mechanical ventilation, according to a study published online May 27 in the New England Journal of Medicine.

Read Full Article

Burden of Severe COVID-19 High in California, Washington State

FRIDAY, May 29, 2020 (HealthDay News) -- For residents of California and Washington with COVID-19, the length of hospital stay and intensive care unit admission are high, according to a study published online May 22 in The BMJ.

Read Full Article

Positive RT-PCR Findings Seen After COVID-19 Discharge

FRIDAY, May 29, 2020 (HealthDay News) -- Some patients with COVID-19 have positive reverse transcriptase polymerase chain reaction results after discharge, according to a research letter published online May 28 in JAMA Network Open.

Read Full Article

CDC: Coronavirus Antibody Tests Still Not Accurate Enough

THURSDAY, May 28, 2020 (HealthDay News) -- Coronavirus antibody test results may not be accurate enough to help guide decisions about whether to allow large groups of people to gather at work, schools, dormitories, correctional facilities, and other locations, the U.S. Centers for Disease Control and Prevention said Wednesday.

Read Full Article

Parents Facing Higher Levels of Stress During Pandemic

THURSDAY, May 28, 2020 (HealthDay News) -- Individuals, particularly parents, are coping with extreme stress related to the COVID-19 pandemic, according to the results of a survey released May 21 by the American Psychological Association.

Read Full Article

CV Toxicity Tied to Azithromycin and/or Hydroxychloroquine

THURSDAY, May 28, 2020 (HealthDay News) -- Hydroxychloroquine and azithromycin may have a serious adverse impact on the cardiovascular system, according to a research letter published online May 22 in Circulation.

Read Full Article

Improving Glycemic Control May Also Aid COVID-19 Outcomes

THURSDAY, May 28, 2020 (HealthDay News) -- Insulin infusion helps achieve glycemic targets and may reduce the risk for poor outcomes in patients with hyperglycemia and COVID-19, according to a study published online May 19 in Diabetes Care.

Read Full Article

Parents Struggling to Provide for Families During Pandemic

WEDNESDAY, May 27, 2020 (HealthDay News) -- The COVID-19 pandemic poses risks to children's health, well-being, and development as parents struggle to provide for their families, according to a survey released by the Urban Institute.

Read Full Article

U.K. Patients Hospitalized With COVID-19 Are More Often Male

WEDNESDAY, May 27, 2020 (HealthDay News) -- Patients hospitalized with COVID-19 are more often male and frequently have comorbidities, according to a study published online May 22 in the The BMJ.

Read Full Article

Neuroimaging Features of COVID-19 Are Variable

WEDNESDAY, May 27, 2020 (HealthDay News) -- Neuroimaging features of COVID-19 are variable among patients with acute neurological symptoms but are dominated by acute ischemic infarcts, according to a research letter published online May 21 in Radiology.

Read Full Article

African-Americans More Likely to Be Hospitalized With COVID-19

WEDNESDAY, May 27, 2020 (HealthDay News) -- African-American patients have an increased likelihood of hospitalization for COVID-19, according to a report published online May 21 in Health Affairs.

Read Full Article

WHO Suspends Testing of Hydroxychloroquine in COVID-19 Patients

TUESDAY, May 26, 2020 (HealthDay News) -- The World Health Organization has suspended use of the antimalarial drug hydroxychloroquine in a clinical trial of treatments of COVID-19 after a study revealed that patients taking the drug are at increased risk for death and serious heart problems.

Read Full Article

Remdesivir Beats Placebo for Time to COVID-19 Recovery

TUESDAY, May 26, 2020 (HealthDay News) -- For adults hospitalized with COVID-19 with lower respiratory tract infection, time to recovery is shorter with remdesivir than placebo, according to a study published online May 22 in the New England Journal of Medicine.

Read Full Article

Hydroxychloroquine Plus Macrolides No Benefit in COVID-19

TUESDAY, May 26, 2020 (HealthDay News) -- For patients with COVID-19 requiring hospitalization, there is no evidence of benefit for use of hydroxychloroquine or chloroquine with or without a macrolide, according to a study published online May 22 in The Lancet.

Read Full Article

Adenovirus Type-5 Vectored COVID-19 Vaccine Shows Promise

TUESDAY, May 26, 2020 (HealthDay News) -- A recombinant adenovirus type-5 vectored COVID-19 vaccine is safe, tolerable, and immunogenic, according to a study published online May 22 in The Lancet.

Read Full Article

Placental Injury Seen in Pregnant Women With SARS-CoV-2

TUESDAY, May 26, 2020 (HealthDay News) -- Higher rates of decidual arteriopathy and other maternal vascular malperfusion features are seen in placentas of women with severe acute respiratory syndrome coronavirus 2, according to a study published online May 22 in the American Journal of Clinical Pathology.

Read Full Article

Right Ventricular Dilation Linked to Mortality in COVID-19

TUESDAY, May 26, 2020 (HealthDay News) -- Right ventricular dilation is associated with in-hospital mortality among patients hospitalized with COVID-19, according to a study published online May 15 in JACC: Cardiovascular Imaging.

Read Full Article

Original post:
HealthDay Reports: Lockdown Got You Down? Experts Offer Tips to De-Stress - HealthDay Coronavirus Liveblog

Recommendation and review posted by Bethany Smith

CRISPR And CRISPR-Associated (Cas) Genes Market Research Report 2020: Key Players, Applications, Drivers, Trends and Forecast to 2026 – WaterCloud…

Research And Development Institutes

In addition, the report categorizes product type and end uses as dynamic market segments that directly impact the growth potential and roadmap of the target market. The report highlights the core developments that are common to all regional hubs and their subsequent impact on the holistic growth path of the CRISPR And CRISPR-Associated (Cas) Genes market worldwide. Other valuable aspects of the report are the market development history, various marketing channels, supplier analysis, potential buyers and the analysis of the markets industrial chain.

Ask For Discounts @ https://www.marketresearchintellect.com/ask-for-discount/?rid=207429&utm_source=WCS&utm_medium=888

Table of Content

1 Introduction of CRISPR And CRISPR-Associated (Cas) Genes Market

1.1 Overview of the Market1.2 Scope of Report1.3 Assumptions

2 Executive Summary

3 Research Methodology of Verified Market Research

3.1 Data Mining3.2 Validation3.3 Primary Interviews3.4 List of Data Sources

4 CRISPR And CRISPR-Associated (Cas) Genes Market Outlook

4.1 Overview4.2 Market Dynamics4.2.1 Drivers4.2.2 Restraints4.2.3 Opportunities4.3 Porters Five Force Model4.4 Value Chain Analysis

5 CRISPR And CRISPR-Associated (Cas) Genes Market, By Deployment Model

5.1 Overview

6 CRISPR And CRISPR-Associated (Cas) Genes Market, By Solution

6.1 Overview

7 CRISPR And CRISPR-Associated (Cas) Genes Market, By Vertical

7.1 Overview

8 CRISPR And CRISPR-Associated (Cas) Genes Market, By Geography

8.1 Overview8.2 North America8.2.1 U.S.8.2.2 Canada8.2.3 Mexico8.3 Europe8.3.1 Germany8.3.2 U.K.8.3.3 France8.3.4 Rest of Europe8.4 Asia Pacific8.4.1 China8.4.2 Japan8.4.3 India8.4.4 Rest of Asia Pacific8.5 Rest of the World8.5.1 Latin America8.5.2 Middle East

9 CRISPR And CRISPR-Associated (Cas) Genes Market Competitive Landscape

9.1 Overview9.2 Company Market Ranking9.3 Key Development Strategies

10 Company Profiles

10.1.1 Overview10.1.2 Financial Performance10.1.3 Product Outlook10.1.4 Key Developments

11 Appendix

11.1 Related Research

Customized Research Report Using Corporate Email Id @ https://www.marketresearchintellect.com/need-customization/?rid=207429&utm_source=WCS&utm_medium=888

About Us:

Market Research Intellect provides syndicated and customized research reports to clients from various industries and organizations with the aim of delivering functional expertise. We provide reports for all industries including Energy, Technology, Manufacturing and Construction, Chemicals and Materials, Food and Beverage and more. These reports deliver an in-depth study of the market with industry analysis, market value for regions and countries and trends that are pertinent to the industry.

Contact Us:

Mr. Steven Fernandes

Market Research Intellect

New Jersey ( USA )

Tel: +1-650-781-4080

Tags: CRISPR And CRISPR-Associated (Cas) Genes Market Size, CRISPR And CRISPR-Associated (Cas) Genes Market Trends, CRISPR And CRISPR-Associated (Cas) Genes Market Growth, CRISPR And CRISPR-Associated (Cas) Genes Market Forecast, CRISPR And CRISPR-Associated (Cas) Genes Market Analysis Sarkari result, Government Jobs, Sarkari naukri, NMK, Majhi Naukri,

Excerpt from:
CRISPR And CRISPR-Associated (Cas) Genes Market Research Report 2020: Key Players, Applications, Drivers, Trends and Forecast to 2026 - WaterCloud...

Recommendation and review posted by Bethany Smith

CRISPR And CRISPR-Associated (Cas) Genes Sales Market Research Report 2020: Key Players, Applications, Drivers, Trends and Forecast to 2026 -…

Research and Development Institutes

In addition, the report categorizes product type and end uses as dynamic market segments that directly impact the growth potential and roadmap of the target market. The report highlights the core developments that are common to all regional hubs and their subsequent impact on the holistic growth path of the CRISPR And CRISPR-Associated (Cas) Genes Sales market worldwide. Other valuable aspects of the report are the market development history, various marketing channels, supplier analysis, potential buyers and the analysis of the markets industrial chain.

Ask For Discounts @ https://www.marketresearchintellect.com/ask-for-discount/?rid=240156&utm_source=WCS&utm_medium=888

Table of Content

1 Introduction of CRISPR And CRISPR-Associated (Cas) Genes Sales Market

1.1 Overview of the Market1.2 Scope of Report1.3 Assumptions

2 Executive Summary

3 Research Methodology of Verified Market Research

3.1 Data Mining3.2 Validation3.3 Primary Interviews3.4 List of Data Sources

4 CRISPR And CRISPR-Associated (Cas) Genes Sales Market Outlook

4.1 Overview4.2 Market Dynamics4.2.1 Drivers4.2.2 Restraints4.2.3 Opportunities4.3 Porters Five Force Model4.4 Value Chain Analysis

5 CRISPR And CRISPR-Associated (Cas) Genes Sales Market, By Deployment Model

5.1 Overview

6 CRISPR And CRISPR-Associated (Cas) Genes Sales Market, By Solution

6.1 Overview

7 CRISPR And CRISPR-Associated (Cas) Genes Sales Market, By Vertical

7.1 Overview

8 CRISPR And CRISPR-Associated (Cas) Genes Sales Market, By Geography

8.1 Overview8.2 North America8.2.1 U.S.8.2.2 Canada8.2.3 Mexico8.3 Europe8.3.1 Germany8.3.2 U.K.8.3.3 France8.3.4 Rest of Europe8.4 Asia Pacific8.4.1 China8.4.2 Japan8.4.3 India8.4.4 Rest of Asia Pacific8.5 Rest of the World8.5.1 Latin America8.5.2 Middle East

9 CRISPR And CRISPR-Associated (Cas) Genes Sales Market Competitive Landscape

9.1 Overview9.2 Company Market Ranking9.3 Key Development Strategies

10 Company Profiles

10.1.1 Overview10.1.2 Financial Performance10.1.3 Product Outlook10.1.4 Key Developments

11 Appendix

11.1 Related Research

Customized Research Report Using Corporate Email Id @ https://www.marketresearchintellect.com/need-customization/?rid=240156&utm_source=WCS&utm_medium=888

About Us:

Market Research Intellect provides syndicated and customized research reports to clients from various industries and organizations with the aim of delivering functional expertise. We provide reports for all industries including Energy, Technology, Manufacturing and Construction, Chemicals and Materials, Food and Beverage and more. These reports deliver an in-depth study of the market with industry analysis, market value for regions and countries and trends that are pertinent to the industry.

Contact Us:

Mr. Steven Fernandes

Market Research Intellect

New Jersey ( USA )

Tel: +1-650-781-4080

Tags: CRISPR And CRISPR-Associated (Cas) Genes Sales Market Size, CRISPR And CRISPR-Associated (Cas) Genes Sales Market Trends, CRISPR And CRISPR-Associated (Cas) Genes Sales Market Growth, CRISPR And CRISPR-Associated (Cas) Genes Sales Market Forecast, CRISPR And CRISPR-Associated (Cas) Genes Sales Market Analysis Sarkari result, Government Jobs, Sarkari naukri, NMK, Majhi Naukri,

Originally posted here:
CRISPR And CRISPR-Associated (Cas) Genes Sales Market Research Report 2020: Key Players, Applications, Drivers, Trends and Forecast to 2026 -...

Recommendation and review posted by Bethany Smith

Coronavirus testing: an updated guide on COVID-19 PCR, antibody, saliva and antigen tests – Chicago Sun-Times

Much has changed about testing for current COVID-19 infection and antibody testing for past exposure. Heres an updated guide on what you need to know:

What we have now: The most widespread tests to diagnose current COVID-19 infection are the polymerase chain reaction or PCR tests that involve swabbing a persons nasal passages and looking for the coronavirus genetic material.

Results come as quickly as less than 15 minutes with the rapid test, about which false results have been an issue, or within a couple of days if sent to a lab.

Whats coming: More tests are on the way. Scientists at Sherlock Biosciences in Cambridge, Massachussetts, are using gene-editing technology known as CRISPR to develop another type of rapid test that could be produced for as little as $6 per test.

And a new saliva test developed at Rutgers University holds great promise because it would be easy to administer even at home.

Anybody can spit, says Dr. Robert Murphy, executive director of the Institute for Global Health at Northwestern Universitys Feinberg School of Medicine, who is helping a national effort to develop point-of-care technologies. Saliva will open the door for mass testing.

What about antigen tests: Think rapid-strep tests. These still involve a swab like the PCR tests, but give quicker results and are cheaper and simpler to manufacture.

Antigen tests target substances given off by a virus that trigger antibodies in an infected person.

These drew widespread attention recently when Quidel Corp. of San Diego got federal approval for its rapid COVID-19 antigen test. But dont expect to be able to get one yet. Quidel has said its aiming to produce 1.8 million of the tests a week by this summer.

The antigen tests will be relatively easy to manufacture and use. But they produce a higher number of false-negative results.

Still, they could be useful if combined with PCR tests or used in a testing program in which people say, at a nursing home or factory get retested often.

How they work: We now know these as antibody tests. They involve a blood test yes, stick out your arm, and make a fist but a briefer one than you might be used to.

They test a small amount of blood for the presence of antibodies produced by the bodys immune system.

With COVID-19, these antibodies usually appear 14 to 21 days after infection. So these tests are done after the fact, as confirmation.

What they might reveal: Beyond that, theres hope that having the antibodies might protect against future infections.

One problem: Many of the antibody tests that were rushed out, with no vetting by the government, in response to the pandemic arent very accurate.

Also, scientists dont know how long antibodies stay in a recovered persons system or how well they might protect us. Antibodies to the onetime scourge of measles, for instance, protect a person forever. But antibodies to the common cold or influenza not so much because of the wide range of cold and flu viruses and those viruses ability to rapidly mutate.

Still, scientists are eager to launch widespread antibody testing to get a big-picture look at where the virus has hit within geographic areas and among certain populations.

For weeks, Chicago and the state of Illinois faced a shortage of test kits and swabs.

Now, weve reached the point where anyone who feels ill can and should be tested for COVID-19, says Dr. Emily Landon, executive medical director for infection prevention and control at University of Chicago Medicine: Were currently at a place where anyone who has symptoms can be tested.

The same is true if you suspect that youve been exposed, symptoms or not, Landon says.

Though some places are charging for these, many hospitals and clinics are offering no-fee tests.

For guidance, call your doctor or go online to Chicago.gov or Coronavirus.illinois.gov.

Go here to see the original:
Coronavirus testing: an updated guide on COVID-19 PCR, antibody, saliva and antigen tests - Chicago Sun-Times

Recommendation and review posted by Bethany Smith

Repare Therapeutics Announces Multi-Target Discovery Collaboration with Bristol Myers Squibb – Business Wire

CAMBRIDGE, Mass. & MONTREAL--(BUSINESS WIRE)--Repare Therapeutics Inc. (Repare), a precision oncology company pioneering synthetic lethality to develop novel therapeutics that target specific vulnerabilities of tumors in genetically defined patient populations, today announced it has entered into an exclusive, worldwide research collaboration with Bristol Myers Squibb (BMS) (NYSE:BMY).

This collaboration will help to ensure that our novel discoveries are being broadly prosecuted in the search for the next generation of precision oncology medicines, said Lloyd M. Segal, President and Chief Executive Officer of Repare Therapeutics. Bristol Myers Squibb brings key strategic capabilities to this partnership and the resources to maximize our platforms potential while allowing us to independently focus on our proprietary clinical and near-clinical programs.

We look forward to collaborating with Repare and to applying their SNIPRx technology to enable the identification of novel precision oncology therapeutics, said Rupert Vessey, M.A., B.M., B.Ch., F.R.C.P., D.Phil., Executive Vice President, Research & Early Development, Bristol Myers Squibb. Repares distinctive team and technology have the potential to lead to the discovery of important targeted drug candidates that can result in new precision therapies for patients.

Under the terms of the agreement, the companies will leverage Repares proprietary, CRISPR-enabled genome-wide synthetic lethal target discovery platform, SNIPRx, to jointly identify multiple synthetic lethal precision oncology targets for drug candidates. Repare will grant BMS exclusive worldwide rights to develop and commercialize therapeutics for select validated synthetic lethal precision oncology targets discovered under the collaboration.

As part of the agreement, BMS will make an upfront payment of $65 million which includes a $15 million equity investment in Repare. Repare will be eligible to receive up to approximately $3 billion in license fees, discovery, development, regulatory and sales-based milestones, in addition to royalty payments on net sales of each product commercialized by BMS.

About Repares SNIPRx Platform

Repare Therapeutics SNIPRx platform is a genome-wide CRISPR-based screening approach that utilizes proprietary isogenic cell lines to identify novel and known synthetic lethal gene pairs and the corresponding patients who are most likely to benefit from the Companys therapies based on the genetic profile of their tumors. Repares platform enables the development of precision therapeutics in patients whose tumors contain one or more genomic alterations identified by SNIPRx screening, in order to selectively target those patients most likely to achieve clinical benefit from resulting product candidates.

About Repare Therapeutics, Inc.

Repare Therapeutics is a leading precision oncology company enabled by its proprietary synthetic lethality approach to the discovery and development of novel therapeutics. The Company utilizes its genome-wide, CRISPR-enabled SNIPRx platform to systematically discover and develop highly targeted cancer therapies focused on genomic instability, including DNA damage repair. The Companys pipeline includes its lead product candidate RP-3500, a potential leading ATR inhibitor, as well as CCNE1-SL inhibitor and Pol inhibitor programs. For more information, please visit http://www.reparerx.com.

SNIPRx is a registered trademark of Repare Therapeutics Inc.

Read the original post:
Repare Therapeutics Announces Multi-Target Discovery Collaboration with Bristol Myers Squibb - Business Wire

Recommendation and review posted by Bethany Smith

Advanced Hormone Solutions – HORMONE THERAPY

I went in to premature menopause in 2008 and I was 38 years old at that time. My OB/GYN put me on HRT but after one year and a half, I started having palpitations and dizziness. After so medical tests, my doctors decided not to give me their HRT any longer. My OB/GYN strongly suggested to me not to take any oral hormones and I follow that recommendation for 8 years until I realized that my marriage was suffering because my libido was inexistent and having intercourse was extremely painful. That was not a good combination and I decided to start looking for getting help. I had other symptoms but after 8 years in menopause, those were manageable. So, I did some research and found Dr. Matos. Now, after two pellet therapies and a 4-week booster, I feel like a teenager. Sounds funny but it is true. Dryness is gone for good and my libido is back. I am sleeping at least 7 hours every day, I am gaining more energy, and my memory is getting stronger. Last week, I got my second pellet therapy and I have never been so excited to go to a doctors appointment in my entire live.This treatment works perfectly fine and I am encouraging my husband to give it a try.Thank you, Dr. Matos.

See the article here:
Advanced Hormone Solutions - HORMONE THERAPY

Recommendation and review posted by Bethany Smith

Bills seek to limit puberty blockers, other treatment for transgender youth – KTAR.com

TUCSON For 17-year-old Fran Howard, receiving medical care has not always been easy. Howard identifies as nonbinary gender queer and uses they/them pronouns.

Years ago, Howard began seeking treatment to help transition but found it difficult to find a doctor who respected the decision and Howards medical needs.

I felt like I had to prove my identity, Howard said. Just being in a trans body and existing in the world is already so difficult, and going to the doctor is just this whole super invasive experience.

Legislation cropping up in statehouses across the U.S. could make that experience even more difficult.

In at least a dozen states, including South Dakota, Florida and Ohio, bills were introduced this year to make it harder for transgender minors to get medical treatment such as puberty blockers and other hormone therapies.

Some bills proposed criminalizing doctors who provide such treatment. Floridas measure carried a maximum penalty of up to 15 years in prison. Missouri physicians faced having their medical licenses revoked, and parents of children receiving treatment in that state would be reported to social services for child abuse.

Advocates for trans teens assert the proposals, though theyve not become law, are part of a larger push to discriminate against transgender people. They point to other bills including one passed by the Arizona House that would ban transgender athletes in girls sports. In Arizona, that measure stalled in the Senate.

The 2020 state legislative season has seen unprecedented attacks on LGBTQ people, and an alarming focus on bills that would harm trans youth, Rose Saxe, deputy director of the American Civil Liberties Union LGBT & HIV Project, wrote on the organizations website.

These efforts are part of an orchestrated national campaign led by groups like Heritage Foundation, Alliance Defending Freedom to demonize trans youth and drive a wedge among supporters of LGBTQ equality, Saxe continued. We cant let them succeed.

Ryan Anderson, a senior research fellow at the Heritage Foundation, disputed that.

He said the measures around medical treatment are meant to protect youth from making decisions they may later regret. He called treatments such as hormone therapy and puberty blockers experimental and unethical.

Its entirely appropriate for the government to say that physicians cant perform those procedures to protect children from the abuse of medicine, the misuse of medicine, he said.

In an email, Matt Sharp, senior counsel for the Alliance Defending Freedom, said: While approaches may differ, we should all agree that there is nothing natural or healthy about pumping kids full of puberty blockers and cross-sex hormones.

Children should not be pushed to receive experimental treatments that can leave them permanently sterile and physically marred for life.

Fran Howard, with the support of their mother, sought medical treatment at age 13 after questioning their gender identity. They found help at El Rio Health. After consultations, treatment started with puberty suppression and has progressed to testosterone.

Before transitioning, my mental health was in a really terrible place. Nobody saw me as who I was. I didnt see myself as who I was, Howard said.

Being able to transition has saved my life, and the fact that that is being challenged for other people is very frightening, because many people will not be able to survive.

Howards mother, Tina, said she raised her children in a gender-fluid home, avoiding assigning specific gender roles.

This is really about building a safe environment for trans individuals and their family, she said.

Pediatricians Andrew Cronyn and Tracey Kurtzman started the El Rio clinics transgender department five years ago, and theyve treated about 250 patients since.

Cronyn initially had planned to launch a program for the children of lesbian, gay and bisexual parents. But after posting a note on Facebook, he heard about a different need: appropriate primary care for transgender kids whose pediatricians wouldnt call them by their preferred names or pronouns or tried to convince them their gender assignment at birth was appropriate.

The kids we see will usually have been talking to their parents about gender at home for six months to a year before they even consider talking to a doctor about it, he said.

Cronyn works with patients parents to educate them about gender dysphoria, a condition in which people feel a conflict between the gender assigned them at birth and the gender they identify with.

For those beginning puberty, treatment may include drugs that inhibit or delay puberty. For older teens who have been persistent, consistent and insistent about their gender identity, Cronyn said, hormone therapy may be prescribed.

According to the Mayo Clinic, puberty blockers do not cause permanent changes in an adolescents body, and puberty can resume if the treatment is stopped.

A lot of people worry youre blocking it and youve changed their life completely, Cronyn said. And the truth is we havent. If they say, This isnt the right road for me, then we can stop the medicine and their puberty starts right where it was before.

Cronyn and other experts said they worry about efforts to try to restrict such care and the potential effects on the emotional health of transgender children.

Research published last year by the American Academy of Pediatrics found that transgender youth are more likely to consider suicide than other teens. The study found 34% of transgender adolescents reported experiencing suicidal ideation in the past year, while 61% reported having suicidal thoughts over their lifetime.

Alex Keuroghlian is an associate professor of psychiatry at Harvard Medical School, director of the Massachusetts General Hospital Psychiatry Gender Identity Program and also directs the National LGBT Health Education Center, a federally funded effort to improve health care for LGBTQ people. He co-authored a study published earlier this year in the journal Pediatrics showing a decrease in suicidal ideation among trans youth who had access to puberty blockers.

What we tell families is that in order to have a child who is healthy and happy and thrives, you need to affirm them in their gender identity, and these medical therapies help with that, Keuroghlian said. Its not a decision thats made thoughtlessly by patients families or their medical providers.

Research has found that among those who do seek to transition, a minority later change their minds. A 2015 survey of 28,000 people conducted by the National Center for Transgender Equality found 8% of respondents reported reversing their gender transition, and 62% of those who detransitioned did so only temporarily.

Fran Howard said such treatments changed their life.

I personally cant imagine that without the support of my family, and without medical intervention, that I would still be here today and that is true for a lot of kids, Howard said. For a trans person, this isnt the same as dyeing your hair color. Its being yourself. And to be denied that, it completely takes away somebodys human rights. People will die.

Read more:
Bills seek to limit puberty blockers, other treatment for transgender youth - KTAR.com

Recommendation and review posted by Bethany Smith

7 Surprising Warning Signs of Stress and How to Cope – LIVESTRONG.COM

From sleepless nights to a weakened immune system or overeating, you're probably familiar with the more common symptoms of stress. But stress can also trigger less well-known side effects (both mental and physical) that you might not expect.

Suddenly constipated? Stress might be the bane of your bowels.

Image Credit: gpointstudio/iStock/GettyImages

Here, Rosalind S. Dorlen, PsyD, a New Jersey-based, board-certified clinical psychologist and member of the psychiatry department at the Overlook Medical Center, shares some of the more surprising ways that stress may manifest in your body.

If you're feeling foggy or having a tough time focusing, stress may be the culprit, Dorlen says.

Indeed, stress and anxiety can hinder your attention and your ability to retrieve memories (or even make new ones), according to Harvard Health Publishing.

In fact, a November 2018 study in Neurology demonstrated that adults with higher levels of cortisol (the "stress hormone") exhibited impaired memory and lower brain volumes.

"Skin reactions like hives, viral exanthem (an eruptive skin rash), acne and cold sores seem to be an unfortunate example of collateral damage people experience under periods of extreme stress," Dorlen says.

Here's why: "Stress causes our bodies to make hormones like cortisol and epinephrine, which activate skin glands to produce oiliness, which can be a factor in acne and other skin-related conditions," she says.

What's more, during stressful times, we tend to neglect our usual self-care regimens (think: reduced sleep, skipping your face wash routine at bedtime, etc.) which can create or exacerbate existing skin vulnerabilities, Dorlen explains.

Lost your libido? "Heightened or chronic stress can interfere with our body's hormone levels, producing greater amounts of cortisol and epinephrine, and the effect can reduce sexual interest or desire," Dorlen says.

Think about it: If your body is in a constant reactive state of flight-or-fight, fear or paralysis due to stress, these conditions aren't exactly conducive to sexy time.

Indeed, an October 2013 study in the Journal of Sexual Medicine discovered that high levels of chronic stress were correlated with less sexual arousal in women. The researchers concluded that psychological distraction and increased cortisol played a major role.

And the physical effects of stress can be negative for men, too. According to Dorlen, "the long-term effects of stress can narrow and restrict blood flow, which is one of a number of factors associated with erectile dysfunction."

Conversely, it's much easier to get in the mood when you're feeling loose and relaxed. "That may be why so many couples enjoy expanded sexual interest and participation when on vacation," Dorlen says.

Have you suddenly noticed tension in your neck, back or shoulders? Stress may be the culprit.

Our bodies deal with stress by going into fight-or-flight mode, Dorlen explains, which means releasing hormones that ready our muscles to respond to whatever is threatening us. This can be helpful in the short term (think: running from a bear), but can cause issues if we're consistently under stress.

"Muscles tense up to protect themselves from injury during stressful conditions, so they may not get a chance to relax if the stress is continual," Dorlen says.

And to make matters worse, stress and anxiety can intensify your perception of muscular pain and decrease your ability to cope with it, according to the North American Spine Society.

Feeling on edge? Irritability is a common symptom of chronic and prolonged stress, Dorlen says. This may have something to do with your body's chemical reaction to stress.

When your body releases chemicals in response to a perceived threat, your heart and breathing skyrocket to help you spring into action. This may have helped you flee a hungry predator back in the day, but today it might just leave you feeling tense, moody and even angry.

A January 2015 study in the American Heart Journal found that high levels of anger appeared to be linked to mental distress and an increased cardiovascular risk, while another November 2015 paper in The Journals of Gerontology: Series B discovered an association between anger and stressors in caregivers.

Anyone who's ever experienced a "nervous stomach" knows that stress can go straight to your gut.

Chronic stress can cause a whole range of GI complications, including stomachaches, constipation and diarrhea, according to Dorlen.

That's because your gut and central nervous system are in constant communication, per John Hopkins Medicine. In fact, they're so intimately connected that your gut is often referred to as your "second brain."

From spilling coffee on your shirt to losing your keys and sitting in gridlock, everyday annoyances can be a headache literally.

It goes back to that fight-or-flight response. When your body enters this state and produces hormones like adrenaline and cortisol, it causes vascular changes that prep your muscles to deal with the danger. But this chain of events can also give you a migraine or headache, according to the Cleveland Clinic.

What's more, during periods of high stress, many people experience tightness in their neck, jaw and shoulders dubbed the "tension triangle" which only worsens tension headaches, per the Cleveland Clinic.

Roll out the yoga mat to help bust your stress.

Image Credit: shironosov/iStock/GettyImages

Though it's impossible to completely eliminate stress from your life, you can learn to better manage daily stressors and, in doing so, improve your overall wellbeing.

Here are some ways to help you cope:

Breathing exercises (like the 4-7-8 method) can calm your body's fight-or-flight instincts and elicit a relaxation response, according to Harvard Health Publishing.

Practicing meditation, which includes deep belly breathing, can help you let go of negative emotions that may be causing you mental and physical stress, per the American Psychological Association.

Getting your body moving with regular exercise and gentle movements like yoga, tai chi and stretching exercises can be good for reducing muscle tension and beneficial for busting stress, according to the Mayo Clinic.

Spending a few minutes each day practicing gratitude (think: writing down something you're grateful for) can help you feel happier, more positive and less stressed, per Harvard Health Publishing.

Link:
7 Surprising Warning Signs of Stress and How to Cope - LIVESTRONG.COM

Recommendation and review posted by Bethany Smith

(2020-2025) Pre-Menstrual Syndrome Market to Witness Robust Expansion throughout the Forecast Period – Cole of Duty

Latest Trending Report onPre-Menstrual Syndrome Market

The report titled Global Pre-Menstrual Syndrome Market is one of the most comprehensive and important additions to Alexareports archive of market research studies. It offers detailed research and analysis of key aspects of the global Pre-Menstrual Syndrome market. The market analysts authoring this report have provided in-depth information on leading growth drivers, restraints, challenges, trends, and opportunities to offer a complete analysis of the global Pre-Menstrual Syndrome market. Market participants can use the analysis on market dynamics to plan effective growth strategies and prepare for future challenges beforehand. Each trend of the global Pre-Menstrual Syndrome market is carefully analyzed and researched about by the market analysts.

Pre-Menstrual Syndrome Market competition by top manufacturers/ Key player Profiled: Alva-Amco Pharmacal Cos., Inc., Bayer, Inc., Chattem, Inc. (Sanofi), DEKK-TEC, Inc., G. R. Lane Health Products Ltd, McNeil Consumer Healthcare, MetP Pharma AG, Pherin Pharmaceuticals, Inc., Umecrine Mood AB, Novartis AG, GlaxoSmithKline Plc

Get PDF Sample Copy of the Report to understand the structure of the complete report:(Including Full TOC, List of Tables & Figures, Chart) : https://www.alexareports.com/report-sample/632324

Global Pre-Menstrual Syndrome Market is estimated to reach xxx million USD in 2020 and projected to grow at the CAGR of xx% during 2020- 2025. According to the latest report added to the online repository of Alexareports the Pre-Menstrual Syndrome market has witnessed an unprecedented growth till 2020. The extrapolated future growth is expected to continue at higher rates by 2025.

Based on region, the globalPre-Menstrual Syndrome market has been segmented into Americas (North America ((the U.S. and Canada),) and Latin Americas), Europe (Western Europe (Germany, France, Italy, Spain, UK and Rest of Europe) and Eastern Europe), Asia Pacific (Japan, India, China, Australia & South Korea, and Rest of Asia Pacific), and Middle East & Africa (Saudi Arabia, UAE, Kuwait, Qatar, South Africa, and Rest of Middle East & Africa).

Pre-Menstrual Syndrome Market Segment by Type covers: Analgesics (Pain Killers), Oral Contraceptive Pills (OCPs), Gonadotropin-Releasing Hormone (GnRH), Antidepressants, Ovarian Suppressors/Diuretics/Benzodiazepines

Pre-Menstrual Syndrome Market Segment by Industry: Hospitals, Clinic

After reading the Pre-Menstrual Syndrome market report, readers get insight into:

*Major drivers and restraining factors, opportunities and challenges, and the competitive landscape*New, promising avenues in key regions*New revenue streams for all players in emerging markets*Focus and changing role of various regulatory agencies in bolstering new opportunities in various regions*Demand and uptake patterns in key industries of the Pre-Menstrual Syndrome market*New research and development projects in new technologies in key regional markets*Changing revenue share and size of key product segments during the forecast period*Technologies and business models with disruptive potential

Key questions answered in the report:

What will the market growth rate of Pre-Menstrual Syndrome market?What are the key factors driving the global Pre-Menstrual Syndrome market size?Who are the key manufacturers in Pre-Menstrual Syndrome market space?What are the market opportunities, market risk and market overview of the Pre-Menstrual Syndromemarket?What are sales, revenue, and price analysis of top manufacturers of Pre-Menstrual Syndrome market?Who are the distributors, traders, and dealers of Pre-Menstrual Syndrome market?What are the Pre-Menstrual Syndrome market opportunities and threats faced by the vendors in the global Pre-Menstrual Syndromeindustries?What are sales, revenue, and price analysis by types and applications of Pre-Menstrual Syndromemarket?What are sales, revenue, and price analysis by regions of Pre-Menstrual Syndrome industries?

Get a discount on this report now at https://www.alexareports.com/check-discount/632324

Table of ContentsSection 1 Pre-Menstrual Syndrome Product DefinitionSection 2 Global Pre-Menstrual Syndrome Market Manufacturer Share and Market Overview2.1 Global Manufacturer Pre-Menstrual Syndrome Shipments2.2 Global Manufacturer Pre-Menstrual Syndrome Business Revenue2.3 Global Pre-Menstrual Syndrome Market OverviewSection 3 Manufacturer Pre-Menstrual Syndrome Business Introduction3.1 Alva-Amco Pharmacal Cos., Inc. Pre-Menstrual Syndrome Business Introduction3.1.1 Alva-Amco Pharmacal Cos., Inc. Pre-Menstrual Syndrome Shipments, Price, Revenue and Gross profit 2014-20193.1.2 Alva-Amco Pharmacal Cos., Inc. Pre-Menstrual Syndrome Business Distribution by Region3.1.3 Alva-Amco Pharmacal Cos., Inc. Interview Record3.1.4 Alva-Amco Pharmacal Cos., Inc. Pre-Menstrual Syndrome Business Profile3.1.5 Alva-Amco Pharmacal Cos., Inc. Pre-Menstrual Syndrome Product Specification3.2 Bayer, Inc. Pre-Menstrual Syndrome Business Introduction3.2.1 Bayer, Inc. Pre-Menstrual Syndrome Shipments, Price, Revenue and Gross profit 2014-20193.2.2 Bayer, Inc. Pre-Menstrual Syndrome Business Distribution by Region3.2.3 Interview Record3.2.4 Bayer, Inc. Pre-Menstrual Syndrome Business Overview3.2.5 Bayer, Inc. Pre-Menstrual Syndrome Product Specification3.3 Chattem, Inc. (Sanofi) Pre-Menstrual Syndrome Business Introduction3.3.1 Chattem, Inc. (Sanofi) Pre-Menstrual Syndrome Shipments, Price, Revenue and Gross profit 2014-20193.3.2 Chattem, Inc. (Sanofi) Pre-Menstrual Syndrome Business Distribution by Region3.3.3 Interview Record3.3.4 Chattem, Inc. (Sanofi) Pre-Menstrual Syndrome Business Overview3.3.5 Chattem, Inc. (Sanofi) Pre-Menstrual Syndrome Product Specification3.4 DEKK-TEC, Inc. Pre-Menstrual Syndrome Business Introduction3.5 G. R. Lane Health Products Ltd Pre-Menstrual Syndrome Business Introduction3.6 McNeil Consumer Healthcare Pre-Menstrual Syndrome Business IntroductionSection 4 Global Pre-Menstrual Syndrome Market Segmentation (Region Level)4.1 North America Country4.1.1 United States Pre-Menstrual Syndrome Market Size and Price Analysis 2014-20194.1.2 Canada Pre-Menstrual Syndrome Market Size and Price Analysis 2014-20194.2 South America Country4.2.1 South America Pre-Menstrual Syndrome Market Size and Price Analysis 2014-20194.3 Asia Country4.3.1 China Pre-Menstrual Syndrome Market Size and Price Analysis 2014-20194.3.2 Japan Pre-Menstrual Syndrome Market Size and Price Analysis 2014-20194.3.3 India Pre-Menstrual Syndrome Market Size and Price Analysis 2014-20194.3.4 Korea Pre-Menstrual Syndrome Market Size and Price Analysis 2014-20194.4 Europe Country4.4.1 Germany Pre-Menstrual Syndrome Market Size and Price Analysis 2014-20194.4.2 UK Pre-Menstrual Syndrome Market Size and Price Analysis 2014-20194.4.3 France Pre-Menstrual Syndrome Market Size and Price Analysis 2014-20194.4.4 Italy Pre-Menstrual Syndrome Market Size and Price Analysis 2014-20194.4.5 Europe Pre-Menstrual Syndrome Market Size and Price Analysis 2014-20194.5 Other Country and Region4.5.1 Middle East Pre-Menstrual Syndrome Market Size and Price Analysis 2014-20194.5.2 Africa Pre-Menstrual Syndrome Market Size and Price Analysis 2014-20194.5.3 GCC Pre-Menstrual Syndrome Market Size and Price Analysis 2014-20194.6 Global Pre-Menstrual Syndrome Market Segmentation (Region Level) Analysis 2014-20194.7 Global Pre-Menstrual Syndrome Market Segmentation (Region Level) AnalysisSection 5 Global Pre-Menstrual Syndrome Market Segmentation (Product Type Level)5.1 Global Pre-Menstrual Syndrome Market Segmentation (Product Type Level) Market Size 2014-20195.2 Different Pre-Menstrual Syndrome Product Type Price 2014-20195.3 Global Pre-Menstrual Syndrome Market Segmentation (Product Type Level) AnalysisSection 6 Global Pre-Menstrual Syndrome Market Segmentation (Industry Level)6.1 Global Pre-Menstrual Syndrome Market Segmentation (Industry Level) Market Size 2014-20196.2 Different Industry Price 2014-20196.3 Global Pre-Menstrual Syndrome Market Segmentation (Industry Level) AnalysisSection 7 Global Pre-Menstrual Syndrome Market Segmentation (Channel Level)7.1 Global Pre-Menstrual Syndrome Market Segmentation (Channel Level) Sales Volume and Share 2014-20197.2 Global Pre-Menstrual Syndrome Market Segmentation (Channel Level) AnalysisSection 8 Pre-Menstrual Syndrome Market Forecast 2019-20248.1 Pre-Menstrual Syndrome Segmentation Market Forecast (Region Level)8.2 Pre-Menstrual Syndrome Segmentation Market Forecast (Product Type Level)8.3 Pre-Menstrual Syndrome Segmentation Market Forecast (Industry Level)8.4 Pre-Menstrual Syndrome Segmentation Market Forecast (Channel Level)Section 9 Pre-Menstrual Syndrome Segmentation Product Type9.1 Analgesics (Pain Killers) Product Introduction9.2 Oral Contraceptive Pills (OCPs) Product Introduction9.3 Gonadotropin-Releasing Hormone (GnRH) Product Introduction9.4 Antidepressants Product Introduction9.5 Ovarian Suppressors/Diuretics/Benzodiazepines Product IntroductionSection 10 Pre-Menstrual Syndrome Segmentation Industry10.1 Hospitals Clients10.2 Clinic ClientsSection 11 Pre-Menstrual Syndrome Cost of Production Analysis11.1 Raw Material Cost Analysis11.2 Technology Cost Analysis11.3 Labor Cost Analysis11.4 Cost OverviewSection 12 Conclusion

Do Inquiry About The Report Here: https://www.alexareports.com/send-an-enquiry/632324

About Us:Alexa Reports is a globally celebrated premium market research service provider, with a strong legacy of empowering business with years of experience. We help our clients by implementing decision support system through progressive statistical surveying, in-depth market analysis, and reliable forecast data.

Contact Us:Alexa ReportsPh no: +1-408-844-4624 / +91- 7030626939Email: [emailprotected]Site: https://www.alexareports.com

Read the original post:
(2020-2025) Pre-Menstrual Syndrome Market to Witness Robust Expansion throughout the Forecast Period - Cole of Duty

Recommendation and review posted by Bethany Smith

4 common hair issues that could be symptoms other health concerns, according to the experts – VOGUE India

Just like eyes can be the window into the soul, hair can be a window into your health. While having a good hair day is tied into vanity, it can also suggest that your vitamin and mineral levels are all in balance, along with a strong immune system and metabolism. Greying early, losing clumps of hair or simply finding strands dull and unruly could be a sign that something else is going on, and can signal to you to reach out to a doctor. Not sure what's up? We spoke to the pros to find out how to know.

When you'll start to go grey is usually determined by genetics, and it isn't necessarily a sign that anything is wrong. But if you start to grey in your 20s, it could be too early. "Premature greying could be a sign of vitiligo or leukoderma, hypothyroidism and in some cases even Vitamin B12 deficiencies, informs Dr Satish Bhatia, dermatologist and cutaneous surgeon. He suggests getting Vitamin levels checked, as well as exploring other correlations, like smoking and tobacco use.

Heat styling and dye can cause damage to hair, leaving it looking frazzled and dry. But if you've used hair masks and laid off the heat tools, dry and dull hair could be a sign of a poor diet, or hypothyroidism. Cuticle is the hair's outermost protective layer. On healthy hair, these cells will lie smooth and flat," says Dr Bhatia. This is the reason for hair to reflect light, and appear smooth and shiny. If your diet lacks Omega 3 and Omega 6 fatty acids, you can see it in your strands being brittle. It's not just deficiencies, including too much Vitamin A in your diet and supplement intake can also cause dull, breakage-prone strands. Dull and dehydrated hair is also an obvious giveaway of iron deficiencies or anaemia, he says.

Dr Rigvita Yadav, senior consultant trichologist at Tricia Hair Clinic, Jean-Claude Biguine India explains that miniaturisation is the hormone-driven biological process in which strands shrink in size over time resulting in decrease in hair volume. She adds, In genetically-susceptible hair follicles, a hormone called dihydrotestosterone (DHT) can cause the hair follicle to shrink in size, resulting in production of thinner and weaker hair.

This kind of hair loss is mostly mediated by male hormone testosterone, and called androgenic alopecia. While it can affect both men and women, it is the cause of the common baldness in men. In women it is seen as broadening of the partition of the scalp, recession of the hairline or formation of the notches in the sides of the hairline. It can be seen as a genetic problem in women, however a substantial number of females dont have a family history and they should be investigated for PCOS and ovarian tumours, informs Dr Chaturvedi.

Telogen effluvium is by far the most common form of hair loss seen. In dramatic cases, it can result in a 25 per cent hair loss, points out Dr Chaturvedi. If you're seeing hair shed in clumps, it could relate to hormonal or gut issues. This is when a patient will complain that whenever they wash their hair, they can see large chunks falling out," says Dr Bhatia. Doctors say that you can see this stress-related hair fall after a definable precipitating event, which could include trauma, or illnesses like typhoid or malaria. Another important cause? An imbalanced diet. Crash diets, high protein diets that don't include carbs, or eating lots of processed foods can cause stress-induced hair fall, says Dr Yadav about the inflammatory foods that put pressure on the digestive and immune system.

Is your hair fall stress-related? Here's what you can do to stop it

Could your hormones be the reason behind your premature hair loss?

The haircare tips youll need if youre thinking of going grey

Excerpt from:
4 common hair issues that could be symptoms other health concerns, according to the experts - VOGUE India

Recommendation and review posted by Bethany Smith

Milk Thistle Health Tonic Market In Depth Research with Industry Driving Factors, Consumer Behaviour Analysis, Future Trends, Key Players and Forecast…

Los Angeles, United State: Complete study of the global Milk Thistle Health Tonic market is carried out by the analysts in this report, taking into consideration key factors like drivers, challenges, recent trends, opportunities, advancements, and competitive landscape. This report offers a clear understanding of the present as well as future scenario of the global Milk Thistle Health Tonic industry. Research techniques like PESTLE and Porters Five Forces analysis have been deployed by the researchers. They have also provided accurate data on Milk Thistle Health Tonic production, capacity, price, cost, margin, and revenue to help the players gain a clear understanding into the overall existing and future market situation.

The research study includes great insights about critical market dynamics, including drivers, restraints, trends, and opportunities. It also includes various types of market analysis such as competitive analysis, manufacturing cost analysis, manufacturing process analysis, price analysis, and analysis of market influence factors. It is a complete study on the global Milk Thistle Health Tonic market that can be used as a set of effective guidelines for ensuring strong growth in the coming years. It caters to all types of interested parties, viz. stakeholders, market participants, investors, market researchers, and other individuals associated with the Milk Thistle Health Tonic business.

Get Full PDF Sample Copy of Report: (Including Full TOC, List of Tables & Figures, Chart)https://www.qyresearch.com/sample-form/form/1703248/global-milk-thistle-health-tonic-market

It is important for every market participant to be familiar with the competitive scenario in the global Milk Thistle Health Tonic industry. In order to fulfil the requirements, the industry analysts have evaluated the strategic activities of the competitors to help the key players strengthen their foothold in the market and increase their competitiveness.

Key Players Mentioned in the Global Milk Thistle Health Tonic Market Research Report: , Health Genesis, Pure Encapsulations, Regis, Solgar, Aksuvital, BEC, NC, Life Extension, Swisse, HerbsofGold

Global Milk Thistle Health Tonic Market Segmentation by Product:, Tablets, Capsules, Others

Global Milk Thistle Health Tonic Market Segmentation by Application: Dietary Supplement, Health Food Health Genesis, Pure Encapsulations, Regis, Solgar, Aksuvital, BEC, NC, Life Extension, Swisse, HerbsofGold

The report has classified the global Milk Thistle Health Tonic industry into segments including product type and application. Every segment is evaluated based on growth rate and share. Besides, the analysts have studied the potential regions that may prove rewarding for the Milk Thistle Health Tonic manufcaturers in the coming years. The regional analysis includes reliable predictions on value and volume, thereby helping market players to gain deep insights into the overall Milk Thistle Health Tonic industry.

Additionally, the industry analysts have studied key regions including North America, Europe, Asia Pacific, Latin America, and Middle East and Africa, along with their respective countries. Here, they have given a clear-cut understanding of the present and future situations of the global Milk Thistle Health Tonic industry in key regions. This will help the key players to focus on the lucrative regional markets.

Key questions answered in the report:

Request for customization in Report:https://www.qyresearch.com/customize-request/form/1703248/global-milk-thistle-health-tonic-market

Table od Content

1 Milk Thistle Health Tonic Market Overview1.1 Milk Thistle Health Tonic Product Overview1.2 Milk Thistle Health Tonic Market Segment by Type1.2.1 Tablets1.2.2 Capsules1.2.3 Others1.3 Global Milk Thistle Health Tonic Market Size by Type (2015-2026)1.3.1 Global Milk Thistle Health Tonic Market Size Overview by Type (2015-2026)1.3.2 Global Milk Thistle Health Tonic Historic Market Size Review by Type (2015-2020)1.3.2.1 Global Milk Thistle Health Tonic Sales Market Share Breakdown by Type (2015-2026)1.3.2.2 Global Milk Thistle Health Tonic Revenue Market Share Breakdown by Type (2015-2026)1.3.2.3 Global Milk Thistle Health Tonic Average Selling Price (ASP) by Type (2015-2026)1.3.3 Global Milk Thistle Health Tonic Market Size Forecast by Type (2021-2026)1.3.3.1 Global Milk Thistle Health Tonic Sales Market Share Breakdown by Application (2021-2026)1.3.3.2 Global Milk Thistle Health Tonic Revenue Market Share Breakdown by Application (2021-2026)1.3.3.3 Global Milk Thistle Health Tonic Average Selling Price (ASP) by Application (2021-2026)1.4 Key Regions Market Size Segment by Type (2015-2020)1.4.1 North America Milk Thistle Health Tonic Sales Breakdown by Type (2015-2026)1.4.2 Europe Milk Thistle Health Tonic Sales Breakdown by Type (2015-2026)1.4.3 Asia-Pacific Milk Thistle Health Tonic Sales Breakdown by Type (2015-2026)1.4.4 Latin America Milk Thistle Health Tonic Sales Breakdown by Type (2015-2026)1.4.5 Middle East and Africa Milk Thistle Health Tonic Sales Breakdown by Type (2015-2026)1.5 Coronavirus Disease 2019 (Covid-19): Milk Thistle Health Tonic Industry Impact1.5.1 How the Covid-19 is Affecting the Milk Thistle Health Tonic Industry1.5.1.1 Milk Thistle Health Tonic Business Impact Assessment Covid-191.5.1.2 Supply Chain Challenges1.5.1.3 COVID-19s Impact On Crude Oil and Refined Products1.5.2 Market Trends and Milk Thistle Health Tonic Potential Opportunities in the COVID-19 Landscape1.5.3 Measures / Proposal against Covid-191.5.3.1 Government Measures to Combat Covid-19 Impact1.5.3.2 Proposal for Milk Thistle Health Tonic Players to Combat Covid-19 Impact 2 Global Milk Thistle Health Tonic Market Competition by Company2.1 Global Top Players by Milk Thistle Health Tonic Sales (2015-2020)2.2 Global Top Players by Milk Thistle Health Tonic Revenue (2015-2020)2.3 Global Top Players Milk Thistle Health Tonic Average Selling Price (ASP) (2015-2020)2.4 Global Top Manufacturers Milk Thistle Health Tonic Manufacturing Base Distribution, Sales Area, Product Type2.5 Milk Thistle Health Tonic Market Competitive Situation and Trends2.5.1 Milk Thistle Health Tonic Market Concentration Rate (2015-2020)2.5.2 Global 5 and 10 Largest Manufacturers by Milk Thistle Health Tonic Sales and Revenue in 20192.6 Global Top Manufacturers by Company Type (Tier 1, Tier 2 and Tier 3) (based on the Revenue in Milk Thistle Health Tonic as of 2019)2.7 Date of Key Manufacturers Enter into Milk Thistle Health Tonic Market2.8 Key Manufacturers Milk Thistle Health Tonic Product Offered2.9 Mergers & Acquisitions, Expansion 3 Global Milk Thistle Health Tonic Status and Outlook by Region (2015-2026)3.1 Global Milk Thistle Health Tonic Market Size and CAGR by Region: 2015 VS 2020 VS 20263.2 Global Milk Thistle Health Tonic Market Size Market Share by Region (2015-2020)3.2.1 Global Milk Thistle Health Tonic Sales Market Share by Region (2015-2020)3.2.2 Global Milk Thistle Health Tonic Revenue Market Share by Region (2015-2020)3.2.3 Global Milk Thistle Health Tonic Sales, Revenue, Price and Gross Margin (2015-2020)3.3 Global Milk Thistle Health Tonic Market Size Market Share by Region (2021-2026)3.3.1 Global Milk Thistle Health Tonic Sales Market Share by Region (2021-2026)3.3.2 Global Milk Thistle Health Tonic Revenue Market Share by Region (2021-2026)3.3.3 Global Milk Thistle Health Tonic Sales, Revenue, Price and Gross Margin (2021-2026)3.4 North America Milk Thistle Health Tonic Market Size YoY Growth (2015-2026)3.4.1 North America Milk Thistle Health Tonic Revenue YoY Growth (2015-2026)3.4.2 North America Milk Thistle Health Tonic Sales YoY Growth (2015-2026)3.5 Asia-Pacific Milk Thistle Health Tonic Market Size YoY Growth (2015-2026)3.5.1 Asia-Pacific Milk Thistle Health Tonic Revenue YoY Growth (2015-2026)3.5.2 Asia-Pacific Milk Thistle Health Tonic Sales YoY Growth (2015-2026)3.6 Europe Milk Thistle Health Tonic Market Size YoY Growth (2015-2026)3.6.1 Europe Milk Thistle Health Tonic Revenue YoY Growth (2015-2026)3.6.2 Europe Milk Thistle Health Tonic Sales YoY Growth (2015-2026)3.7 Latin America Milk Thistle Health Tonic Market Size YoY Growth (2015-2026)3.7.1 Latin America Milk Thistle Health Tonic Revenue YoY Growth (2015-2026)3.7.2 Latin America Milk Thistle Health Tonic Sales YoY Growth (2015-2026)3.8 Middle East and Africa Milk Thistle Health Tonic Market Size YoY Growth (2015-2026)3.8.1 Middle East and Africa Milk Thistle Health Tonic Revenue YoY Growth (2015-2026)3.8.2 Middle East and Africa Milk Thistle Health Tonic Sales YoY Growth (2015-2026) 4 Global Milk Thistle Health Tonic by Application4.1 Milk Thistle Health Tonic Segment by Application4.1.1 Dietary Supplement4.1.2 Health Food4.2 Global Milk Thistle Health Tonic Sales by Application: 2015 VS 2020 VS 20264.3 Global Milk Thistle Health Tonic Historic Sales by Application (2015-2020)4.4 Global Milk Thistle Health Tonic Forecasted Sales by Application (2021-2026)4.5 Key Regions Milk Thistle Health Tonic Market Size by Application4.5.1 North America Milk Thistle Health Tonic by Application4.5.2 Europe Milk Thistle Health Tonic by Application4.5.3 Asia-Pacific Milk Thistle Health Tonic by Application4.5.4 Latin America Milk Thistle Health Tonic by Application4.5.5 Middle East and Africa Milk Thistle Health Tonic by Application 5 North America Milk Thistle Health Tonic Market Size by Country (2015-2026)5.1 North America Market Size Market Share by Country (2015-2020)5.1.1 North America Milk Thistle Health Tonic Sales Market Share by Country (2015-2020)5.1.2 North America Milk Thistle Health Tonic Revenue Market Share by Country (2015-2020)5.2 North America Market Size Market Share by Country (2021-2026)5.2.1 North America Milk Thistle Health Tonic Sales Market Share by Country (2021-2026)5.2.2 North America Milk Thistle Health Tonic Revenue Market Share by Country (2021-2026)5.3 North America Market Size YoY Growth by Country5.3.1 U.S. Milk Thistle Health Tonic Market Size YoY Growth (2015-2026)5.3.2 Canada Milk Thistle Health Tonic Market Size YoY Growth (2015-2026) 6 Europe Milk Thistle Health Tonic Market Size by Country (2015-2026)6.1 Europe Market Size Market Share by Country (2015-2020)6.1.1 Europe Milk Thistle Health Tonic Sales Market Share by Country (2015-2020)6.1.2 Europe Milk Thistle Health Tonic Revenue Market Share by Country (2015-2020)6.2 Europe Market Size Market Share by Country (2021-2026)6.2.1 Europe Milk Thistle Health Tonic Sales Market Share by Country (2021-2026)6.2.2 Europe Milk Thistle Health Tonic Revenue Market Share by Country (2021-2026)6.3 Europe Market Size YoY Growth by Country6.3.1 Germany Milk Thistle Health Tonic Market Size YoY Growth (2015-2026)6.3.2 France Milk Thistle Health Tonic Market Size YoY Growth (2015-2026)6.3.3 U.K. Milk Thistle Health Tonic Market Size YoY Growth (2015-2026)6.3.4 Italy Milk Thistle Health Tonic Market Size YoY Growth (2015-2026)6.3.5 Russia Milk Thistle Health Tonic Market Size YoY Growth (2015-2026) 7 Asia-Pacific Milk Thistle Health Tonic Market Size by Country (2015-2026)7.1 Asia-Pacific Market Size Market Share by Country (2015-2020)7.1.1 Asia-Pacific Milk Thistle Health Tonic Sales Market Share by Country (2015-2020)7.1.2 Asia-Pacific Milk Thistle Health Tonic Revenue Market Share by Country (2015-2020)7.2 Asia-Pacific Market Size Market Share by Country (2021-2026)7.2.1 Asia-Pacific Milk Thistle Health Tonic Sales Market Share by Country (2021-2026)7.2.2 Asia-Pacific Milk Thistle Health Tonic Revenue Market Share by Country (2021-2026)7.3 Asia-Pacific Market Size YoY Growth by Country7.3.1 China Milk Thistle Health Tonic Market Size YoY Growth (2015-2026)7.3.2 Japan Milk Thistle Health Tonic Market Size YoY Growth (2015-2026)7.3.3 South Korea Milk Thistle Health Tonic Market Size YoY Growth (2015-2026)7.3.4 India Milk Thistle Health Tonic Market Size YoY Growth (2015-2026)7.3.5 Australia Milk Thistle Health Tonic Market Size YoY Growth (2015-2026)7.3.6 Taiwan Milk Thistle Health Tonic Market Size YoY Growth (2015-2026)7.3.7 Indonesia Milk Thistle Health Tonic Market Size YoY Growth (2015-2026)7.3.8 Thailand Milk Thistle Health Tonic Market Size YoY Growth (2015-2026)7.3.9 Malaysia Milk Thistle Health Tonic Market Size YoY Growth (2015-2026)7.3.10 Philippines Milk Thistle Health Tonic Market Size YoY Growth (2015-2026)7.3.11 Vietnam Milk Thistle Health Tonic Market Size YoY Growth (2015-2026) 8 Latin America Milk Thistle Health Tonic Market Size by Country (2015-2026)8.1 Latin America Market Size Market Share by Country (2015-2020)8.1.1 Latin America Milk Thistle Health Tonic Sales Market Share by Country (2015-2020)8.1.2 Latin America Milk Thistle Health Tonic Revenue Market Share by Country (2015-2020)8.2 Latin America Market Size Market Share by Country (2021-2026)8.2.1 Latin America Milk Thistle Health Tonic Sales Market Share by Country (2021-2026)8.2.2 Latin America Milk Thistle Health Tonic Revenue Market Share by Country (2021-2026)8.3 Latin America Market Size YoY Growth by Country8.3.1 Mexico Milk Thistle Health Tonic Market Size YoY Growth (2015-2026)8.3.2 Brazil Milk Thistle Health Tonic Market Size YoY Growth (2015-2026)8.3.3 Argentina Milk Thistle Health Tonic Market Size YoY Growth (2015-2026) 9 Middle East and Africa Milk Thistle Health Tonic Market Size by Country (2015-2026)9.1 Middle East and Africa Market Size Market Share by Country (2015-2020)9.1.1 Middle East and Africa Milk Thistle Health Tonic Sales Market Share by Country (2015-2020)9.1.2 Middle East and Africa Milk Thistle Health Tonic Revenue Market Share by Country (2015-2020)9.2 Middle East and Africa Market Size Market Share by Country (2021-2026)9.2.1 Middle East and Africa Milk Thistle Health Tonic Sales Market Share by Country (2021-2026)9.2.2 Middle East and Africa Milk Thistle Health Tonic Revenue Market Share by Country (2021-2026)9.3 Middle East and Africa Market Size YoY Growth by Country9.3.1 Turkey Milk Thistle Health Tonic Market Size YoY Growth (2015-2026)9.3.2 Saudi Arabia Milk Thistle Health Tonic Market Size YoY Growth (2015-2026)9.3.3 U.A.E Milk Thistle Health Tonic Market Size YoY Growth (2015-2026) 10 Company Profiles and Key Figures in Milk Thistle Health Tonic Business10.1 Health Genesis10.1.1 Health Genesis Corporation Information10.1.2 Health Genesis Description, Business Overview and Total Revenue10.1.3 Health Genesis Milk Thistle Health Tonic Sales, Revenue and Gross Margin (2015-2020)10.1.4 Health Genesis Milk Thistle Health Tonic Products Offered10.1.5 Health Genesis Recent Development10.2 Pure Encapsulations10.2.1 Pure Encapsulations Corporation Information10.2.2 Pure Encapsulations Description, Business Overview and Total Revenue10.2.3 Pure Encapsulations Milk Thistle Health Tonic Sales, Revenue and Gross Margin (2015-2020)10.2.4 Health Genesis Milk Thistle Health Tonic Products Offered10.2.5 Pure Encapsulations Recent Development10.3 Regis10.3.1 Regis Corporation Information10.3.2 Regis Description, Business Overview and Total Revenue10.3.3 Regis Milk Thistle Health Tonic Sales, Revenue and Gross Margin (2015-2020)10.3.4 Regis Milk Thistle Health Tonic Products Offered10.3.5 Regis Recent Development10.4 Solgar10.4.1 Solgar Corporation Information10.4.2 Solgar Description, Business Overview and Total Revenue10.4.3 Solgar Milk Thistle Health Tonic Sales, Revenue and Gross Margin (2015-2020)10.4.4 Solgar Milk Thistle Health Tonic Products Offered10.4.5 Solgar Recent Development10.5 Aksuvital10.5.1 Aksuvital Corporation Information10.5.2 Aksuvital Description, Business Overview and Total Revenue10.5.3 Aksuvital Milk Thistle Health Tonic Sales, Revenue and Gross Margin (2015-2020)10.5.4 Aksuvital Milk Thistle Health Tonic Products Offered10.5.5 Aksuvital Recent Development10.6 BEC10.6.1 BEC Corporation Information10.6.2 BEC Description, Business Overview and Total Revenue10.6.3 BEC Milk Thistle Health Tonic Sales, Revenue and Gross Margin (2015-2020)10.6.4 BEC Milk Thistle Health Tonic Products Offered10.6.5 BEC Recent Development10.7 NC10.7.1 NC Corporation Information10.7.2 NC Description, Business Overview and Total Revenue10.7.3 NC Milk Thistle Health Tonic Sales, Revenue and Gross Margin (2015-2020)10.7.4 NC Milk Thistle Health Tonic Products Offered10.7.5 NC Recent Development10.8 Life Extension10.8.1 Life Extension Corporation Information10.8.2 Life Extension Description, Business Overview and Total Revenue10.8.3 Life Extension Milk Thistle Health Tonic Sales, Revenue and Gross Margin (2015-2020)10.8.4 Life Extension Milk Thistle Health Tonic Products Offered10.8.5 Life Extension Recent Development10.9 Swisse10.9.1 Swisse Corporation Information10.9.2 Swisse Description, Business Overview and Total Revenue10.9.3 Swisse Milk Thistle Health Tonic Sales, Revenue and Gross Margin (2015-2020)10.9.4 Swisse Milk Thistle Health Tonic Products Offered10.9.5 Swisse Recent Development10.10 HerbsofGold10.10.1 Company Basic Information, Manufacturing Base and Competitors10.10.2 Milk Thistle Health Tonic Product Category, Application and Specification10.10.3 HerbsofGold Milk Thistle Health Tonic Sales, Revenue, Price and Gross Margin (2015-2020)10.10.4 Main Business Overview10.10.5 HerbsofGold Recent Development 11 Milk Thistle Health Tonic Upstream, Opportunities, Challenges, Risks and Influences Factors Analysis11.1 Milk Thistle Health Tonic Key Raw Materials11.1.1 Key Raw Materials11.1.2 Key Raw Materials Price11.1.3 Raw Materials Key Suppliers11.2 Manufacturing Cost Structure11.2.1 Raw Materials11.2.2 Labor Cost11.2.3 Manufacturing Expenses11.3 Milk Thistle Health Tonic Industrial Chain Analysis11.4 Market Opportunities, Challenges, Risks and Influences Factors Analysis11.4.1 Market Opportunities and Drivers11.4.2 Market Challenges11.4.3 Market Risks11.4.4 Porters Five Forces Analysis 12 Market Strategy Analysis, Distributors12.1 Sales Channel12.2 Distributors12.3 Downstream Customers 13 Research Findings and Conclusion 14 Appendix14.1 Methodology/Research Approach14.1.1 Research Programs/Design14.1.2 Market Size Estimation14.1.3 Market Breakdown and Data Triangulation14.2 Data Source14.2.1 Secondary Sources14.2.2 Primary Sources14.3 Author Details14.4 Disclaimer

About Us:

QY Research established in 2007, focus on custom research, management consulting, IPO consulting, industry chain research, data base and seminar services. The company owned a large basic data base (such as National Bureau of statistics database, Customs import and export database, Industry Association Database etc), experts resources (included energy automotive chemical medical ICT consumer goods etc.

View post:
Milk Thistle Health Tonic Market In Depth Research with Industry Driving Factors, Consumer Behaviour Analysis, Future Trends, Key Players and Forecast...

Recommendation and review posted by Bethany Smith

The Science in Skin Care Introducing Stem Cell Technology

When it comes to our skin care goals, one key benefit seems to rule them all anti-aging. While aging skin may be inevitable, taking preventative action now can reduce the visible signs of aging long-term. Two key elements in this process are supporting collagen production and exfoliation. In other words, boosting the components of skin that keep it looking plump, while ridding the skins surface of older cells that can tend to build up over time.

In our efforts to support and maintain a youthful appearance, Stem Cellscan complement these two key elements and contribute to a significant improvement in overall skin tone and texture. Were taking it one step further by introducing you to NASA Stem Cell Technology.This revolutionary technology increases the overall efficacy of stem cells - allowing them to enhance our tried and trusted anti-aging skin care routines in order to seemingly defy gravity.

Stem Cells are naturally produced by our body and have the capacity to split and renew themselves over extended periods of time. This regeneration process is the key to skin rejuvenation as it supports the two key anti-aging elements - cell turnover and collagen production.

Like human stem cells, plant-derived stem cells have antioxidant properties and contain amino acids. Amino acids are the building blocks of proteins which promote cell renewal and maintain our skins overall hydration. However, when stem cells are created for topical application, they tend to flatten and lose efficacy under the influence of gravity.

If youd like to learn more about stem cells in skin care, check out this blog post!

Our Stem Cell Technology is a blend of cultured plant cells created without the influence of gravity, resulting in a powerful technology that is clinically proven to reduce the signs of aging. These cells more closely mimic those that we naturally produce, resulting in an overall increase in benefits.

NASA Stem Cell Technology was designed with a specific focus of targeting the signs of aging on the skin. Its key benefits include reducing the signs of lines and wrinkles, supporting the proliferation of skin cells and preventing/ delaying the visible signs of aging.

What could be more effective than incorporating a powerful technology such as NASAs Stem Cells in skincare? Coupling this key ingredient with clean and effective ingredients that are clinically proven to drive results. As our Director of Brand Development Heather Wilson says, Skin care products should be evaluated as a sum of their parts, not based on a single ingredient. That is why when creating products, we design them to include a combination of powerful actives, alongside a variety of botanicals, to create a formula that offers superior results versus a single ingredient.

Our Anti-Aging Collagen Serumpairs NASA Stem Cell Technology with Hyaluronic Acid, Collagen and a Peptide Complex to firm the appearance of lines and wrinkles to reveal a more vibrant, youthful complexion.

Hyaluronic Acid and Collagen act like a drink of water for the skin, hydrating and plumping the appearance of fine lines and wrinkles while Peptides support a healthy skin barrier and promote collagen production to reduce common signs of aging.

Suitable for all skin types, our Anti-Aging Collagen Serum:

This serum will provide a targeted treatment for deep lines and wrinkles due to its notable concentration of active ingredients in a safe and clean formula. It is lightweight, aroma-free and will appear milky white in color. It can be used both morning and night, after cleansing and before moisturizer.

If youre looking to deeply hydrate your skin and soften the look of fine lines and wrinkles:

Our Hyaluronic Acid Serum 85% pairs NASA Stem Cell Technology with a Multi-Molecular Hyaluronix and Niacinamide to deeply replenish the skin and reveal a more radiant, nourished and youthful complexion.

Multi-Molecular Hyaluronix is a form of Hyaluronic Acid comprised of various molecular weights to hydrate multiple layers of the skin while Niacinamide protects the skins natural barrier. Polyglutamic Acid adds another level of hydration while preventing water loss on the skin.

Suitable for all skin types, our Hyaluronic Acid Serum 85%:

This serum is lightweight, oil-free, aroma-free and will appear pale blue in color. For best results, we recommend shaking this product before use and apply twice a day, both morning and night. Follow up with your favorite moisturizer to seal in the benefits of this targeted treatment.

Our Dark Spot Corrector pairs NASA Stem Cell Technology with Glycolic Acid and Niacinamide to minimize sunspots and hyperpigmentation to reveal a more clear, bright complexion.

Glycolic Acidis an alpha hydroxy acid (AHA) that boosts cell turnover to exfoliate dulling skin cells and smooth the texture of skin. Niacinamide supports a healthy skin barrier while decreasing the appearance of discoloration and redness.

Suitable for all skin types, our Dark Spot Corrector:

This corrector is lightweight, oil-free, aroma-free and vegan. While AHAs provide incredible resurfacing abilities for the skin and are often preferred over physical exfoliants, they can increase our skins sensitivity to the sun. It is recommended that this product is used at night and an appropriate SPF is worn during the day.

For additional tips + tricks on how to fight the first signs of aging check out How to Fight Your First Wrinkles from our Natural Notes.

Stem cells provide the perfect boost to your favorite skin care ingredients to target and treat your anti-aging concerns. So much so that weve launched an entire collection because of it! So, whether youre looking to plump fine lines, reduce hyper pigmentation, or simply prevent future signs of aging - weve got the perfectsolutionfor you!

The rest is here:
The Science in Skin Care Introducing Stem Cell Technology

Recommendation and review posted by Bethany Smith

10 Best Stem Cell Beauty Products On The Market Today

Fight the signs of premature aging with these stem cell skin care beauty products. A lot of companies claim to incorporate the benefits of plant and human stem cells, as well as components secreted by them, into the best stem cell beauty products on the market. Below, we present what appears (based on company claims) to be ten of the best products available today.

As a publisher of stem cell news, we havent traditionally wandered into the world of claims made by stem cell beauty products suppliers. For obvious reasons, we cannot guarantee the accuracy of the claims made by these companies or the presence of specific active agents within them.

However, we get approached daily with questions about this topic and know that people are seeking information about it from a source that: 1) Doesnt inflate the claims, and 2) Understands the science.

For this reason, we have decided to share with you what appear to be interesting skin care options, coupled with a healthy dose of warnings reminding you that the stated claims may or may not be accurate.

Kimera Labs makes the top of this list for numerous reasons. First, the companys science it is solid. Instead of being a supplier of beauty products, the company is a specialty contract research organization (CRO) focusing on regenerative medicine applications, including exosome purification. Exosomes are small vesicles (~30-100nm) that are secreted by nearly all cell types and act as intracellular mail.

Exosomes transfer DNA, RNA, and proteins to other cells, thereby altering the function of the other cells.

Second, the company has an FDA registered tissue facility in Miami, FL, where it develops pharmaceutical grade, exosome-based regenerative therapies. The company has a 6,000 sq. ft. facility in Miramar, Florida, that includes impressive features such asISO:9001/13485 certification, cleanrooms, and a variety of high-end scientific equipment.

Third, the company is run by Dr. Duncan Ross, a highly regarded scientist with a Ph.D. in Immunology from the University of Miami. Dr. Ross is also a Principal at The Kimera Society, a non-profit organization dedicated to the advancementof stem cells, regenerative medicine,and cancer immunotherapies.

For those seeking stem cell beauty products, the companys core offering is XoGlo, a product which provides growth and healing signals to guide the re-deposition of tissue and avoid the scarring that often accompanies burns or other skin damage. You can see an incredible Case Study from the company in which XoGlo was used to heal second-degree burns in a patient in approximately seven days. The product can also be used for general skin health and enhancement.

More information on the XoGlois available here.

According to the company, this facial cleanser is formulated with stem cytokines that promote the skins ability to heal itself, leaving softer and smoother skin. It also has essential fatty acids, detoxifying actives, antioxidants, and anti-inflammatory botanicals that deeply cleanse your skin of excess oil, impurities, and surface debris. This makes the skin smoother, more balanced, and hydrated.

Lifeline says that it offers a moisture serum with a formula consisting of proteins and peptides from pluripotent stem cells. It works by reversing skin aging signs and actively moisturizing the skin with its cucumber melon extracts. The serum primarily targets the reduction of wrinkles and fine lines.

At $105 for a 1 oz bottle, it is notable that the company does not mention how it sources pluripotent stem cells, leaving key questions about its active ingredients unanswered.

Heres another skin care serum on this list of stem cellbeauty products. This serum is enriched with a tissue nutrient solution (TNS) technology that reduces wrinkles and fine lines and improves skin texture and tone. TNS is formulated with matrix proteins, cytokines, soluble collagen, antioxidants, and growth factors that are essential to keeping skin healthy.

This regenerative eye creamcontains autokine-CM obtained from adult stem cells through mini-liposuction. This unique ingredient is composed of extracted cytokines, matrix proteins, and growth factors from adult stem cells that help improve the skins ability to heal. It also aids in synthesizing elastin and collagen production, thus reducing fine lines and wrinkles, improving skin tone and texture, and increasing epidermal thickness in the eye area.

Venus Skin introduced a stem cell therapy serum packed with bio-signals from bone marrow mesenchymal stem cells for stimulation of skin tissue repair and healing. This reverses aging signs and rejuvenates the feel and look of the skin. It also contains essential vitamins A, C, and E to normalize skin functions, promote collagen synthesis in the skin, and reduce the appearance of scars, respectively.

This hydrating mask possesses a stem cell culture technology that penetrates deep into the skin for intense and long-lasting hydration. This leaves the skin well-moisturized and supple. It also fills fine lines and wrinkles and restores parched skin, bringing skin moisture and smoothness back.

This intensive facial mist restores the skins elasticity and moisture with its fine liquid particles that immediately penetrate the skin. It contains APL stem cell-conditioned medium extracts that help regenerate, whiten, and hydrate the skin and minimize pores and wrinkles. The facial mist also has chamomile extracts that bring a soothing effect to the skin.

Skin Drink Phytoceuticals highlights three potent anti-aging skin care ingredients in this serum.PhytoCellTec is an ingredient that safeguards the skin stem cells longevity, fights off skin aging, and delays biological aging of cells. Derm SRC works on reducing wrinkles and fine lines, while Ellagi-C promotes skin elasticity and suppleness.

This snail serum boasts an epidermal growth factor ingredient that stimulates the skins stem cell growth and cell survival. It also has a snail mucus extract that refreshes and brightens the skin. Aside from that, the serum contains other natural ingredients, such as macadamia seed oil and hydrolyzed placenta extract, for skin hydration and nourishment.

Which of these components actually enhance skin health and complexion? Hard to say, but the ingredient list certainly is exotic.

With this list of the best beauty products, it can be tricky to know which ones will enhance skin health. Stem cells are becoming a common ingredient in skin products, but regulation of this area is sparse, making it important to be vigilant in your selection.

A steep price tag doesnt guarantee results. Claims of active ingredients do not guarantee they are present. Even the confirmed presence of an ingredient by third-party testing does not substantiate its claimed effect.

However, there are hundreds of user reviews for some of these products, so the possibility for these skin care products to improve the appearance of your skin does exist. Importantly, many of these stem cell beauty products contain an impressive range of other ingredients, so you could benefit from them due to effects unrelated to the claimed stem cell components.

When judging the efficacy of these products, the only clear answer is that you need to be your own study of one.

Let this infographic be your guide. Download it now and use it as a reference later.

If you found this article valuable, subscribe to BioInformantsstem cell industry updates.We are the industry leaders in stem cell research, with research cited byThe Wall Street Journal, Xconomy, AABB, andVogue Magazine.Bringing you breaking news on an ongoing basis, join nearly aa million loyal readers, including physicians, scientists, executives, investors, and philanthropists.

Do you have questions about whether a stem cell treatment could address your medical condition?

As the worlds largest publisher of stem cell industry news, we understandably cannot provide clinical treatments or advice. However, GIOSTAR can provide you with medical guidance and advice. In alignment with what we believe at BioInformant, it offers cutting-edge, extensively researched stem cell therapy options.

Click here toSchedule a Consultationor ask GIOSTAR your questions.

Read the original post:
10 Best Stem Cell Beauty Products On The Market Today

Recommendation and review posted by Bethany Smith

On the Origins of Modern Biology and the Fantastic: Part 19 Nalo Hopkinson and Stem Cell Research – tor.com

She just wanted to be somewhere safe, somewhere familiar, where people looked and spoke like her and she could stand to eat the food. Midnight Robber by Nalo Hopkinson

Midnight Robber (2000) is about a woman, divided. Raised on the high-tech utopian planet of Touissant, Tan-Tan grows up on a planet populated by the descendants of a Caribbean diaspora, where all labor is performed by an all-seeing AI. But when she is exiled to Touissants parallel universe twin planet, the no-tech New Half-Way Tree, with her sexually abusive father, she becomes divided between good and evil Tan-Tans. To make herself and New Half-Way Tree whole, she adopts the persona of the legendary Robber Queen and becomes a legend herself. It is a wondrous blend of science fictional tropes and Caribbean mythology written in a Caribbean vernacular which vividly recalls the history of slavery and imperialism that shaped Touissant and its people, published at a time when diverse voices and perspectives within science fiction were blossoming.

Science fiction has long been dominated by white, Western perspectives. Vernes tech-forward adventures and Wells sociological allegories established two distinctive styles, but still centered on white imperialism and class struggle. Subsequent futures depicted in Verne-like pulp and Golden Age stories, where lone white heroes conquered evil powers or alien planets, mirrored colonialist history and the subjugation of non-white races. The civil rights era saw the incorporation of more Wellsian sociological concerns, and an increase in the number of non-white faces in the future, but they were often tokensparts of a dominant white monoculture. Important figures that presaged modern diversity included Star Treks Lieutenant Uhura, played by Nichelle Nichols. Nichols was the first black woman to play a non-servant character on TV; though her glorified secretary role frustrated Nichols, her presence was a political act, showing there was space for black people in the future.

Another key figure was the musician and poet Sun Ra, who laid the aesthetic foundation for what would become known as the Afrofuturist movement (the term coined by Mark Dery in a 1994 essay), which showed pride in black history and imagined the future through a black cultural lens. Within science fiction, the foundational work of Samuel Delany and Octavia Butler painted realistic futures in which the histories and cultural differences of people of color had a place. Finally, an important modern figure in the decentralization of the dominant Western perspective is Nalo Hopkinson.

A similarly long-standing paradigm lies at the heart of biology, extending back to Darwins theoretical and Mendels practical frameworks for the evolution of genetic traits via natural selection. Our natures werent determined by experience, as Lamarck posited, but by genes. Therefore, genes determine our reproductive fitness, and if we can understand genes, we might take our futures into our own hands to better treat disease and ease human suffering. This theory was tragically over-applied, even by Darwin, who in Descent of Man (1871) conflated culture with biology, assuming the Wests conquest of indigenous cultures meant white people were genetically superior. After the Nazis committed genocide in the name of an all-white future, ideas and practices based in eugenics declined, as biological understanding of genes matured. The Central Dogma of the 60s maintained the idea of a mechanistic meaning of life, as advances in genetic engineering and the age of genomics enabled our greatest understanding yet of how genes and disease work. The last major barrier between us and our transhumanist future therefore involved understanding how genes determine cellular identity, and as well see, key figures in answering that question are stem cells.

***

Hopkinson was born December 20, 1960 in Kingston, Jamaica. Her mother was a library technician and her father wrote, taught, and acted. Growing up, Hopkinson was immersed in the Caribbean literary scene, fed on a steady diet of theater, dance, readings, and visual arts exhibitions. She loved to readfrom folklore, to classical literature, to Kurt Vonnegutand loved science fiction, from Spock and Uhura on Star Trek, to Le Guin, James Tiptree Jr., and Delany. Despite being surrounded by a vibrant writing community, it didnt occur to her to become a writer herself. What they were writing was poetry and mimetic fiction, Hopkinson said, whereas I was reading science fiction and fantasy. It wasnt until I was 16 and stumbled upon an anthology of stories written at the Clarion Science Fiction Workshop that I realized there were places where you could be taught how to write fiction. Growing up, her family moved often, from Jamaica to Guyana to Trinidad and back, but in 1977, they moved to Toronto to get treatment for her fathers chronic kidney disease, and Hopkinson suddenly became a minority, thousands of miles from home.

Development can be described as an orderly alienation. In mammals, zygotes divide and subsets of cells become functionally specialized into, say, neurons or liver cells. Following the discovery of DNA as the genetic material in the 1950s, a question arose: did dividing cells retain all genes from the zygote, or were genes lost as it specialized? British embryologist John Gurdon addressed this question in a series of experiments in the 60s using frogs. Gurdon transplanted nuclei from varyingly differentiated cells into oocytes stripped of their genetic material to see if a new frog was made. He found the more differentiated a cell was, the lower the chance of success, but the successes confirmed that no genetic material was lost. Meanwhile, Canadian biologists Ernest McCulloch and James Till were transplanting bone marrow to treat irradiated mice when they noticed it caused lumps in the mices spleens, and the number of lumps correlated with the cellular dosage. Their lab subsequently demonstrated that each lump was a clonal colony from a single donor cell, and a subset of those cells was self-renewing and could form further colonies of any blood cell type. They had discovered hematopoietic stem cells. In 1981 the first embryonic stem cells (ESCs) from mice were successfully propagated in culture by British biologist Martin Evans, winning him the Nobel Prize in 2007. This breakthrough allowed biologists to alter genes in ESCs, then use Gurdons technique to create transgenic mice with that alteration in every cellcreating the first animal models of disease.

In 1982, one year after Evans discovery, Hopkinson graduated with honors from York University. She worked in the arts, as a library clerk, government culture research officer, and grants officer for the Toronto Arts Council, but wouldnt begin publishing her own fiction until she was 34. [I had been] politicized by feminist and Caribbean literature into valuing writing that spoke of particular cultural experiences of living under colonialism/patriarchy, and also of writing in ones own vernacular speech, Hopkinson said. In other words, I had models for strong fiction, and I knew intimately the body of work to which I would be responding. Then I discovered that Delany was a black man, which opened up a space for me in SF/F that I hadnt known I needed. She sought out more science fiction by black authors and found Butler, Charles Saunders, and Steven Barnes. Then the famous feminist science fiction author and editor Judy Merril offered an evening course in writing science fiction through a Toronto college, Hopkinson said. The course never ran, but it prompted me to write my first adult attempt at a science fiction story. Judy met once with the handful of us she would have accepted into the course and showed us how to run our own writing workshop without her. Hopkinsons dream of attending Clarion came true in 1995, with Delany as an instructor. Her early short stories channeled her love of myth and folklore, and her first book, written in Caribbean dialect, married Caribbean myth to the science fictional trappings of black market organ harvesting. Brown Girl in the Ring (1998) follows a young single mother as shes torn between her ancestral culture and modern life in a post-economic collapse Toronto. It won the Aspect and Locus Awards for Best First Novel, and Hopkinson was awarded the John W. Campbell Award for Best New Writer.

In 1996, Dolly the Sheep was created using Gurdons technique to determine if mammalian cells also could revert to more a more primitive, pluripotent state. Widespread animal cloning attempts soon followed, (something Hopkinson used as a science fictional element in Brown Girl) but it was inefficient, and often produced abnormal animals. Ideas of human cloning captured the public imagination as stem cell research exploded onto the scene. One ready source for human ESC (hESC) materials was from embryos which would otherwise be destroyed following in vitro fertilization (IVF) but the U.S. passed the Dickey-Wicker Amendment prohibited federal funding of research that destroyed such embryos. Nevertheless, in 1998 Wisconsin researcher James Thomson, using private funding, successfully isolated and cultured hESCs. Soon after, researchers around the world figured out how to nudge cells down different lineages, with ideas that transplant rejection and genetic disease would soon become things of the past, sliding neatly into the hole that the failure of genetic engineering techniques had left behind. But another blow to the stem cell research community came in 2001, when President Bushs stem cell ban limited research in the U.S. to nineteen existing cell lines.

In the late 1990s, another piece of technology capturing the public imagination was the internet, which promised to bring the world together in unprecedented ways. One such way was through private listservs, the kind used by writer and academic Alondra Nelson to create a space for students and artists to explore Afrofuturist ideas about technology, space, freedom, culture and art with science fiction at the center. It was wonderful, Hopkinson said. It gave me a place to talk and debate with like-minded people about the conjunction of blackness and science fiction without being shouted down by white men or having to teach Racism 101. Connections create communities, which in turn create movements, and in 1999, Delanys essay, Racism and Science Fiction, prompted a call for more meaningful discussions around race in the SF community. In response, Hopkinson became a co-founder of the Carl Brandon society, which works to increase awareness and representation of people of color in the community.

Hopkinsons second novel, Midnight Robber, was a breakthrough success and was nominated for Hugo, Nebula, and Tiptree Awards. She would also release Skin Folk (2001), a collection of stories in which mythical figures of West African and Afro-Caribbean culture walk among us, which would win the World Fantasy Award and was selected as one ofThe New York Times Best Books of the Year. Hopkinson also obtained masters degree in fiction writing (which helped alleviate U.S. border hassles when traveling for speaking engagements) during which she wrote The Salt Roads (2003). I knew it would take a level of research, focus and concentration I was struggling to maintain, Hopkinson said. I figured it would help to have a mentor to coach me through it. That turned out to be James Morrow, and he did so admirably. Roads is a masterful work of slipstream literary fantasy that follows the lives of women scattered through time, bound together by the salt uniting all black life. It was nominated for a Nebula and won the Gaylactic Spectrum Award. Hopkinson also edited anthologies centering around different cultures and perspectives, including Whispers from the Cotton Tree Root: Caribbean Fabulist Fiction (2000), Mojo: Conjure Stories (2003), and So Long, Been Dreaming: Postcolonial Science Fiction & Fantasy (2004). She also came out with the award-winning novelThe New Moons Arms in 2007, in which a peri-menopausal woman in a fictional Caribbean town is confronted by her past and the changes she must make to keep her family in her life.

While the stem cell ban hamstrung hESC work, Gurdons research facilitated yet another scientific breakthrough. Researchers began untangling how gene expression changed as stem cells differentiated, and in 2006, Shinya Yamanaka of Kyoto University reported the successful creation of mouse stem cells from differentiated cells. Using a list of 24 pluripotency-associated genes, Yamanaka systematically tested different gene combinations on terminally differentiated cells. He found four genesthereafter known as Yamanaka factorsthat could turn them into induced-pluripotent stem cells (iPSCs), and he and Gurdon would share a 2012 Nobel prize. In 2009, President Obama lifted restrictions on hESC research, and the first clinical trial involving products made using stem cells happened that year. The first human trials using hESCs to treat spinal injuries happened in 2014, and the first iPSC clinical trials for blindness began this past December.

Hopkinson, too, encountered complications and delays at points in her career. For years, Hopkinson suffered escalating symptoms from fibromyalgia, a chronic disease that runs in her family, which interfered with her writing, causing Hopkinson and her partner to struggle with poverty and homelessness. But in 2011, Hopkinson applied to become a professor of Creative Writing at the University of California, Riverside. It seemed in many ways tailor-made for me, Hopkinson said. They specifically wanted a science fiction writer (unheard of in North American Creative Writing departments); they wanted someone with expertise working with a diverse range of people; they were willing to hire someone without a PhD, if their publications were sufficient; they were offering the security of tenure. She got the job, and thanks to a steady paycheck and the benefits of the mild California climate, she got back to writing. Her YA novel, The Chaos (2012), coming-of-age novelSister Mine (2013), and another short story collection, Falling in Love with Hominids (2015) soon followed. Her recent work includes House of Whispers (2018-present), a series in DC Comics Sandman Universe, the final collected volume of which is due out this June. Hopkinson also received an honorary doctorate in 2016 from Anglia Ruskin University in the U.K., and was Guest of Honor at 2017 Worldcon, a year in which women and people of color dominated the historically white, male ballot.

While the Yamanaka factors meant that iPSCs became a standard lab technique, iPSCs are not identical to hESCs. Fascinatingly, two of these factors act together to maintain the silencing of large swaths of DNA. Back in the 1980s, researchers discovered that some regions of DNA are modified by small methyl groups, which can be passed down through cell division. Different cell types have different DNA methylation patterns, and their distribution is far from random; they accumulate in the promoter regions just upstream of genes where their on/off switches are, and the greater the number of methyl groups, the lesser the genes expression. Furthermore, epigenetic modifications, like methylation, can be laid down by our environments (via diet, or stress) which can also be passed down through generations. Even some diseases, like fibromyalgia, have recently been implicated as such an epigenetic disease. Turns out that the long-standing biological paradigm that rejected Lamarck also missed the bigger picture: Nature is, in fact, intimately informed by nurture and environment.

In the past 150 years, we have seen ideas of community grow and expand as the world became more connected, so that they now encompass the globe. The histories of science fiction and biology are full of stories of pioneers opening new doorsbe they doors of greater representation or greater understanding, or bothand others following. If evolution has taught us anything, its that nature abhors a monoculture, and the universe tends towards diversification; healthy communities are ones which understand that we are not apart from the world, but of it, and that diversity of types, be they cells or perspectives, is a strength.

Kelly Lagor is a scientist by day and a science fiction writer by night. Her work has appeared at Tor.com and other places, and you can find her tweeting about all kinds of nonsense @klagor

Visit link:
On the Origins of Modern Biology and the Fantastic: Part 19 Nalo Hopkinson and Stem Cell Research - tor.com

Recommendation and review posted by Bethany Smith

Generation of self-organized sensory ganglion organoids and retinal ganglion cells from fibroblasts – Science Advances

INTRODUCTION

A ganglion is a cluster or group of nerve cells found in the peripheral nervous system (PNS) or central nervous system (CNS). They often interconnect with each other and with other structures in the PNS and CNS to form a complex nervous network. There are three groups of ganglia in the PNS, which are the dorsal root ganglia (DRG), cranial nerve ganglia, and autonomic ganglia, and two types of ganglia in the CNS, which are the basal ganglia in the brain and retinal ganglion in the retina. Unlike other ganglia, which are essentially cell clusters, retinal ganglia consist of a layer/sheet of dispersive retinal ganglion cells (RGCs). Diverse types of neurons in the somatosensory ganglia such as DRG are specialized for different sensory modalities such as proprioception, mechanoreception, nociception (i.e., pain perception), thermoception, and pruriception (i.e., itch perception) (1, 2). Similarly, there are numerous subtypes of RGCs that are specialized for transmitting from the retina different visual information (e.g., color, contrast, and motion direction) to the central visual system in the brain (3). In the human, a variety of pain, itch, neurological, and degenerative disorders affect sensory ganglia (SGs) and RGCs. Mutations in the FXN (frataxin) and IKBKAP genes, for example, result in debilitating Friedreichs ataxia and familial dysautonomia, respectively (4, 5). Dominant gain-of-function mutations in the sodium channel Nav1.7 gene SCN9A, which is expressed in sensory neurons, are linked to two severe pain syndromesinherited erythromelalgia and paroxysmal extreme pain disorder, while its recessive loss-of-function mutations cause dangerous congenital insensitivity to pain (6). Recently, peripheral SG dysfunction has also been linked to tactile sensitivity and other behavioral deficits associated with the autism spectrum disorders (7). Both genetic and environmental risk factors contribute to glaucoma, which is a leading cause of blindness worldwide and characterized by progressive degeneration of RGCs and the optic nerve (8).

Despite the difference in morphology and embryonic origin, somatosensory and retinal ganglia share extensive overlap of gene expression and we proposed more than two decades back that both might also share genetic regulatory hierarchies (9, 10). This assumption has largely turned out to be the case. During embryogenesis, somatosensory ganglion neurons arise from the multipotent neural crest (NC) cells through a process of cell migration and coalescence (1). RGCs are also derived from multipotent retinal progenitor cells and destined to the ganglion cell layer by migration. It has been shown that the neurogenic bHLH transcription factors (TFs) Ngn1 and/or Ngn2 are involved in the determination of peripheral sensory neurons (11), and that the homeodomain TFs Isl1 and Brn3a or Brn3b are required for the specification and differentiation of different subtypes of neurons in the somatosensory and retinal ganglia (1217). Moreover, there is substantial functional redundancy between Ngn1 and Ngn2 as well as between Brn3a and Brn3b in the development of sensory neurons and RGCs (11, 18, 19).

Somatic cell reprogramming by defined TFs into sensory neurons provides a powerful strategy for studying mechanisms of SG development and sensory disease pathogenesis and for generating cells for patient-specific cell replacement therapy, drug screening, and in vitro disease modeling. It has been shown recently that nociceptor and other subtypes of sensory neurons can be directly induced from murine and human fibroblasts by Brn3a and Ngn1 or Ngn2 or by a combination of five TFs including Ascl1, Ngn1, Isl2, Myt1l, and Klf7 (20, 21). The induced sensory neurons express characteristic marker proteins and are electrically active and selectively responsive to various agonists known to activate pain- and itch-sensing neurons (20, 21). However, networked SG did not appear to be consistently generated in these cases, and it is unclear whether RGCs were induced by these combinations of TFs.

Given the advantages of organoids in studying developmental mechanisms and modeling and treating relevant diseases, we sought to generate ganglion organoids and RGCs from mouse and human fibroblasts using TFs controlling in vivo development of sensory and retinal ganglia. The extensive molecular homology between SG neurons and RGCs creates a dilemma as to how to distinguish these two types of neurons. In the past, several RGC markers including Brn3a, Brn3b, Isl1, Thy1.2, Sncg, Math5, Rbpms, and RPF-1 were used to identify RGCs induced from embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and somatic cells (2225). However, this is a questionable practice because although these markers are sufficient to identify RGCs within the retina, they are inadequate as specific markers for identifying induced RGCs (iRGCs), given their expression in SG and other CNS regions as well (10, 15). We thus carefully screened for RGC-specific markers by comparing expression patterns of numerous known markers in the retina and DRG. This analysis revealed Pax6 expression in RGCs but not in DRG and that RGCs can be identified as Pax6+Brn3a+ or Pax6+Brn3b+ double-positive cells. Equipped with this knowledge, we set to generate induced SG (iSG) organoids and iRGCs from fibroblasts by testing the combination of Ascl1, the pioneer neurogenic TF for somatic cell reprogramming of neurons (26), with a variety of SG and retinal TFs. This screen identified a triple-factor combination ABI (Ascl1-Brn3a/3b-Isl1) as the most efficient way to induce self-organized and networked iSG and iRGCs from fibroblasts.

Previous studies by our group and others have demonstrated that SGs and RGCs share similar transcriptional regulatory mechanism for their development, for instance, both Brn3 TFs (Brn3a and Brn3b) and Isl1 are involved in the specification and differentiation of DRG neurons and RGCs (1214, 16). More recently, Ascl1 has been shown to play a pioneering role in induced neuron (iN) reprogramming from somatic cells (26). As a first step to generate iSG and iRGCs directly from somatic cells, we sought to induce SG neurons and RGCs from mouse embryonic fibroblasts (MEFs) by testing the combination of Ascl1 with each of 22 SGs and retinal TFs (Brn3b, Isl1, Math5, Ebf1, Pax6, Tfap2a, Nr4a2, Nrl, Crx, Ptf1a, Neurod1, Lhx2, Ngn1, Ngn2, Chx10, Sox2, Rx, Meis1, Foxn4, Otx2, Sox9, and Six3). When MEFs were infected with doxycycline (Dox)inducible Ascl1 and Brn3b (AB) or Isl1 (AI) lentiviruses and cultured in the neural differentiation medium containing Dox, they started to change morphology by day 7 and form visible neuronal clusters by day 14 (Fig. 1, C and D). This phenomenon did not occur when Ascl1 acted alone or was combined with each of the rest of 20 TFs (Fig. 1B). Neither did this happen when MEFs were infected with both Brn3b and Isl1 viruses or with only control green fluorescent protein (GFP) viruses (Fig. 1, A and E). When we combined Ascl1 with both Brn3b and Isl1 (ABI), they again induced morphological changes of MEFs but more importantly induced conspicuously more neuronal clusters than either the AB or AI double-factor combinations (Fig. 1, C, D, F, and N, and fig. S1, A and B), suggesting a synergistic effect between Brn3b and Isl1 in reprogramming MEFs into neuronal clusters.

(A to I) Morphological changes of MEFs infected with the indicated lentiviruses (A, Ascl1; B, Brn3b; I, Isl1) and cultured for 14 days. Networked iSGs were induced by combinations of Ascl1 with Brn3b (AB), Isl1 (AI), or both Brn3b and Isl1 (ABI), with the ABI triple-factor combination as the most efficient. Arrows point to the thick fasciculated nerve fibers interconnecting iSG. Scale bars, 160 m (A to F) and 80 m (G to I). (J to M) Scattered iNs and clustered iSG induced by AI, ABI, A, or BAM (Brn2 + Ascl1 + Myt1l) were immunolabeled for Tuj1 and counterstained with nuclear 4,6-diamidino-2-phenylindole (DAPI). Note the morphological differences of Tuj1-immunoreactive neurons between conditions. Scale bars, 40 m. (N) Quantification of iSG induced by single and combinations of TFs. MEFs (6 104) were seeded into each well of 12-well plates and infected with lentiviruses expressing the indicated TFs or GFP, and iSGs in each well were then counted at day 14 following virus infection. Data are means SD (n = 3). Asterisks indicate significance in one-way analysis of variance test: *P < 0.0001. (O) Snapshots of a time-lapse video showing how individual neurons induced by ABI self-organized into an iSG. The arrow, arrowhead, and asterisk indicate the positions of three individual iNs at different time points. Scale bar, 62.5 m. (P) Schematic indicating the outcome (iNs or iSG) of MEFs induced by BAM, AI, AB, or ABI.

The neuronal clusters induced by either double- or triple-factor combinations (AB, AI, and ABI) appeared to be interconnected by thick fasciculated nerve fibers and resemble SG plexus in morphology (Fig. 1, G to I) and thus were designated as iSG organoids. The iSG neurons and associated nerve fibers were highly immunoreactive for the neuronal marker Tuj1 (Fig. 1, J and K, and fig. S2, D to I). Tuj1 immunolabeling also showed that AI- and ABI-induced neurons mostly formed iSG, and only a small number of them were scattered outside the iSG (Fig. 1, J, K, and P). By contrast, Tuj1 immunoreactivity showed that Ascl1 alone induced neurons mostly with an immature morphology and that the BAM (Brn2, Ascl1, and Mytl1) combination induced mature neurons that were scattered instead of clustered (Fig. 1, L, M, and P, and fig. S2, A to C), consistent with previous reports (27). Therefore, we identified the AB, AI, and ABI combinations of TFs capable of inducing MEFs into iSG, with the ABI triple-factor combination as the most efficient.

To investigate how ABI-reprogrammed neurons are organized into iSG, we used long-term time-lapse microscopy to track them over time in culture. For this purpose, MEFs were prepared from the CAG-GFP transgenic mouse embryos (28) and induced by ABI for 10 days before time-lapse recording. Compared to MEFs, reprogrammed individual neurons appeared to be rounder and neurite-bearing and displayed much higher contrast and brighter GFP fluorescence (Fig. 1O and movies S1 and S2). Over a period of tens of hours, they first formed smaller cellular clusters via migration, which then coalesced into bigger and bigger clusters that resembled SG. We did not observe this self-organization phenomenon for neurons induced by Ascl1 (movies S3 and S4).

The induction of iSG by TFs from MEFs could be through direct cell conversion or might be mediated through an intermediate proliferative progenitor. To distinguish these possibilities, we pulse-labeled cells with 5-ethynyl-2-deoxyuridine (EdU) for 24 hours at day 14 of reprogramming with AI or ABI and found that almost no Tuj1-positive cells were labeled by EdU, whereas approximately 15% of Tuj1-negative cells (e.g., MEFs) were labeled (fig. S2, G to J and N to P). We then reprogrammed MEFs with ABI in the presence of EdU for 13 days starting from day 1 of reprogramming. In this case, only 6.1% of Tuj1-positive cells were labeled by EdU, whereas 73.1% of Tuj1-negative cells were labeled (fig. S2, J to M), suggesting that iSGs are most likely induced by direct cell transdifferentiation without undergoing a proliferative intermediate state. In agreement with these results, as determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays, we detected no increase of expression levels of the neural progenitor marker genes Nestin and Olig2 over the entire time course (from day 1 to day 12) of ABI reprogramming (fig. S2Q). Similarly, the expression of pluripotent factor genes Oct4, Klf4, and Nanog was not induced during the time course of ABI reprogramming (fig. S2R). Furthermore, immunostaining showed that from day 1 to day 12 of ABI reprogramming, no protein expression was seen for the neural progenitor marker Nestin, pluripotent progenitor markers Nanog and Oct4, or Sox2, a marker for both neural and pluripotent progenitor cells (fig. S2, S and T). Thus, iSGs are most likely induced by direct cell transdifferentiation without undergoing an intermediate state of neural or pluripotent progenitors.

Given the demonstrated functional redundancy and similar DNA binding and transcriptional properties between Brn3a and Brn3b (10, 18, 19), we investigated whether these two factors are interchangeable in somatic cell reprogramming. We tested whether Brn3a was able to replace Brn3b in reprogramming MEFs into iSG and found that this indeed was the case (Fig. 1N and fig. S3, A to I).

By immunofluorescent staining and qRT-PCR assays, we examined a variety of molecular neuronal markers, both general and cell type specific, to characterize the iSG reprogrammed from MEFs by ABI (Ascl1 + Brn3b + Isl1 or Ascl1 + Brn3a + Isl1). We found that they were highly immunoreactive for Tuj1 and Map2 (Fig. 2, A and O), two general neuronal hallmarks. They also expressed synapsin and Vamp (synaptobrevin) (Fig. 2, B and C), suggesting that the networked iSG neurons were capable of forming synapses and releasing synaptic vesicles. In the normal SG, the heavy neurofilament NF200 and intermediate neurofilament peripherin are expressed in the A-fiber and C-fiber neurons, respectively, and both were seen to be expressed in the iSG (Fig. 2, D, E, and P). Many neurons in the iSG were also immunoreactive for the vesicular glutamate transporters 1 and 2 (vGLUT1 and vGLUT2) (Fig. 2, F and G), consistent with the fact that peripheral sensory neurons are mostly excitatory glutamatergic neurons. As determined by qRT-PCR, these immunolabeling results were confirmed by the marked up-regulation of expression of Tuj1, Map2, NF200, vGlut1, vGlut2, and vGlut3 genes in the ABI-induced iSG compared to MEFs infected by GFP lentiviruses (Fig. 2W).

(A to P) iSGs induced by Ascl1, Brn3b, and Isl1 (A to N) or Ascl1, Brn3a, and Isl1 (O and P) were double-immunostained with the indicated antibodies and counterstained with nuclear DAPI. They were immunoreactive for Tuj1, Map2, synapsin, Vamp, NF200, peripherin, vGLUT1, vGLUT2, TrkA, TrkB, TrkC, c-Ret, TH, p75NTR, and Brn3a. Scale bars, 80 m (A) and 40 m (B to P). (Q to V) Sections from iSG induced by Ascl1, Brn3b, and Isl1 were immunostained with the indicated antibodies and counterstained with nuclear DAPI. Scale bars, 12.7 m. (W) qRT-PCR analysis showing that in MEFs infected with ABI (Ascl1 + Brn3b + Isl1) viruses, compared to those infected with GFP viruses, there was a significant increase in expression of the indicated genes, which represent general and subtype-specific sensory neuron markers. Data are means SD (n = 3 or 4). Asterisks indicate significance in unpaired two-tailed Students t test: *P < 0.05, **P < 0.001, ***P < 0.0001. (X) qRT-PCR analysis showing that in MEFs infected with ABI viruses, compared to those infected with GFP viruses, there was a significant increase in expression of the indicated genes, which represent nociception pathway genes of sensory neurons. Data are means SD (n = 3 or 4). Asterisks indicate significance in unpaired two-tailed Students t test: *P < 0.05, **P < 0.005, ***P < 0.0005. (Y) Quantification of Tuj1-positive neurons that express each of the three Trk receptors (TrkA, TrkB, or TrkC) individually or combined (TrkABC) in MEFs infected with the ABI viruses. Data are means SD (n = 3).

In the DRG, neurotrophin receptor expression marks subtypes of sensory neurons. For instance, TrkA is expressed by cutaneous nociceptive and thermoceptive neurons, TrkB by a subset of cutaneous mechanoreceptive neurons, and TrkC by proprioceptive neurons (1). In the iSG reprogrammed by ABI, qRT-PCR assays revealed that there was a significant up-regulation of TrkA, TrkB, and TrkC gene expression (Fig. 2W). Moreover, immunolabeling confirmed the presence of TrkA, TrkB, and TrkC proteins in both somas and nerve fibers of the induced ganglion neurons (Fig. 2, H to J). Each of the Trk receptors was found in approximately 30% of the iNs, and 87% of the iNs were labeled by costaining for all three Trk receptors (Fig. 2Y), suggesting that each Trk receptor was expressed in a distinct subpopulation of induced ganglion neurons. c-Ret and TH are expressed in subpopulations of nonpeptidergic nociceptors and C-low threshold mechanoreceptors, respectively (1, 2). Correspondingly, we observed expression of both proteins in the iSG and associated nerve fibers (Fig. 2, K and L). In addition, pan-sensory neuron markers Brn3a (for iSG induced by Ascl1 + Brn3b + Isl1) and the nerve growth factor (NGF) receptor p75NTR were also found in iSG neurons (Fig. 2, M and N). qRT-PCR validated the up-regulation of Brn3a and p75NTR expression in the iSG and additionally revealed up-regulation of CGRP, a marker for a subpopulation of peptidergic nociceptive neurons (Fig. 2W).

The TrkA-positive nociceptive neurons in the iSG were further characterized by qRT-PCR analysis. In the iSG, we found significantly up-regulated expression of receptor ion channel genes Trpv1/2/3 and Trpa1, which detect heat and cold, respectively (Fig. 2X) (29). There was also expression of P2X3, Bdkrb1, and Accn1/2, which are receptor genes responsible for damage sensing (Fig. 2X) (29). In addition, induced expression was observed for other pain perception pathway genes including sodium channel gene Scn11a, potassium channel gene Kcnq2, calcium channel genes Cacna1a and Cacna2d1, and neurotransmitter receptor genes Gria1 and Nk1r (Fig. 2X) (29). To further investigate whether distinct types of sensory neurons were aggregated together within the same iSG, we carried out immunostaining analyses of cryosections of ABI-induced iSG. Besides colabeling between Tuj1 and Brn3a in the same iSG, we found that peripherin+ and HuC/D+ neurons, P2X3+ and vGLUT2+ neurons, and TrkA+ and TrkB+ neurons coexisted in the same iSG (Fig. 2, Q to T). Moreover, we detected coexpression of three markers, such as TrkA, P2X3 and NF200, and TrkA, peripherin, and HuC/D, in the same iSG (Fig. 2, U and V), suggesting that individual iSGs are likely aggregated from distinct sensory neuron types.

Over the time course of ABI reprogramming, qRT-PCR assays showed that the expression of general neuronal marker genes Tuj1 and Map2 was progressively induced starting from day 3, whereas other sensory neuronal marker genes including Trpv2, TrkC, and Brn3a were not induced until day 6 or 9 (fig. S1, C to E). Consistent with this, Brn3a-immunoreactive cells did not emerge until day 6 with a mostly scattered pattern, but by day 9 or 12, they mostly coalesced into iSG (fig. S1G). Therefore, as expected, sensory neuronal markers were induced slightly later than general neuronal markers during ABI reprogramming. Concomitant with neuronal induction, the fibroblast marker genes Col1a1 and Twist2 were gradually down-regulated starting from day 3 (fig. S1F).

Immunostaining of iSG induced by AI or AB suggested that they also contained neurons that expressed typical sensory neuronal markers Tuj1, Map2, Dcx (doublecortin), synapsin, NF200, peripherin, vGLUT1, TrkA, TH, HuC/D, and Brn3a (fig. S3, J to S). Together, these data indicate that certain combinations of TFs (ABI, AI, and AB) are capable of reprogramming MEFs into iSG that contain proprioceptive, mechanoreceptive, nociceptive, and thermoceptive sensory neurons.

To assess the electrophysiological properties of neurons within and outside the iSG reprogrammed from MEFs by ABI or AI, we performed whole-cell patch-clamp recordings of cells with neuronal morphology (Fig. 3A). Following 9 days of induction, the recorded neurons (two of two) generated potassium currents and small sodium currents but no action potentials, suggesting that they were functionally immature. At 2 weeks, the great majority of neurons (34 of 37) had typical sodium and potassium currents and exhibited action potential responses (Fig. 3, B to F). Among them, most (70.3%) are multispiking neurons, and the rest (21.6%) are single-spiking (Fig. 3, B, C, E, and K), similar to those reprogrammed from human fibroblasts by Brn3a and Ngn1 or Ngn2 (21). The inward sodium current could be specifically blocked by tetrodotoxin (TTX) and recovered by its removal (Fig. 3, H to J). Moreover, consistent with the synapsin immunoreactivity (Fig. 2B and fig. S3L), some neurons (2 of 37) exhibited spontaneous postsynaptic currents (Fig. 3G), suggesting the formation of functional synapses between iNs. Therefore, the iSG neurons induced by ABI or AI display membrane and physiological properties of mature neurons.

(A) Micrograph showing a typical iSG neuron chosen for patch-clamp recording. (B to D) Current-clamp recordings revealed multiple action potential responses (multiple-spiking) of a differentiated iSG neuron under current injection (B and C). Voltage-clamp recordings of the same neuron indicated fast activated and inactivated inward sodium currents as well as outward potassium currents (D). (E and F) Current injection revealed a single action potential response (single-spiking) of an iSG neuron (E). Voltage-clamp recordings of the same neuron indicated fast activated and inactivated inward sodium currents as well as outward potassium currents (F). (G) Spontaneous postsynaptic currents recorded from a differentiated iSG neuron. (H to J) The sodium currents of an iSG neuron were completely blocked by TTX and were partially restored by its washout. (K) Observed ratios of iSG neurons that are multiple-spiking and single-spiking, or display no action potential (AP). (L to N) iSG induced by ABI and corresponding fluorescent signals after incubation with Fluo-8 AM. Scale bars, 20 m. (O to Q) Calcium changes indicated by fluorescent intensity in normal Ringers solution (O), 10 M capsaicin (P), and 100 mM KCl (Q). Scale bars, 20 m. (R) Representative calcium responses to 100 M menthol and 100 mM KCl. Calcium responses were calculated as the change in fluorescence (F) over the initial baseline fluorescence (F0). (S) Representative calcium responses to 10 M capsaicin and 100 mM KCl. (T and U) Scatter dot plots showing the positive responses of individual cells to menthol, capsaicin, or KCl. Data are means SEM (n = 19 to 44).

The nociceptive sensory neurons express ion channels Trpv1, Trpm8, and Trpa1, which respond to heat, cold, and noxious chemicals, respectively (29). By calcium imaging, we used specific agonists capsaicin (10 M) and menthol (100 M) for Trpv1 and Trpm8 to confirm the functional expression of these two channels in iSG neurons (20, 21). KCl (100 mM) was transiently perfused to monitor the functional viability of the cells at the beginning and end of recording. Only cells that showed responses to KCl were chosen for analysis. Nearly all the iSG clusters induced by ABI showed green fluorescence following incubation with the calcium indicator Fluo-8 AM (Fig. 3, L to N). We found that among all the recorded cells, 56.8% of them (25 of 44) responded to capsaicin and 70.4% (19 of 27) to menthol (Fig. 3, O to U), suggesting that a large number of iSG neurons express ion channels characteristic of nociceptive sensory neurons.

We investigated the ability of iSG neurons to survive and integrate in the DRG by microinjecting dissociated iSG neurons reprogrammed from CAG-GFP mouse embryos (28), into adult rat DRG explants (fig. S4A). Following 2 weeks of culture of the transplanted explants, we found that the GFP+ iSG neurons survived, spread, and integrated in the DRG and were immunoreactive for the pan-sensory neuron marker HuC/D (fig. S4B). Moreover, a large fraction of them were immunoreactive for TrkA, while a small portion expressed TrkB or TrkC (fig. S4, C to E), indicating that iSG neurons maintain subtype specificity in the DRG.

Consistent with their sensory neuron identity, after a week in culture, iSG neurons reprogrammed from Tau-GFP mouse embryos (30) spontaneously aggregated with rhodamine-labeled sensory neurons dissociated from E13.5 mouse DRGs to form DRG-like organoids interconnected by nerve fibers (fig. S4, N to Q). In contrast, when GFP+ iSG neurons were cocultured with P0 mouse skin cells, they did not co-aggregate with skin cells; instead, they projected to and innervated vimentin-immunoreactive epidermal cells with multiple terminal nerve endings (fig. S4, J to M), in agreement with the fact that DRG neurons normally innervate their peripheral targets in the epidermis.

Previous studies have demonstrated that peripheral SG neurons and RGCs share many common molecular hallmarks, making it difficult to distinguish these two types of sensory neurons in cell culture. During the past decade in stem cell research, a number of supposedly specific molecular markers have been used to identify differentiated or induced SG neurons and RGCs (2225); unfortunately, however, no efforts have been made to confirm the specificity of these markers, casting doubt on some of the previous conclusions. Because Brn3a, Brn3b, and Isl1 are TFs crucial for retinal cell development, in particular, RGC development (13, 14, 16), there is a possibility that they may also be able to reprogram MEFs into RGCs. We thus set out to identify molecular markers that can definitively distinguish RGCs from peripheral sensory neurons. We postulated that such unique identifiers could be single-molecule markers or a combination of multiple-molecule markers that must be present only in RGCs within the retina but not in peripheral sensory neurons or any other tissues.

In the mammalian retina, our early studies have identified Brn3a and Brn3b as the gold standard markers for RGCs, but meanwhile revealed their expression in peripheral SG and other CNS areas (10, 15). In the mouse, immunolabeling of retinal and DRG sections confirmed the specificity of Brn3a and Brn3b in RGCs within the retina as well as their widespread expression in DRG neurons (fig. S5A), indicating that Brn3a and Brn3b alone cannot distinguish RGCs from DRG neurons outside the retina. Similarly, many other commonly used RGC markers including Thy1.2, RPF-1, Rbpms, HuC/D, Six6, Ebf, Isl1, Zeb2, Lmo4, Ldb1, and Sncg all displayed expression in the DRG (fig. S5A). Expressed in both RGCs and DRGs were also a number of sensory neuron markers including CGRP, peripherin, vGLUT2, vGLUT3, GABA, TrkA, TrkB, TrkC, and P2X3 (fig. S5A). Pax6 appeared to be the only exception among all the tested markers, which is expressed in RGCs and inner nuclear layer within the retina but absent from DRG (fig. S5A). Given the expression of Brn3a, Brn3b, Thy1.2, RPF-1, and Rbpms only in RGCs within the retina, a combination of Pax6 with any of these proteins could serve as a potential unique identifier for RGCs.

The uniqueness of double-positive markers was tested by immunolabeling sections of other CNS areas. Double-immunostaining showed that neuronal cells immunoreactive for both Pax6 and RPF-1, Thy1.2, Rbpms, HuC/D, or Tuj1, albeit absent from the DRG, were present not only in the retina but also in the spinal cord (Fig. 4A), precluding their use as specific RGC markers. The Isl1+Pax6+ double-positive cells were absent from the DRG and spinal cord but present within both the ganglion cell layer and inner nuclear layer in the retina (Fig. 4A), precluding also this combination as a specific RGC identifier. By contrast, Brn3a+Pax6+ and Brn3b+Pax6+ double-positive cells were exclusively RGCs in the retina and were not found in the DRG or spinal cord (Fig. 4A). Given the detection of Brn3a/Brn3b expression in the midbrain and cerebellum (10, 15), we investigated whether there were Brn3a+Pax6+ and Brn3b+Pax6+ double-positive cells in these two brain regions and found none at stages E13.5, P4, and P21 (Fig. 4A). Thus, these results together demonstrate that a combination of Pax6 and Brn3a or Brn3b double markers can serve as specific identifiers for RGCs.

(A) Cryosections from the indicated regions and stages of mice were stained by double immunofluorescence with the indicated antibodies and counterstained with nuclear DAPI. Arrows point to representative double-positive cells. GCL, ganglion cell layer; INBL, inner neuroblastic layer; INL, inner nuclear layer; IPL, inner plexiform layer; ONBL, outer neuroblastic layer; ONL, outer nuclear layer; OPL, outer plexiform layer. Scale bars, 40 m. (B to E) MEFs were infected with the ABI lentiviruses, cultured for 14 days, and double-immunostained with the indicated antibodies and counterstained with nuclear DAPI. Arrowheads in (D) indicate colocalized cells in the outlined region located outside the iSG. Scale bars, 40 m (B and C) and 20 m (D and E). (F to I) MEFs infected with the ABI lentiviruses and cultured for 14 days were dissociated and double-immunostained with anti-Brn3a and anti-Pax6 antibodies and counterstained with nuclear DAPI. Arrows indicate colocalized cells. Scale bars, 20 m. (J) qRT-PCR analysis of expression levels of the indicated genes (ex, exogenous; en, endogenous) in MEFs infected with ABI or GFP viruses (means SD, n = 3 or 4). *P < 0.05, **P < 0.001, ***P < 0.0001. (K and L) Quantification of DAPI- or Tuj1-positive cells that express Brn3a or Pax6 in MEFs infected with the ABI viruses (means SD, n = 4). (M) Quantification of Brn3a+Pax6+ iRGCs induced by ABI (means SD, n = 4).

We used the single-cell RNA sequencing (scRNA-seq) technology to further confirm the specificity of Brn3a+Pax6+ and Brn3b+Pax6+ double-positive markers. A Brn3b-GFP knockin mouse line was generated, and RGCs were enriched and sequenced by scRNA-seq. In addition, we isolated adult mouse DRG cells, which were then similarly sequenced. Clustering and expression analyses of the sequenced RGCs revealed that most of them expressed Pax6, Brn3a, or Brn3b and both Pax6 and Brn3a or Brn3b; in particular, the great majority of RGCs were positive for both Pax6 and Brn3a (fig. S5B). By contrast, there was a complete absence of DRG cells expressing both Pax6 and Brn3a or Brn3b, although Brn3a and Brn3b were present in most DRG cells (fig. S5B), consistent with the idea that a combination of Pax6 and Brn3a or Brn3b double markers can be used to distinguish RGCs from DRG cells.

To assess whether ABI and AI are able to induce iRGCs in addition to iSG, we immunostained ABI-reprogrammed MEF cells with antibodies against Tuj1, Brn3a, and/or Pax6. Double-labeling between Tuj1 and Brn3a or Pax6 showed that Brn3a-expressing cells were concentrated in the iSG, whereas the great majority of Pax6-expressing cells were distributed outside of the iSG and only few of them were seen in the iSG (Fig. 4, B and C). Moreover, all Pax6-positive cells coexpressed Brn3a and most of them displayed relatively weak Brn3a expression (Fig. 4, D and F to I), indicating that iRGCs were reprogrammed from MEFs by ABI. Similar to the distribution of endogenous RGCs that are spread throughout the RGC layer, the Brn3a+Pax6+ iRGCs were scattered and did not organize into clustered mini-ganglia (Fig. 4, C and D), unlike the induced peripheral SG neurons. Quantification of immunoreactive cells indicated that approximately 21.1% of all cells were induced by ABI into Brn3a+ neurons, whereas only about 2.6% of them were reprogrammed into Pax6+ cells (Fig. 4K). Furthermore, there were 93.1% of Tuj1+ cells coexpressing Brn3a, 10.5% of Tuj1+ cells coexpressing Pax6, and 12.6% Brn3a+ cells coexpressing Pax6 (Fig. 4, L and M), suggesting that only a small fraction of the ABI-reprogrammed neurons are Brn3a+Pax6+ double-positive iRGCs and that most of them are Brn3a+ iSG neurons. Similarly, a small number of Brn3a+Pax6+ iRGCs were induced by AI (fig. S3, T and U).

In agreement with the induction of a small proportion of iRGCs by ABI, immunostaining showed that some cells outside the iSG were positive for Thy1.2 (Fig. 4E). qRT-PCR assays revealed a significant up-regulation of several commonly used RGC marker genes including the endogenous Brn3b, Brn3a, RPF-1, Pax6, Sncg, HuC, and HuD in MEFs infected with ABI lentiviruses compared to those infected with GFP viruses (Fig. 4J), consistent with the induction of iRGCs by ABI from MEFs. Moreover, during the time course of ABI reprogramming, we were able to show by qRT-PCR assay that Pax6 expression was progressively induced starting from day 9 (fig. S1E).

We further characterized the iSG neurons and iRGCs by bulk and single-cell transcriptome profiling. First, we carried out bulk RNA-seq analysis of ABI- and GFP-transduced MEFs after 2 weeks of induction (Fig. 5A). Scatter plot and hierarchical cluster analyses showed that there were numerous genes whose expression was down-regulated or up-regulated in ABI-transduced compared to GFP-transduced MEFs (fig. S6, A to C, and table S1). We performed gene set enrichment analysis (GSEA) of the altered genes followed by network visualization (31), and one major group of clustered networks emerged (fig. S6D). This group encompasses only up-regulated genes that are enriched for GO (gene ontology) terms relevant to neural function and development such as synaptic signaling, synaptic vesicle, synapse organization, neurotransmitter transport, regulation of neurotransmitter levels, exocytosis, calcium ion binding, ligand-gated channel activity, neuron projection, axon, and nervous system development. These results are consistent with the induction of functional SG and retinal ganglion neurons by ABI from MEFs. In agreement with this and qRT-PCR assays (Figs. 2, W and X, and 4J), bulk RNA-seq confirmed up-regulation of many SG and retinal ganglion genes in ABI-transduced MEFs, including NF200, Brn3a, TrkB, vGlut3, Trpv1, P2X3, Gria1, Pax6, Sox11, Sncg, and Thy1 (fig. S6, E and F).

(A) Schematic illustration of the processes for bulk RNA-seq and scRNA-seq analyses. (B) t-distributed Stochastic Neighbor Embedding (t-SNE) plot of the 15 cell clusters generated from the sequenced single iSG neurons. (C to J) t-SNE plots colored by expression of the indicated conventional SG marker genes. (K) Violin plots showing expression patterns of the indicated conventional SG marker genes in single-cell clusters.

We separated ABI-induced iSG from MEFs by mild dissociation and filtering and then carried out scRNA-seq analysis of single iSG cells using the 10 Genomics Chromium platform (Fig. 5A) (32). After processing the sequencing data by the Cell Ranger software pipeline, we clustered the 3231 sequenced single cells into 15 clusters using the Seurat software package (Fig. 5B), which is an R toolkit for single-cell genomics (33). Investigation of gene expression patterns showed high levels of expression of general neuronal marker genes such as Tuj1, Tau, and Map2 in clusters 1, 3, 5, 8, and 11, whereas they are expressed much more weakly in the rest of the clusters (fig. S7, A and C to E). By contrast, many of the previously identified MEF marker genes (34) including Klf4, Mmp2, and Postn have, in general, an opposite expression pattern, displaying little expression in clusters 1, 3, 5, 8, and 11 but obvious expression in the rest of the clusters (fig. S7, A and F to H). Pseudotime trajectory of the sequenced cells constructed using Monocle (35) yielded three presumptive states along which Klf4 expression progressively decreases, while the expression of Tuj1, Tau, and Map2 progressively increases (fig. S7, I and J). Thus, in iSG induced from MEFs by ABI for 2 weeks, there are still some cells that express both neuronal and MEF markers, suggesting that MEFs undergo a transitional intermediate stage that exhibits both MEF and neuronal characteristics before completely reprogrammed into mature iSG neurons (fig. S7B). Consistent with this idea, there were many cells coexpressing both Tuj1 and the fibroblast marker gene vimentin in a number of the clusters (fig. S7K). By days 6 to 12 of ABI reprogramming, we also detected by immunolabeling some cells and nerve bundles that were immunoreactive for both Tuj1 and vimentin proteins (fig. S7L).

Consistent with the induction of iSG neurons, there is expression of NF200, peripherin, p75NTR, TrkB, TrkC, Trpv1, Trpv2, P2X3, Accn2, Kcnq2, Cacna1a, and CGRP in various clusters of sequenced iSG cells (Fig. 5, C to K). In particular, NF200, P2X3, Accn2, Kcnq2, and Cacna1a are primarily expressed in clusters 1, 3, 5, 8, and 11, and peripherin, Trpv1, and Trpv2 are mainly present in a small number of cells in clusters 1, 3, and 5 (Fig. 5, C, D, F to I, and K), indicating their expression in mature iSG neurons and their expression specificity. Many genes that are markers for both SG neurons and RGCs, such as Thy1, Sncg, Rbpms, Gap43, HuC, Sox11, Sox12, Zeb2, Brn3a, Brn3c, and RPF-1, are also expressed in various clusters of sequenced iSG cells (Fig. 6). However, the RGC marker Pax6 is only enriched in small cell clusters 12 and 13 and expressed in few cells in other clusters, consistent with the observation that only a very small number of iSG cells were immunoreactive for Pax6 (Figs. 4C and 6I). The Pax6+ cells in clusters 12 and 13 do not appear to be iRGCs because they lack expression of RGC markers Brn3a, Brn3c, and RPF-1 (Fig. 6I). In agreement with the observation that iRGCs were scattered and rarely present in iSG, there are only a small number of cells coexpressing both Pax6 and Tuj1, Thy1, Gap43, HuC, Sox11, Brn3a, or RPF-1, primarily in clusters 5 and 6 (Fig. 4C and fig. S8, A to H).

(A to H) t-SNE plots colored by expression of the indicated conventional RGC marker genes. (I) Violin plots showing expression patterns of the indicated conventional RGC marker genes in single-cell clusters.

We reprogrammed human skin fibroblasts (HSFs) into iSG with a mixture of the three individual ABI lentiviruses only at a low efficiency. To increase the reprogramming efficiency, we created a Dox-inducible lentiviral construct containing Ascl1, Isl1, and Brn3b in a single open reading frame (ORF) tethered by the P2A and T2A self-cleaving peptide sequences (Fig. 7A). HSFs infected by these single ABI-expressing viruses readily formed well-networked iSG in approximately 45 days in the neural differentiation medium (Fig. 7B). Immunostaining of these iSG showed that they contained typical sensory neurons expressing TUJ1, MAP2, NF200, PERIPHERIN, SYNAPSIN, VGLUT1, TRKA, TRKB, TH, and BRN3A (Fig. 7, C to K). Moreover, similar to MEFs, a small number of iRGCs were induced from HSFs by ABI that were immunoreactive for both PAX6 and BRN3A (Fig. 7, L and M). qRT-PCR assays showed that TUJ1 expression was gradually induced by ABI starting from day 10 but the more mature neuron marker gene MAP2 was not induced until day 20 (Fig. 7N). In contrast, the fibroblast marker genes COL1A1 and TWIST2 were progressively down-regulated starting from day 10 (Fig. 7O), concurrent with TUJ1 induction.

(A) Schematic of the lentiviral construct. (B to M) Networked iSG induced by ABI from HSFs (B) and iSG and iRGCs double-immunostained with the indicated antibodies and counterstained with DAPI (C to M). (N to Q) qRT-PCR assay showing the time course [days 1 (D1) to 20 (D20)] of expression changes of the indicated marker genes in HSFs infected with ABI or GFP viruses (means SD, n = 4). *P < 0.0001 for (N), (P), and (Q) and *P < 0.01, **P < 0.001, ***P < 0.0001 for (O). hES, human embryonic stem cell; hiNSC, human neural stem cell. (R) Schematic of EdU labeling schedule. (S to U) ABI-transduced HSFs were labeled by EdU for 29 days and colabeled for both TUJ1 and EdU before (S) and after dissociation (T). (U) Corresponding quantification (means SD, n = 4). *P < 0.0001. (V to X) ABI-transduced HSFs were labeled by EdU for 24 hours and colabeled for both TUJ1 and EdU before (V) and after dissociation (W). (X) Corresponding quantification (means SD, n = 4). *P < 0.0001. (Y, Z, and A) Current-clamp recordings revealed single action potential responses (single-spiking) of a differentiated iSG neuron (Y). Voltage-clamp recordings of the same neuron indicated fast activated and inactivated inward sodium currents as well as outward potassium currents (Z and A). The sodium currents of the iSG neuron were effectively blocked by TTX and were partially restored by its washout (A). (B and C) Current-clamp recordings revealed an iSG neuron with multiple action potential responses (multiple-spiking). (D) Spontaneous postsynaptic currents recorded from a differentiated iSG neuron. Scale bars, 80 m (B) and 20 m (C to M, S, T, V, and W).

To determine whether iSG induction was mediated by a pluripotent or neural progenitor intermediate, we investigated by qRT-PCR assay expression of pluripotent factor genes and neural progenitor marker genes during HSF reprogramming by ABI. We found no significant change in expression levels of pluripotent factor genes OCT4, KLF4, and NANOG during the reprogramming process (from day 1 to day 20) (Fig. 7P). Similarly, there was no induction of NESTIN and OLIG2 expression in the reprogramming process (Fig. 7Q), suggesting that iSGs were reprogrammed from HSFs by ABI without an intermediate state of pluripotent or neural progenitors. Consistent with this, by day 30 of reprogramming, almost no reprogrammed TUJ1+ neurons were labeled by EdU when EdU was added to the reprogramming cell culture for 29 days or 24 hours (Fig. 7, R to X), confirming that iSG reprogramming occurred in the absence of an intermediate state of proliferative progenitors.

The electrophysiological properties of reprogrammed human iSG neurons were evaluated by whole-cell patch-clamp recording. At day 60, most neurons (15 of 17) exhibited typical sodium and potassium currents and showed action potential responses (Fig. 7, Y, Z, and A). In addition, the inward sodium current could be specifically and completely blocked by TTX and partially recovered by its removal (Fig. 7A). Similar to mouse iSG neurons, some (4 of 17) were multi-spiking, while the others (11 of 17) were single-spiking (Fig. 7, Y, B, and C), although in human iSG single-spiking neurons appeared to be more abundant than those in mouse iSG (Fig. 3K). Among all neurons recorded from day 25 to day 39, a small fraction (4 of 44) displayed spontaneous postsynaptic activities (Fig. 7D), indicating the ability for human iSG neurons to form functional synapses, in agreement with their synapsin labeling (Fig. 7F). Thus, the human iSG neurons induced by ABI from HSFs have the physiological properties characteristic of mature neurons.

We further investigated the ability of human iSG neurons to survive and integrate in the DRG by microinjecting GFP-tagged human iSG neurons into adult rat DRG explants (fig. S4A). Two weeks after transplantation, we found that the GFP+ neurons survived and integrated in the DRG, and were all (99 of 99) immunolabeled by an anti-human nuclei antibody (fig. S4F), indicating that material transfer did not occur between the transplanted and host cells. The transplanted GFP+ cells were immunoreactive for pan-sensory neuron markers, and some of them were immunoreactive for TrkA, TrkB, or TrkC (fig. S4, G to I), suggesting that similar to mouse iSG neurons, transplanted human iSG neurons can also survive in the DRG and maintain sensory neuron subtypes.

Although scattered sensory neurons (iSNs) were previously induced from fibroblasts by TFs (20, 21), to our knowledge, this is the first time to demonstrate that self-organized iSG organoids can be consistently induced directly from somatic cells by defined TFs. The bHLH TF Ascl1 has been shown to be a pioneer neurogenic TF in converting fibroblasts into neurons in in vitro somatic cell reprogramming (26). However, the neurons reprogrammed by Ascl1 alone are mostly slow-maturing and excitatory (36). Addition of Brn2 and Myt1l (BAM) improved the reprogramming efficiency, maturing speed, and varieties of the iNs (27, 36, 37). The iNs induced by BAM were rather generic but motor neurons could be specifically induced when BAM were combined with four other TFs (Lhx3, Hb9, Isl1, and Ngn2) (38). Similarly, when trying BAM with other combinations, Wainger et al. (20) found that the combination of five factors (Ascl1, Myt1l, Ngn1, Isl2, and Klf7) could successfully convert fibroblasts into nociceptor neurons. Notably, all of these reprogramming formulas include Ascl1 as a key component. Alternatively, the bHLH TFs Ngn1 and Ngn2 were combined with Brn3a to reprogram fibroblasts into mature iSNs (21).

Our experiments in this study have demonstrated that the ABI TF combination is most effective in inducing MEFs into self-organized mini-SG, while the AI and AB combinations have a weaker activity (fig. S8J). Thus, Brn3a/3b appears to act synergistically with Isl1 to improve the induction efficiency of iSG organoids. As revealed by time-lapse microscopy, the larger iSG organoids are formed by cell migration and coalescing smaller cell aggregates. The mini-SG induced from both murine and human fibroblasts contain mature and functional sensory neurons. They exhibit typical inward sodium currents, which can be blocked by TTX and recover after TTX removal, and are a mixture of neurons displaying multiple-spiking action potentials or single-spiking action potential. They also show calcium responses to potassium chloride, capsaicin, and menthol. All these features closely resemble their endogenous counterparts.

The iSG neurons reprogrammed by ABI display extensive cell diversities in their expression of characteristic receptors, ligands, ion channels, neuropeptides, neurotransmitters, and so on, similar to the endogenous sensory neurons. In agreement with iSNs induced by Ngn1/2 and Brn3a (21), the iSGs contain roughly equivalent percentages (~30%) of TrkA+, TrkB+, and TrkC+ neurons, supporting the notion that Trk receptors may arise in a stochastic manner such that each donor cell has an approximately equivalent chance to express one of the Trk receptor genes. By bulk RNA-seq, scRNA-seq, and/or qRT-PCR analyses, we investigated the characteristic markers involved in sensory signaling pathways including transduction, conduction, and synaptic transmission of sensory signals. At the transduction level, we found up-regulated expression of genes responsible for perceptions to stimuli such as heat (Trpv1, Trpv2, Trpv3), cold (Trpa1), damage (P2X3, Bdkrb1), and touch (Trpc1, Trpc4, Asic2/Accn1, Accn2). Trpv1, also known as capsaicin receptor that is expressed mainly in the nociceptive neurons (29), has been shown to be present and functional in iSG neurons by capsaicin stimulation. The signaling conduction of sensory neurons is primarily mediated by sodium channels, which propagate the signals, and potassium channels, which usually act to reduce excitability. We found that the expression of many Na+ channels (Scn1a, 2a1, 2b, 3a, 3b, 7a, 11a) and K+ channels (Kcnq2, 4; Kcna2, 3, 4, 5, 6; Kcnb2, c1, d2, e4, f1, h2, j2, k3, s3, t1, etc.) were up-regulated in iSG neurons. For synaptic transmission, neurotransmitter receptors and presynaptic voltage-gated Ca2+ channels are two groups of important regulatory molecules. Correspondingly, the expression of a variety of neurotransmitter receptors (Nk1r, Nr3c2; Gria1, 2, 4; Grid1, k1, k2, k4, k5; Grin1, 2a, etc.) and Ca2+ channels (Cacna1a, 1b, 1d, 2d1, 2d2, 2d3; Cacnb1, g4, etc.) were significantly up-regulated in iSG neurons.

Apart from the molecular and electrophysiological properties, ABI-reprogrammed iSG neurons also have salient cellular and innervation characteristics of sensory neurons. For instance, when transplanted, they can survive, integrate, and maintain the nociceptive, mechanoreceptive, and proprioceptive subtypes in the DRG. Moreover, the iSG neurons exhibit strong affinity for endogenous DRG neurons and spontaneously aggregate with them to form interconnected DRG-like organoids in culture. In addition, we have demonstrated by coculture that the iSG neurons have the capacity to innervate the peripheral targets of sensory neurons, i.e., epidermal cells, indicating that the iSGs contain bona fide sensory neurons reprogrammed from fibroblasts by ABI.

Therefore, the combination of ABI TFs is able to reprogram murine and human fibroblasts into self-organized iSG organoids composed of heterogeneous sensory neurons, closely resembling the endogenous SG. Previously, Ascl1 in combination with Brn3a, Brn3b, or Brn3c was shown to induce iNs from MEFs (39). Although the sensory neuron identity of the iNs was not investigated, some of the data suggest the formation of iSG organoids by the Ascl1 and Brn3a combination (39). This is consistent with our work that showed that the AB combination enabled induction of iSG organoids, albeit fewer than those induced by the ABI combination (Fig. 1). Similarly, the data reported in a previous study also suggest the formation of iSG organoids by the nociceptive neurons reprogrammed from MEFs using a 5-TF combination (20). However, unlike the ABI combination, the 5-TF combination did not appear to induce iSG organoids from human fibroblasts (20), suggesting a difference in reprogramming capacity and/or efficiency by different combinations of TFs.

The peripheral ganglia, including cranial ganglia, DRG, trigeminal ganglia, enteric system ganglia, autonomic ganglia, and others, are derived from migrating NC cells. The NC is thought to be a unique cell population found in vertebrates and is initially induced at the neural plate border as a result of neural plate folding and fusion (40). After undergoing an epithelial-to-mesenchymal transition, the NC cells delaminate from the neuroepithelium and become highly migratory. Most NC cells migrate as a chain or group in a so-called collective cell migration, in which cell contact and cooperation allow them to migrate directionally. Guided by local cues and long-range chemoattractants, NC cells reach their destination and differentiate into ganglia and other tissue types.

Mutations in crucial genes controlling the migration and differentiation of NC cells may cause aganglionosis such as Hirschsprungs disease, which may occur by itself or in association with other genetic disorders such as Down syndrome, Waardenburg-Shah syndrome, Mowat-Wilson syndrome, or Bardet-Biedl syndrome (41). This group of genes includes RET, ZEB2, EDNRB, SOX10, and PHOX2B, and mutations of them or their regulatory sequences may increase the risk of Hirschsprungs disease more than 1000-fold (41). In our RNA-seq data, the expression of Ret, Zeb2, Ednrb, and Sox10 was significantly up-regulated in the iSG neurons, in agreement with their importance in the differentiation and formation of SG. Other known risk genesBbs4, Bbs10, Edn3, Gfra1, and Arvcf (41)were also significantly elevated in iSG. The hereditary sensory and autonomic neuropathies (HSANs) consist of several clinically heterogeneous disorders characterized by defective development and maintenance, and progressive degeneration of sensory and autonomic nervous systems. Mutations in the SPTLC1, WNK1, IKBKAP, and TRKA genes have been shown to cause HSAN types I to IV, respectively (42). In addition, loss-of-function mutations in SCN9A and PRDM12 result in congenital insensitivity to pain (6, 43). Indifference to pain appears to be desirable but risks the loss of a vital protective mechanism with dangerous consequences such as unknowingly chewing tongues and lips and damaging digits and joints. On the other hand, pain hypersensitivity reduces the quality of life and may increase susceptibility to chronic pain.

The ability to reprogram somatic cells into iSG organoids by ABI presents new possibilities for modeling sensorineural diseases, studying their pathogenesis, screening for counteractive drugs, and developing cell replacement therapies. For example, patient-derived iSG organoids may be used as an in vitro model for pain to screen and evaluate potential drug treatments. In the future, iSG organoids and neurons may also be used in transplantation as a cell replacement therapy for damaged or degenerated SG. In this respect, we found that transplanted iSG neurons were able to integrate and maintain the nociceptive, mechanoreceptive, and proprioceptive subtypes in the DRG. It has long been recognized that genetic factors are a major contributor to personalized pain perception and the efficacy of analgesic drugs (29). Generation of iSG organoids from autologous somatic cells may thus provide an exciting novel approach to model personalized pain and sensory pathology and help to achieve precision medicine for pain.

In this study, we made efforts to define specific molecular markers to identify RGCs both in vitro and in vivo. This is important because it is impossible to apply commonly used RGC markers to distinguish RGCs from SG neurons in vitro given the high molecular similarity between these two cell types. Since the 1990s, we have established the Brn3 family of TFs, Brn3a, Brn3b, and Brn3c, as the gold standards to identify RGCs in the retina (10, 15). However, Brn3 proteins are not unique to the retina but expressed in other sensory and CNS tissues as well, e.g., trigeminal ganglia, DRG, spiral ganglia, and midbrain (10, 15, 44). Apart from Brn3 proteins, Thy1.2, Sncg, and Rbpms are also commonly used as specific RGC markers. But here again, we show their abundant expression in DRG neurons. Therefore, although because of the spatial separation of the retina from SG in the organism, these so called RGC-specific markers are able to distinguish RGCs from SG neurons in vivo, they are unable to do so in vitro. Unfortunately, however, a number of previous studies used these supposedly RGC-specific markers to identify RGCs induced from ESCs, iPSCs, and somatic cells in vitro (2225), casting doubt on some of the arrived conclusions.

To avoid misidentifying iRGCs and iSG neurons in vitro, we screened for molecular markers that can definitively distinguish RGCs from SG neurons. A rigorous criterion was set that these unique identifiers should be single-molecule markers or a combination of multiple-molecule markers that must be present only in RGCs within the retina but not in SGs or any other tissues. Following a careful examination of a large number of known RGC and SG neuron markers, it became apparent that none of them alone were specific to RGCs. Further double-immunolabeling analysis indicated that a combination of Pax6 and Brn3a or Brn3b double markers satisfied the criterion of specific RGC identifiers. Brn3a+Pax6+ and Brn3b+Pax6+ double-positive cells were found exclusively in RGCs of the retina but not in the DRG, spinal cord, midbrain, or cerebellum, where Brn3a, Brn3b, or Pax6 is normally expressed. Moreover, scRNA-seq analysis confirmed Brn3a+Pax6+ and Brn3b+Pax6+ cells as RGCs and their complete absence in the DRG. Thus, we are able to define the combination of Pax6 with either Brn3a or Brn3b double protein markers as specific identifiers for RGCs. Armed with this knowledge, we found that ABI TFs had the capacity to reprogram MEFs into a small number of Brn3a+Pax6+ iRGCs, representing about 13% of all Brn3a+ neurons. Unlike iSG organoids resembling endogenous SG, iRGCs did not coalesce into clusters but remained scattered, similar to the dispersive distribution pattern of endogenous RGCs in the retina (fig. S8, I and J). Therefore, ABI-induced iSG and iRGCs maintain the morphology characteristic of their endogenous equivalents.

In summary, in a screen of multiple SG and RGC TFs, we have identified a triple-factor combination ABI as the most efficient combination to reprogram self-organized and networked iSG organoids from mouse and human fibroblasts. By immunostaining, qRT-PCR, whole-cell patch-clamp recording, calcium imaging, and bulk and scRNA-seq approaches, we are able to demonstrate that the iSG organoids display molecular and cellular features, subtype diversity, electrophysiological properties, and peripheral innervation patterns characteristic of peripheral SGs. Furthermore, using immunolabeling and scRNA-seq analyses, we have identified bona fide RGC-specific molecular markers to demonstrate that the ABI combination has the additional capacity to induce from fibroblasts a small number of iRGCs. Unlike the ABI-reprogrammed iSG organoids characteristic of endogenous SG, iRGCs maintain a dispersive distribution pattern resembling that of endogenous RGCs in the retina. The iSG organoids and iRGCs may be used to model sensorineural/retinal diseases, to screen for effective drugs and potentially, as cell-based replacement therapy.

All experiments on rodents were performed according to the IACUC (Institutional Animal Care and Use Committee) standards and approved by Sun Yat-sen University and Zhongshan Ophthalmic Center. The C57BL/6 mice were purchased from the Vital River Laboratories (Beijing, China).

The full-length ORFs of Brn3a, Brn3b, Isl1, Math5, Ebf1, Pax6, Tfap2a, Nr4a2, Nrl, Crx, Ptf1a, Neurod1, Lhx2, Ngn1, Ngn2, Chx10, Sox2, Rx, Meis1, Foxn4, Otx2, Sox9, or Six3 were subcloned into the Eco RI site of the FUW-TetO vector (45). In addition, by overlapping PCR subcloning, Ascl1, Isl1, and Brn3b were tethered by P2A and T2A self-cleaving peptide sequences into a single ORF, which was inserted into the same FUW-TetO backbone. Lentiviruses were prepared as previously described (34).

The MEFs were prepared as previously described (34). For isolation of mouse epidermal cells, P0 C57BL/6 mice were anesthetized with ice for 5 min and the brain was removed using a sterilizing razor in a 10-cm culture dish containing Hanks balanced salt solution (HBSS) (Gibco). The epidermis was isolated from the remaining tissue using a pair of fine-tip forceps under a dissection microscope, transferred into a fresh 6-cm culture plate containing 1 ml of 0.25% trypsin, thoroughly minced using a pair of surgical scissors and forceps, and incubated for 15 min at 37C in a CO2 incubator. Six-milliliter MEF medium containing Dulbeccos modified Eagles medium (DMEM)/High Glucose (HyClone) supplemented with 10% fetal bovine serum (Gibco), 1 penicillin/streptomycin (Gibco), 1 MEM nonessential amino acids (NEAA) (Gibco), and 0.008% (v/v) 2-mercaptoethanol (Sigma-Aldrich) was added into the plate to terminate the reaction. After being mixed using a 10-ml pipette, the digested tissue was transferred to a 15-ml fresh tube, centrifuged at 1000 rpm for 5 min, and resuspended in 5-ml fresh MEF medium. The isolated epidermal cells were expanded by culture in the MEF medium at 37C in a CO2 incubator. The HSFs were purchased from the American Type Culture Collection (CRL1502, 12-week gestation). MEFs, mouse epidermal cells, and HSFs were all maintained and expanded in the MEF medium.

To induce iSG and iRGCs from MEFs, 3 104 MEF cells (at passage 3) were cultured in 500-l MEF medium in a well of a 24-well plate containing a glass coverslip precoated with Matrigel (Corning). They were infected the next day with 500-l mixture of lentiviruses and fresh MEF medium in the presence of polybrene (10 g/ml). After 16-hour infection, the virus and medium mixture was removed. The cells were induced for 4 days in the neuron basic medium [(DMEM/F12 (1:1) (Life Technologies) supplemented with 1 B27 (Gibco) and basic fibroblast growth factor (bFGF) (10 ng/ml) (R&D Systems)] in the presence of Dox (2 ng/ml) (Sigma-Aldrich) and then for another 4 days in the neuron maintenance medium containing the neuron basic medium supplemented with insulin-like growth factor 1 (IGF-1) (100 ng/ml), brain-derived neurotrophic factor (BDNF) (10 ng/ml), and glial cell linederived neurotrophic factor (GDNF) (10 ng/ml) in the presence of Dox (2 g/ml). The medium was replaced with the neuron maintenance medium without Dox following the 8-day induction period. By 14 days after infection with Ascl1, Brn3b/3a, and Isl1 (ABI), Ascl1 and Brn3b/3a (AB), or Ascl1 and Isl1 (AI) lentiviruses, many visible neuronal clusters were formed.

With modifications, the HSFs were similarly induced. In brief, after virus infection, the human cells were cultured in the neuron basic medium with Dox for 10 days and then in the neuron maintenance medium without Dox for another 10 days. On day 21, the medium was replaced with the neuron mature medium, which is the maintenance medium supplemented with NGF (20 ng/ml), NT-3 (20 ng/ml), and 10 M forskolin. Thirty days after viral infection, many neuronal clusters were visible, which were usually smaller than those induced from MEFs. To improve the induction efficiency of the HSFs, we created a Dox-inducible lentiviral construct containing Ascl1, Isl1, and Brn3b in a single ORF as described above.

RNA extraction and qRT-PCR analysis were carried out as previously described (34). The qRT-PCR primers used are shown in table S2.

Immunostaining of tissue sections and cells was carried out as previously described (34, 46). The following antibodies (with dilution information) were used: mouse anti-Brn3a (Santa Cruz Biotechnology, sc-390780; 1:1000), mouse anti-Brn3a (Santa Cruz Biotechnology, sc-8429; 1:100), goat anti-Brn3b (Santa Cruz Biotechnology, sc-6026; 1:1000), rat anti-Thy1.2 (BD Biosciences, 550543), goat antiRPF-1 (Santa Cruz Biotechnology, sc-104627; 1:100), rabbit anti-Rbpms (PhosphoSolutions, 1830-RBPMS; 1:500), mouse anti-HuC&D (Life Technologies, A-21271; 1:500), rabbit anti-Pax6 (BioLegend, 901301; 1:2000), mouse anti-Pax6 (Developmental Studies Hybridoma Bank, Pax6; 1:1000), rabbit anti-Six6 (Sigma-Aldrich, HPA001403; 1:500), rabbit anti-Ebf (Santa Cruz Biotechnology, sc-33552; 1:1000), mouse anti-Isl1 (Abcam, ab20670; 1:2000), rabbit anti-Zeb2 (Santa Cruz Biotechnology, sc-48789; 1:1000), rat anti-Lmo4 (1:1000; (47), rabbit anti-Ldb1 (Abcam, ab96799; 1:1000), rabbit anti-Sncg (GeneTex, GTX110483; 1:200), rabbit anti-CGRP (Neuromics, RA24112; 1:200), rabbit anti-peripherin (Millipore, ab1530; 1:1000), rabbit anti-vGLUT1 (Synaptic System,135303; 1:500), mouse anti-vGLUT2 (Abcam, ab79157; 1:500), mouse anti-vGLUT3 (Sigma-Aldrich, SAB5200312; 1:500), rabbit anti-GABA (Sigma-Aldrich, A-2052; 1:1000), goat anti-TrkA (Abcam, ab76291; 1:500), rabbit anti-TrkA (Abcam, ab76291; 1:500), goat anti-TrkB (R&D Systems, AF1494; 1:500), goat anti-TrkC (R&D Systems, AF1404; 1:500), rabbit anti-P2X3 (Millipore, AB5895; 1:100), mouse anti-Tuj1 (Millipore, MAB5564; 1:500), rabbit anti-Tuj1 (Abcam, ab18207; 1:2000), mouse anti-Map2 (Sigma-Aldrich, M1406; 1:2000), rabbit anti-synapsin (Calbiochem, 574778; 1:500), goat anti-Dcx (Santa Cruz Biotechnology, sc-8066; 1:500), mouse anti-NF200 (Millipore, MAB5266; 1:500), rabbit anti-TH (Protos Biotech, CA-101bTHrab; 1:1000), rabbit anti-Vamp (Synaptic System, 104203; 1:500), rabbit anti-p75NTR (Abcam, ab8874; 1:500), mouse anti-c-Ret (Sigma-Aldrich, o4886; 1:1000), goat anti-GFP (Abcam, ab6673; 1:2000), rabbit anti-GFP (MBL, 598; 1:2000), chicken anti-GFP (Abcam, ab13970; 1:2000), rabbit anti-vimentin (Abcam, ab92547; 1:2000), and mouse anti-human nuclei (Millipore, MAB1281; 1:200). The secondary antibodies used included donkey anti-rabbit, donkey anti-goat, and donkey anti-mouse Alexa 488 immunoglobulin G (IgG), Alexa 594 IgG, Alexa 546 IgG, Alexa 647 IgG, or Alexa 594 IgM (1:1000; Invitrogen). 4,6-Diamidino-2-phenylindole (DAPI) (Invitrogen) was used for nuclear counterstaining. Images were captured with a laser scanning confocal microscope (Carl Zeiss, LSM700).

One day following infection with ABI lentiviruses, the MEFs were cultured in the presence of 10 M EdU (Life Technologies) for 13 days, or 13 days after infection with AI or ABI viruses, the MEFs were cultured for 24 hours in the presence of 10 M EdU. The cells were then fixed, and EdU staining was carried out according to the manufacturers instruction (Life Technologies). For HSF reprogramming by ABI, EdU was added to the reprogramming cell culture for 29 days starting from day 1 of reprogramming or for 24 hours starting at day 29. Images were captured with a confocal microscope.

For time-lapse recording, we used the JuLI Stage (NanoEntek) with a motorized stage, computer-controlled lens change, and a built-in incubator that supplied humidified 5% CO2 at 37C for live cell recording. MEFs (5 104) derived from the CAG-GFP transgenic mice (28) were induced for 10 days by infection with the ABI lentiviruses or Ascl1 lentiviruses in a well of a 12-well plate precoated with Matrigel. The plate was then placed into the incubator of the JuLI Stage for time-lapse recording for 50 hours. A series of pictures were taken from each well of the 12-well plate in a period of 50 hours under the control of the JuLI EDIT software, which can also edit and replay these pictures in a continuous mode like a movie.

To prepare single iSG cells, MEFs were infected with the ABI (Ascl1, Brn3b, and Isl1) lentiviruses and induced for 2 weeks. Following addition of 500-l Accutase (Millipore) into a well of a 12-well plate, neuronal clusters were suspended by gently pipetting up and down several times using a 1-ml pipette and transferred into a 70-m cell strainer (Falcon) to collect neuronal clusters. Most neuronal clusters attached to the Nylon membrane of the 70-m cell strainer, which was cut from the cell strainer using a pair of scissors and placed into a low-adhesion 6-cm plate containing 4-ml neuron basic medium. To separate the neuronal clusters from the Nylon membrane, the plate was shaken left and right 10 times. The neuronal clusters were then transferred into a 15-ml tube, centrifuged at 1000 rpm for 5 min, resuspended with 1-ml Accutase, and incubated for 5 min at 37C in a CO2 incubator. The neuronal clusters were dissociated into many single cells, which were subsequently used for injection of DRG explants, qRT-PCR, and scRNA-seq analysis.

After euthanization of the rat by the asphyxiation method (CO2 inhalation), the vertebral columns were isolated from the rest of the tissue using a pair of sharp scissors and washed three times with HBSS in a 10-cm culture dish. Both sides of the vertebral columns were mounted onto a surgical mat using needles, and a double cut was made using a pair of surgical scissors to expose the ventral side of the spinal cord. After removal of the spinal cord, DRGs were exposed in the contralateral dorsal spinal roots and pulled out using a pair of fine tweezers. They were collected into a 6-cm culture dish containing HBSS after removal of the attached excessive fibers and connective tissues under a dissection microscope. Four DRGs were transferred onto a Millipore Millicell-CM Low Height Culture Plate Insert using a 3-ml Pasteur pipette, and the rest of HBSS was removed using a 200-l pipette. Then, the insert was placed into a well of a six-well plate containing 1-ml DRG culture medium [BEM (Gibco) supplemented with 20 mM glucose, 1 KIT (Gibco), putrescine (16 ng/ml) (Sigma-Aldrich), 10 mM vitamin C (Sigma-Aldrich), NGF (20 ng/ml) (PeproTech), and 10 mM 5-fluoro-2-deoxyuridine (FDU) (Sigma-Aldrich)]. After being cultured for 1 day, each DRG was injected with 4 103 GFP-labeled single iSG cells. Two weeks following iSG cell injection, the explants were processed and immunostained as described above.

Whole-cell patch-clamp recordings of the iNs were performed with the EPC 10 USB amplifier (HEKA Electronik, Lambrecht, Germany) as previously described (34). Neurons induced from MEFs for 9 or 14 days or from HSFs for 25 to 60 days were used for patch-clamp recordings. In brief, coverslips with adhered cells were transferred into a recording chamber and bathed with Ringers containing 125 mM NaCl, 2.5 mM KCl, 1 mM MgSO4, 2 mM CaCl2, 1.25 mM NaH2PO4, 26 mM NaHCO3, and 20 mM glucose, bubbled with 95% O2 and 5% CO2. Cell responses were recorded with 6- to 9-megohm resistance pipettes that were filled with an internal solution containing 105 mM K-gluconate, 5 mM KCl, 5 mM NaOH, 15 mM KOH, 0.5 mM CaCl2, 2 mM MgCl2, 5 mM EGTA, 2 mM adenosine 5-triphosphate, 0.5 mM guanosine 5-triphosphate, 10 mM Hepes, and 2 mM ascorbate (pH 7.2). The cells and recording pipettes were viewed on a monitor that was coupled to a charge-coupled device camera (Evolve, Photometrics, Tucson, USA) mounted on an upright microscope. Oxygenated external solution was continuously perfused into the recording chamber at a flow rate of 1.5 to 2 ml/min by a peristaltic pump (LEAD-2, Longer Pump, Hebei, China). Capacitive transients were compensated via the Patch Master software (PatchMaster, HEKA), and the series resistance was compensated by ~50%. For current-clamp recording, a small, constant holding current was injected to maintain resting membrane potential (Vrest) at 70 mV and current pulses with a step size of 10 pA were applied to induce action potentials. Voltage-clamp recordings were performed on the same cells directly following current clamp recordings. A simple step protocol from 90 to +30 mV for 200 ms was applied to assess the voltage-gated sodium channels and voltage-gated potassium channels. TTX (Tocris, USA) was added to the bath solution to a final concentration of 0.5 M and perfused into the recording chamber for 5 min. After recording of the currents again, TTX was washed out, followed by the third time of recording.

The fluorescent probe Fluo-8 AM (AAT Bioquest, Sunnyvale, Canada) was used to detect the changes of intracellular calcium. As described above, MEFs were induced for 2 to 3 weeks to form neuronal clusters by infection with the ABI lentiviruses. Under dark environment, glass coverslips with adhered neuronal clusters were loaded with Fluo-8 AM (10 m) for 25 to 30 min at room temperature. After three rinses with Ringers solution, the coverslip was placed into a recording chamber. An upright microscope (Olympus, BX51W1) equipped with a mercury lamp with a 488-nm filter was used to excite Fluo-8. A digital camera (Hamamatsu Photonics, Japan) that was also equipped on the microscope was used to record the fluorescent signal. The software HCImage Live (Hamamatsu Corporation, USA) was used to control the camera and ImageJ for data analysis. Following a 30-s recording of the baseline (F0), 100 mM KCl was puffed to detect the activity of the cells. After a 2-min wash with Ringers, fluorescent signals were decreased to the baseline. Then, 100 M menthol or 10 M capsaicin was puffed to stimulate the iNs. KCl (100 mM KCl) was applied again after menthol/capsaicin to confirm the viability of the tested cells. Only the cells that responded to KCl two times successively were chosen for analysis.

Bulk RNA-seq analysis was performed with modification as previously described (48). Two weeks after infection of MEFs with lentiviruses, total RNA was extracted from GFP-transduced and ABI (Ascl1, Brn3b, and Isl1)transduced MEFs using the TRIzol reagent according to the manufacturers instruction. Ribosomal RNA was depleted before preparation of RNA-seq libraries, which were subsequently sequenced using an Illumina HiSeq 4000 sequencer (Biomarker Technologies, China). The obtained sequence reads were trimmed and mapped to the mouse reference genome (mm10) using HISAT2 (https://daehwankimlab.github.io/hisat2/), and gene expression and changes were analyzed using Cufflinks and Cuffdiff. Hierarchical cluster and scatter plot analyses of gene expression levels were performed using the R software (http://cran.r-project.org). GSEA was carried out as described (31), which was followed by network visualization in Cytoscape using the EnrichmentMap plugin (https://enrichmentmap.readthedocs.io/en/latest/).

Single iSG cells were prepared as described above. Single adult mouse DRG cells were prepared as described previously (49). In brief, DRGs were collected, transferred into a low-adhesion 6-cm pate with 2 ml of DMEM/F12 medium containing collagenase IV (1.25 mg/ml), and incubated at 37C in a 5% CO2 incubator for 50 min. Then, the medium was replaced with 2-ml DMEM/F12 medium containing 0.025% trypsin and incubated for 30 min. Following the addition of 2-ml DMEM/F12 medium containing 33% fetal bovine serum, all the medium was removed using a 10-ml pipette. After being washed three times with 2-ml HBSS, the DRGs were transferred into a 1.5-ml tube containing 1.2-ml DMEM/F12 and triturated by pipetting up and down several times using a 1-ml pipette to obtain single DRG cells. A Brn3b-GFP reporter mouse line was created using the CRISPR-Cas9 gene editing system to label adult RGCs by GFP, which were enriched by fluorescence-activated cell sorting. A more detailed description of this mouse line and RGC enrichment procedure will be published elsewhere.

The number and viability of prepared single cells were quantified using Countess II (Thermo Fisher Scientific, AMQAX1000). Next, single-cell libraries were generated with the Chromium Single Cell 3 V2 Chemistry Library Kit, Gel Bead & Multiplex Kit, and Chip Kit from 10x Genomics. In brief, cell suspension at concentration of 1.2 million/ml was loaded in a Single Cell 3 Chip along with the RT Single Cell 3 Gel Beads and the Partitioning oil, and Single Cell Gel Bead-In-Emulsions were generated in the Chromium Controller. Reverse transcription reaction was run to obtain complementary DNA (cDNA), which was amplified by PCR. To generate the libraries, Enzymatic Fragmentation, End Repair, and A-tailing Double Sided Size Selection were used to incorporate the barcodes and index read sequences. The libraries were qualified by bioanalyzer (Agilent Technologies) and quantified by a Qubit dsDNA High Sensitivity Assay kit (Invitrogen) and then sequenced on Illumina X Ten platform in 150 paired-end configuration.

Raw reads were processed using the 10x Genomics Cell Ranger pipeline (https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest) with the mm10 as the reference. Cell Ranger can cluster the single cells, identify the marker genes of each cluster, and export a matrix with unique molecular identifier (UMI) values of each gene in a single cell. The R software package Seurat (https://satijalab.org/seurat, version 2.2) (33) was used for further analysis. Default parameters were used for most of the Seurat analyses. For the FeaturePlot function, max.cutoff was 0.5. The pseudotime trajectory analysis of iSG cells was performed using Monocle 2 (http://cole-trapnell-lab.github.io/monocle-release/) (35).

Statistical analysis was performed using the GraphPad Prism 7 and Microsoft Excel computer programs. The results are expressed as means SD for experiments conducted at least in triplicates. Unpaired two-tailed Students t test or one-way analysis of variance test were used to assess differences between two groups, and a value of P < 0.05 was considered statistically significant.

Acknowledgments: We thank E. Shiang for help with the artwork. Funding: This work was supported, in part, by the National Natural Science Foundation of China (81670862, 81721003, 31871497, 81870682, and 31700900), National Key R&D Program of China (2017YFA0104100, 2018YFA0108300, and 2017YFC1001300), National Basic Research Program (973 Program) of China (2015CB964600), Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program, Science and Technology Planning Projects of Guangzhou City (201904020036 and 201904010358), China Postdoctoral Science Foundation (2019 M650223), and the Fundamental Research Funds of the State Key Laboratory of Ophthalmology, Sun Yat-sen University. Author contributions: D.X., K.J., Y.S., and M.X. conceived and designed the research. D.X., Q.D., Y.G., X.H., M.Z., J.Z., P.R., Z.X., Y.L., and Y.H. performed the experiments and analyzed the data. D.X., K.J., and M.X. interpreted the data and wrote the manuscript. All authors contributed to critical reading of the manuscript. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors. The RNA-seq and scRNA-seq data have been deposited in the NCBI Gene Expression Omnibus database under accession codes PRJNA595403 and PRJNA597624, respectively.

Read more:
Generation of self-organized sensory ganglion organoids and retinal ganglion cells from fibroblasts - Science Advances

Recommendation and review posted by Bethany Smith

Research at MDI Biological Laboratory explores novel pathways of regeneration and tumorigenesis – Bangor Daily News

BAR HARBOR Research by scientists at the MDI Biological Laboratoryis opening up new approaches to promoting tissue regeneration in organs damaged by disease or injury.

In recent years, research in regenerative biology has focused on stem cell therapies that reprogram the bodys own cells to replace damaged tissue, which is a complicated process because it involves turning genes in the cells nucleus on and off.

A recent paper in the journal Genetics by MDI Biological Laboratory scientist Elisabeth Marnik, Ph.D., a postdoctoral fellow in the laboratory of Dustin Updike, Ph.D., offers insight into an alternate pathway to regeneration: by recreating the properties of germ cells.

Germ cells, which are the precursors to the sperm and egg, are considered immortal because they are the only cells in the body with the potential to create an entirely new organism. The stem cell-like ability of germ cells to turn into any type of cell is called totipotency.

By getting a handle on what makes germ cells totipotent, we can promote regeneration by unlocking the stem cell-like properties of other cell types, said Updike. Our research shows that such cells can be reprogrammed by manipulating their cytoplasmic composition and chemistry, which would seem to be safer and easier than changing the DNA within a cells nucleus.

Using the tiny, soil-dwelling nematode worm, C. elegans, as a model, the Updike lab studies organelles called germ granules that reside in the cytoplasm (the contents of the cell outside of the nucleus) of germ cells. These organelles, which are conserved from nematodes to humans, are one of the keys to the remarkable attributes of germ cells, including the ability to differentiate into other types of cells.

In their recent paper entitled Germline Maintenance Through the Multifaceted Activities of GLH/Vasa in Caenorhabditis elegans P Granules, Updike and his team describe the intriguing and elusive role of Vasa proteins within germ granules in determining whether a cell is destined to become a germ cell with totipotent capabilities or a specific type of cell, like those that comprise muscle, nerves or skin.

Because of the role of Vasa proteins in preserving totipotency, an increased understanding of how such proteins work could lead to unprecedented approaches to de-differentiating cell types to promote regeneration; or alternatively, to new methods to turn off totipotency when it is no longer desirable, as in the case of cancer.

The increase in chronic and degenerative diseases caused by the aging of the population is driving demand for new therapies, said MDI Biological Laboratory President Hermann Haller, M.D. Dustins research on germ granules offers another route to repairing damaged tissues and organs in cases where therapeutic options are limited or non-existent, as well as an increased understanding of cancer.

Because of the complexity of the cellular chemistry, research on Vasa and other proteins found in germ granules is often overlooked, but that is rapidly changing especially among pharmaceutical companies as more scientists realize the impact and potential of such research, not only for regenerative medicine but also for an understanding of tumorigenesis, or cancer development, Updike said.

Recent research has found that some cancers are accompanied by the mis-expression of germ granule proteins, which are normally found only in germ cells. The mis-expression of these germ-granule proteins seems to promote the immortal properties of germ cells, and consequently tumorigenesis, with some germ-granule proteins now serving as prognosis markers for different types of cancer, Updike said.

Updike is a former postdoctoral researcher in the laboratory of Susan Strome, Ph.D., at University of California, Santa Cruz. Strome, who was inducted into the National Academy of Sciences last year, first discovered P granules more than 30 years ago. She credits Updike, who has published several seminal papers on the subject, with great imagination, determination and excellent technical skill in the pursuit of his goal of elucidating the function and biochemistry of these tiny organelles.

The lead author of the new study from the Updike laboratory, Elisabeth A. Marnik, Ph.D., will be launching her own laboratory at Husson University in Bangor, Maine, this fall. Other contributors include J. Heath Fuqua, Catherine S. Sharp, Jesse D. Rochester, Emily L. Xu and Sarah E. Holbrook. Their research was conducted at the Kathryn W. Davis Center for Regenerative Biology and Medicine at the MDI Biological Laboratory.

Updikes research is supported by a grant (R01 GM-113933) from the National Institute of General Medical Sciences (NIGMS), an institute of the National Institutes of Health (NIH). The equipment and cores used for part of the study were supported by NIGMS-NIH Centers of Biomedical Research Excellence and IDeA Networks of Biomedical Research Excellence grants P20 GM-104318 and P20 GM-203423, respectively.

We aim to improve human health and healthspan by uncovering basic mechanisms of tissue repair, aging and regeneration, translating our discoveries for the benefit of society and developing the next generation of scientific leaders. For more information, please visitmdibl.org.

Go here to read the rest:
Research at MDI Biological Laboratory explores novel pathways of regeneration and tumorigenesis - Bangor Daily News

Recommendation and review posted by Bethany Smith

Ageing: An expos on what really causes us to show our age – The South African

Most people are seeking the secret to anti-ageing, but did you ever wonder how the skin actually ages or how you could slow the process down?

Ageing is a natural process accompanied by a continuous alteration of the body. Your body produces visible changes in its structure, function and vulnerability to environmental stress and disease. Genetics, as well as the lifestyle we lead, play a big role in the ageing process.

Your skin is an organ, and its function is to regulate the excretion of metabolic waste products, regulate the bodies temperature as well as containing receptors for pain, tactile sensation, and pressure. Therefore, the health and appearance of your skin, like the health of your other organs correspond with your lifestyle and dietary habits, as well as with age-related factors such as the imbalance of hormones.

Ageing of the skin can be influenced by many factors including ultraviolet radiation, excess alcohol consumption, tobacco abuse, and environmental pollution.

What a lot of people dont realise is that as their body weight increases and their blood sugar levels rise, biochemical reactions interrupt the structural framework of their skin. With all these factors combined they lead to cumulative deterioration in the appearance of the skin as well as the function of the skin.

Within the skin ageing is associated with a loss of fibrous tissue, a slower rate of cellular renewal, and a reduced vascular and glandular network. The barrier function that maintains cellular hydration also becomes impaired. The subcutaneous tissue (known as the hypodermis or the third layer of the skin) flattens.

The rate at which these functions decline can be more than 50% by middle age depending upon ones genetic makeup, lifestyle and normal physiological functions within the skin. If we dont take action to support our skins intrinsic defence systems, the youthful qualities of our skin will deteriorate rapidly. Luckily for us, we can harness insights gathered through the latest scientific innovations and slow or potentially reverse the signs and symptoms of accelerated skin ageing.

Intrinsic skin ageing is primarily determined by genetic factors, hormonal imbalances and metabolic reactions like oxidative stress. Signs of intrinsic ageing include skin sagging, thinning and cracking, and the appearance of fine lines and wrinkles.

There are numerous external factors that affect the skin and cause signs and symptoms of premature ageing. Generally, most premature ageing is caused by over-exposure to the suns UV rays. However, there are other contributing factors, for example, atmospheric factors such as air pollution, visible light and infrared radiation. Lifestyle choices such as smoking, chronic stress and excessive alcohol consumption can lead to older-looking skin.

The most common signs of extrinsic ageing are thinning of the skin, laxity, fragility and the increased appearance of wrinkles.

As the skin is a visual organ, the beauty industrys main objective is to improve the appearance of skin with extensive topical treatments and products. However, often overlooked is the need to support the health and beauty of the skin from within.

Ideally one should centre their diet upon fruits, vegetables, whole grains, legumes, monounsaturated fats (like those found in olive oil), and a healthy ratio of omega-3 to omega-6 polyunsaturated fatty acids. Generally, consumption of shellfish, fish rich in omega 3 fatty acids, regular tea drinking, and greater consumption of fruits and vegetables have been known to be associated with improved skin health.

Gut health is crucial to healthy skin. The human skin hosts a variety of microorganisms, collectively known as the skin microbiota. Within the skin, there is a complex network of interactions between the microbes and cells. Friendly bacteria, such as Lactobacillus and Bifidobacteria are well researched for effectively treating infections, promoting healthy immunity, and reducing inflammation in the skin. Oral pre- and probiotics help to rebalance the skin microbiota and optimise the skin barrier function.

In addition, oral probiotics boost cellular antioxidant capacity and combat inflammation in general. Probiotics also help to neutralise toxic byproducts, defend the lining of the intestine, increase the bioavailability of some nutrients and reinforce the intestinal barrier against infectious microbes that may harm healthy skin.

Cosmeceuticals are topical products that exert both cosmetic and therapeutic benefits which have continued to evolve in order to ward off the signs of skin ageing. Some of the most popular topicals include exfoliating and depigmenting agents, antioxidants and regenerating products, such as peptides and stem cells.

Sunscreens (with dual protection against UVA and UVB in a photostable complex) are the most important topical as they protect us from the UV damage caused by the sun. Sun exposure is definitely one of the biggest contributing factors to premature ageing and is actually known as photo-ageing.

Another phenomenal topical is retinoids which have proven their safety and efficacy in reducing photo-damaged skin and are a popular treatment for anti-ageing. Retinoids help combat and reverse the visual effects of ageing, such as wrinkles, laxity, and discolouration. Retinoids accelerate cell turnover and can also improve blemishes and the appearance of pores.

The use of alpha-hydroxy acids (AHAs) has also been known to improve skin texture and reduce the signs of ageing by promoting the shedding of our superficial dead skin cells which in turn helps to restore hydration and a smoother texture. Whats nice about alpha-hydroxy acids is that they can pretty much treat any skin condition or concern because there are so many different types of acids. Theres literally something for everything. The most common ingredients used in product formulations and peels include citric acid, glycolic acid, lactic acid, malic acid, pyruvic acid as well as tartaric acid.

Antioxidants are being increasingly used in anti-ageing skincare. Topical antioxidants are effective in fending off damaging free radicals and reducing inflammation within the skin. A few popular ones used are ascorbic acid (vitamin C,) tocopherols (vitamin E,) alpha-lipoic acid and coenzyme Q10. Emerging natural antioxidants proving effective include EGCG (from green tea), resveratrol, Centella Asiatica (Gotu Kola,) proanthocyanidins (grapeseed,) curcumin, pomegranate, silymarin/silibinin (milk thistle), coffeeberry, melatonin, and marine-based ingredients.

Within the skin, the deterioration of collagen results in the formation of protein fragments, called peptides. These peptides are then recognised by collagen-producing cells, which respond by increasing collagen production in order to repair the damaged skin. However, as we age this positive feedback between skin breakdown and the initiation of new collagen formation becomes inefficient. Therefore by applying specialised peptides to your skin topically you can effectively trick collagen-producing cells into boosting collagen production. There are many other active ingredients used in topical products that are focused on anti-ageing among other things.

So basically all we need to do is protect the skin from the inside by consuming nutrient-packed foods as well as reducing our exposure to extrinsic factors that cause premature ageing along with using topical skincare products. Not as difficult as we may have thought, hey?

This content has been created as part of our freelancer relief programme. We are supporting journalists and freelance writers impacted by the economic slowdown caused by #lockdownlife.

If you are a freelancer looking to contribute to The South African,read more here.

Read this article:
Ageing: An expos on what really causes us to show our age - The South African

Recommendation and review posted by Bethany Smith

AUGUSTMAN Grooming Awards 2020 Part IV: Best Head-To-Toe Treatment Services For Gentlemen – AUGUSTMAN

Introducing the best in mens grooming for the year. The fourth and final segment in this series is a compilation of trusted head-to-toe treatment services every gentleman should indulge in to look and feel your best.Sometimes its better to leave things to an experts hands.

Treatment: CO2 Skin Renewal Facial Treatment, Porcelain

This treatment helps to deal with adult skin issues ranging from acne to ageing. To address the latter, a combination of a C02 mask and cryoprobes work to promote collagen production, boost blood circulation and tighten sagging skin. A hydrating enzyme mask then restores moisture and dissolves acne-causing grime and debris. Theres nothing to complain about when we left the compound with improved skin.Available at Porcelain for $298.50

Treatment: The Ultimate Shave Experience, Truefitt + Hill

We found out why people say its better to leave things to the experts. At this salon, the barber put us through an aromatic hot towel treatment to both soften our facial hair and help us relax. Swift and gentle strokes of the straight razor gave us a close shave, leaving our skin baby smooth and looking dapper fresh. We also appreciate the massage, which made us forget our worries and feel good to be alive.Available at Truefitt + Hill for $80

Treatment: Miracle Stem Cell Treatment, PHS Hairscience

This may not be as effective as a hair transplant, but it is a much less painful alternative to revive dormant hair follicles. The treatment uses the brands potent Miracle Stem Cell Solution, which contains a blend of growth factors, botanical stem cells and nutrients that nourish the scalp and encourage hair growth. DHT blockers neutralise the effects of androgen, the hormonal culprit behind hair loss.Available at PHS Hairscience for $297

Treatment: Rescue & Release Massage, Raffles Spa

Whether you pick the 60- or 90- minute option, this massage provides soothing relief from the tensions that city life inflicts. Swedish techniques were used to loosen tight knots, and this release of built-up tension left us feeling calmer and more in touch with our senses. The luxurious oils used in the treatment also left our skin feeling moisturised and nourished. Make time to use the baths to reap fuller relaxation benefits.Available at Raffles Hotel from $245

Read this article:
AUGUSTMAN Grooming Awards 2020 Part IV: Best Head-To-Toe Treatment Services For Gentlemen - AUGUSTMAN

Recommendation and review posted by Bethany Smith

Bioprinting Market : Drivers, Restraints, Opportunities, and Threats 2018-2023 – Cole of Duty

The global bioprinting market should reach $1.4 billion by 2024 from $306.2 million in 2019 at a compound annual growth rate (CAGR) of 35.4% for the period 2019 to 2024.

Report Scope:

This new BCC Research report on the topic Current Bioprinting Prospects and Future Innovations offers a detailed perspective on bioprinting technology, its current market and future prospects. The report provides a comprehensive analysis of the trending applications of bioprinting in the market in the global context, including market forecasts and sales through 2024. The report is focused on the analysis of the bioprinting market by various product types, regions and applications.

Get Access to sample pages @ https://www.trendsmarketresearch.com/report/sample/11647

The products that matter the most, i.e., instruments (bioprinters), reagents (bioinks), 3D cell culture products, and software and services, are discussed and analyzed. Each of these segments are sub-divided into different types (as detailed later). The emphasis is on the printing instruments, reagents, tissue products, skin substitutes, etc. The report also highlights the popular and emerging applications of bioprinting in the clinical and research domains. The end user markets, i.e., research and development, cosmetics, drug discovery, clinical and others, are analyzed in this report. Other end user markets include chemical, agrochemical, educational, hobbyist and veterinary applications. This study includes a survey of the bioprinting market in all geographic regions, including North America, Europe, and Emerging markets. The Emerging markets include regions like India, China, Korea, Taiwan, Africa, Australia, New Zealand, Canada, Latin America, among others.

The report elaborates on the critical issues and challenges facing the bioprinting industry as well as emerging trends in bioprinting technologies. It additionally features the new developments and new product launches in the global market.

The new BCC report provides relevant patent analysis and comprehensive profiles of market players in the industry. The industry structure chapter focuses on changing market trends, important manufacturers/suppliers, their market shares and product offerings. The chapter also covers mergers and acquisitions and any other collaborations or partnerships that happened during the evaluation period of this report that are expected to shape the industry.

Factors such as the strengths, weaknesses, threats and opportunities that are expected to play a role in the evolution of the bioprinting market are also evaluated. Any regulatory changes or new initiatives are highlighted explicitly.

Excluded from this report is medical 3D printing, which focuses on nonliving materials used in medical devices. Examples of medical devices that are not covered include treatment models, surgical tools and guides, prosthetics, dental restorations and crowns, and surgical implants.

Report Includes:

85 data tables and 27 additional tables Comprehensive analysis of the bioprinting technologies and their trending applications in the market at a global scale Analyses of the global market trends with data from 2017 to 2018, estimates for 2019, and projections of compound annual growth rates (CAGRs) through 2024 Segmentation of the global market by technologies and products, notably instruments (bioprinters), reagents (bioinks), 3D cell culture products, and software and services Focus on the popular and emerging applications of bioprinting in the clinical and research domains Regional dynamics of bioprinting technologies covering North America, Europe and Other emerging markets including India, China, Korea, Taiwan, Africa, Australia, New Zealand, Canada, Latin America etc. Discussion of new developments and new product launches in the global bioprinting market A relevant patent analysis Company profiles of market players in the industry, including 3Dynamic Systems Ltd., Aspect Biosystems, GeSiM, n3D Biosciences Inc., Organovo Holdings Inc., Prellis Biologics Inc. and regenHU Ltd.

Summary

Bioprinting is a form of additive manufacturing technology, that can be used to fabricate biomimicking 3D tissue constructs and organs. The reliability and accuracy offered by these 3D tissue structures and organ constructs have made them highly attractive for a number of applications. The use of stem cells in bioprinting has significant prospects in the area of personalized medicine, to develop customized tissues/organs for repair or for the fabrication of personalized 3D tissue models for drug toxicity testing.

There is a huge unmet demand for organs. Bioprinting of 3D organs has the potential to reduce the endless wait lists of organ donations and revolutionize the medical industry. Though a number of studies are going on catering to the development of fully, functional organs by bioprinting, a number of challenges remain. These pertain to the fabrication of complex tissues with multiple cell types, the issue of resolution, and the incorporation of vascularization, among other factors.

Despite these challenges, 3D bioprinting has undergone extensive progress and is used in many other applications. The 3D tissues being biofabricated can be used for tissue engineering and regenerative medicine. From the treatment of wounds (3D skin tissues), to craniomaxillofacial repair and orthopedic reconstructive surgeries (bone grafts), to the vascular grafts used to treat the growing number of heart disease patientsthese are just some of the potential clinical applications of bioprinting. In addition, in situ bioprinters that have the ability to treat the wounds/injuries by directly printing cells at a wound site are also gaining immense popularity.

One of the main drivers of the bioprinting market are the applications of 3D tissue constructs and biofabricated organ-on-chips for in vitro drug testing. The pharmaceutical industry is constrained by a high rate of drug failures at the clinical stage. Bioprinted 3D models reproduce natural tissues very closely and, therefore, are ideal materials for in vitro drug testing and other preclinical testing studies. The potential of 3D tissues to alleviate the burden on animal testing is another reason for their increased popularity. Poietis recently launched the biofabricated skin tissue, Poieskin, which can be used for cosmetic testing applications. Moreover, a multitude research organizations and universities aredeveloping 3D tissue models for disease modeling, drug research and cancer studies, among others.

The bioprinting market is propelled by innovations in bioprinting technologies and products encompassing bioprinters, bioinks, software, and 3D tissue products. The number of U.S. patents issued in 2018 (through November 4, 2018) in the field of bioprinting increased to 38, from a total of 27 in 2017. The highest number of patents were issued in the category of 3D cell culture products followed by the bioinks segment. Strategic collaborations and partnerships among research institutes and bioprinting companies along with interested partners from the pharmaceuticals and cosmetics sectors are supporting the growth of bioprinting market in a big way. Other factors driving the growth of the bioprinting market include increased government grants, the rising interest of private venture capitalists supporting several bioprinting start-ups, and the increasing healthcare burden.

Follow this link:
Bioprinting Market : Drivers, Restraints, Opportunities, and Threats 2018-2023 - Cole of Duty

Recommendation and review posted by Bethany Smith

The Wet AMD Gene Therapy Race – Adverum Biotechnologies Vs. Regenxbio – Seeking Alpha

Regenxbio (NASDAQ:RGNX) and Adverum (NASDAQ:ADVM) are both developing gene therapies for wet AMD. Phase I data is now available that shows both companies may have viable products. It is still very early, and small cohorts make it challenging to evaluate whether RGX-314 or ADVM-022 will be superior. Adverum's stock is priced as if it will deliver a product that is far superior to Regenxbio's. That outcome is far from certain. Investors should consider that Regenxbio's stock provides a wide margin of safety while offering tremendous upside if future data is positive.

Wet age-related macular degeneration, wet AMD, usually occurs in the elderly and accounts for 90 percent of the cases of legal blindness. In this condition, abnormal blood vessels in the retina begin to leak fluid. This results in scarring of the macula and vision loss. Symptoms include wavy, spotted or blurred vision. According to the Mayo Clinic, medications may help stop the growth of new blood vessels by blocking the effects of growth signals the body sends to generate new blood vessels. A protein called VEGF causes these abnormal blood vessels to grow. The current treatments are injections of anti-VEGF proteins into the eye which stop the growth of new blood vessels. These injections are required every four to eight weeks, and patients tend not to adhere to this difficult schedule and thus suffer vision loss.

These drugs are considered the first line treatment for all stages of wet macular degeneration. The most commonly prescribed injections are Avastin (Genentech) (OTCQX:RHHBY), Lucentis (Genentech) and Eylea (Regeneron (REGN)). A longer acting version that can last 12 weeks, brolucizumab, was approved in 2019, but it may cause occlusive retinal vasculitis, a rare but serious complication that can cause vision loss, which may make ophthalmologists hesitant to use it.

Wet AMD is a disease where the biology is well understood. More specifically, it is well understood that anti-VEGF proteins such as Avastin, Lucentis and Eylea are effective at preventing these "bad blood vessels" from growing. There is extensive proof that if you maintain anti-VEGF activity in the eye, which gene therapy seeks to achieve, you can prevent a loss of vision in wet AMD. Both Regenxbio and Adverum have gene therapy candidates in clinical trials which seek to provide a consistent level of anti-VEGF activity.

Wet AMD is not thought to be caused by a genetic defect but a one time gene therapy injection can provide a treatment option. This involves inserting a transgene, which would produce the anti-VEGF proteins, into a viral vector which can be delivered to the eye. The result is that the eye turns into a factory that produces the needed protein. Since the cells in the eye make their own protein, patients have no need or a reduced need for repeated injections. The goal is for these treatments to be durable enough to last a lifetime and reduce the enormous treatment burden of requiring frequent injections. A report in Science Daily, citing the American Academy of Ophthalmology as their source, noted that researchers believe that, "It's not just about convenience; a more consistent treatment may also help people keep more of their vision." Gene therapy seeks to achieve this by delivering a steady daily dose of anti-VEGF.

Globally, $10 billion is expected to be spent on treatments for this disorder by 2024. There are more than 1.2 million patients with wet AMD in the US and a total of 3 million globally. There is a large market opportunity for both players, but it is important to note that gene therapy is unlikely to take over the entire market as there are long acting anti-VEGF treatments in clinical trials that may also reduce the treatment burden. In addition, patients may have the option of a port delivery systems that can be refilled. Given these potential options, gene therapy may take a large market share, but it is unlikely to be one hundred percent of the market. According to Dr. Peter Campochiaro, MD, Director of the Retinal Cell and Molecular Laboratory at Johns Hopkins, who is a RGX-314 investigator, the main competitor to gene therapy will be ports.

Regenxbio has their own internal pipeline, including RGX-314 in the treatment of wet AMD. In an article published in Retina Today, Drs. Allen Ho and Robert Avery describe the nature of the treatment.

"RGX-314 is a non-replicating, recombinant AAV serotype 8 (AAV8) vector encoding for a soluble anti-VEGF Fab protein, which binds to retinal pigment epithelial cells to produce a therapeutic anti-VEGF protein. The gene encodes for an anti-VEGF fragment of an antibody that is similar to ranibuzumab."

Simply put, RGX-314 is a harmless virus which will direct the eye to produce an anti-VEGF medication, which is similar to an FDA approved drug.

Regenxbio has been using subretinal injections which require a surgical procedure in their Phase I studies to date. Going forward, they will also concurrently be testing a micro injector that targets the suprachoroidal space. This approach is being tested based on research done at Johns Hopkins that indicates that this approach, which could be done in the office, could be equally effective. From the physician and patient's standpoint, an in-office delivery would be superior to a surgical procedure.

Regenxbio is licensing the micro injector for suprachoroidal injections from Clearside Biomedical (CLSD) and will begin testing it in a Phase II trial of RGX-314. Regenxbio will be advancing both the subretinal and suprachoroidal approach into Phase II during the second half of 2020. In an article published in Molecular Therapy, researchers noted differences in the cells that have shown transduction depending on the route of administration.

"We found that suprachoroidal AAV8 delivery produced diffuse, peripheral transduction of mostly RPE, while subretinal injection using transscleral microneedles led to a robust, but localized area of gene transfer to multiple retinal cell types."

An article written by Peter Campochiaro, MD of Johns Hopkins noted that,

"Total transgene expression after a single suprachoroidal injection of AAV8 vector is comparable to that seen after subretinal injection of the same vector dose, and can be increased by multiple suprachoroidal vector injections."

This research supports that the more convenient suprachoroidal administration can be effective at producing the needed protein. Clearside Biomedical has a product through Phase 3 trials that validates the efficacy of suprachoroidal administration.

Adverum has a competing gene therapy product in the clinic. According to the company,

"ADVM-022 uses a proprietary capsid (AAV.7m8) to deliver a proprietary expression cassette which expresses aflibercept. ADVM-022 is administered as a single intravitreal injection and is designed to minimize the treatment burden of repeated anti-VEGF injections."

This gene therapy can be a straightforward one time injection which can be performed in the office. According to Dr. David Brown of Baylor College of Medicine, some studies show aflibercept is probably the best drying agent. However, intravitreal injections of AAVs can have negative side effects. Research published in the journal Molecular Therapy noted that

"Intravitreal AAV causes more intraocular inflammation and elicits a more potent humoral immune response than does subretinal administration."

This inflammation has been managed with oral and topical steroids which have not been required thus far for patients receiving RGX-314.

Regenxbio and Adverum are using different AAV's, different methods of administration and different transgenes. The transgenes used in RGX-314 and ADVM-022 differ in which anti VEGF protein they deliver. In a clinical study of 965 eyes that compared aflibercept (ADVM-022's transgene) to ranibizumab (RGX-314's transgene), they were equally effective in wet AMD. Therefore, it is likely both transgenes are equally effective.

Regenxbio has released two year data on cohorts 1-3 showing safety and efficacy as well as the durability of the treatment. They have dosed all 5 cohorts but long term data is not yet available for cohorts 4 and 5. Adverum has data out to 64 weeks for their first two cohorts and has early data on cohort 3. The last group, cohort 4, was recently dosed. These Phase I/IIa studies are two years in length so Regenxbio has the lead by at least 10 months. Should both treatments show efficacy and safety, RGX-314 is likely to be first to market.

Physicians often use a new product which is first in its class and become comfortable with the risks, benefits, side effects and administration. Unless there is a perception that other products of the same class offer a benefit, they often continue to use the first in class product. If RGX-314 proves to have a favorable profile, the first to market advantage will be significant. It should be acknowledged that gene therapy may be slightly different as these are one time administration products and physicians may wait if they believe a product (such as ADVM-022) that is coming soon will be superior.

Adverum reported that 14/17 patients have not needed rescue injections reflecting an impressive 82 percent rescue free injection rate for patients in cohorts 1-3.

For Regenxbio's cohorts 1 and 2, the dosage used appears to be suboptimal, so it is logical they would not choose these doses going forward. The doses in Cohort 3-5 appear to be more effective. Cohort 3 had 4/5 patients rescue free if you remove data from a patient who had a procedure that failed to deliver a full dosage of the drug. Another patient who initially required rescue injections but later became rescue free can be considered a responder in this cohort. Cohort 4 had 5/12 patients rescue free and cohort 5 currently has 8/11 patients rescue free. The overall rescue free rate for Regenxbio's cohorts 3-5 is 17/28 or only 61 percent.

Adverum's data is clearly better in terms of the number of patients who did not require rescue injections, 82% vs 61%. Adverum had less stringent criteria for when a rescue injection can be given - the loss of 10 letters due to fluid rather than 5 letters which Regenxbio used. Adverum previously guided that no patient would have required rescue injections had the criteria been 5 letters. If larger studies replicate these rescue free rates, it is questionable whether RGX-314 will be competitive.

Some of this differential in the percentage of patients requiring rescue injections could be due to the variability in response to anti-VEGF therapy between individual patients. Dr. Charles Wykoff of Retina Consultants of Houston commented on this variability. Dr. Wykoff noted that

"it's rare to find an individual who has no response to anti-VEGF therapy." However, "a significant number of wet AMD patients are recalcitrant," "We inject them repeatedly, but they continue to show fluid. However, that's not the same as being a 'non responder.'"

In Regenxbio's cohort, 4 only 5/12 patients were rescue free. Some of these patients may be what Dr. Wykoff calls recalcitrant in that even though they have high anti-VEGF protein levels, they still have fluid. The high protein levels in this cohort would support that these particular patients may be very difficult to "dry out." Given that the protein levels were higher in cohort 4 than 3, and cohort 3 patients had an 80 percent rescue free rate, this seems to support that patients in cohort 4 had a very high anti-VEGF demand.

Figure 1: Regenxbio Corporate Presentation

For some patients, gene therapy may be a one time solution. For others, gene therapy may be an adjunctive therapy that reduces the number of injections. The fact that some patients will still need injections will likely be a subject insurers wish to discuss when considering pricing.

Adverum has data for 3 cohorts which included a total of 21 patients at two doses. Of those twelve patients for whom there is at least one year data, only 3 of the 12 had any improvement in BCVA. Looking at the individual data for BCVA gives us a clearer picture. BCVA through December 1, 2019, for Cohort 1 was: +7, -6, -7, +5, -2, -3. BCVA for Cohort 2 was -4, -1, -19, -14, -7, +16. For patients who required very few rescue injections, this is disappointing data for visual acuity. Cohort one and two lost 2.7 and 2.8 letters, respectively, at the last update provided. Short-term results (up to 20 weeks) for cohort 3 showed an increase of 6.8 letters. The lack of individual patient data makes it hard to assess whether the general trend was an improvement in visual acuity. If you average this across all cohorts, there is approximately a 1.3 letter improvement. Cohort 2 and 3 used the same dosage but Cohort 3 used topical steroid drops rather than oral steroids so perhaps this accounts for the improvement in BCVA. Although cohort 3's data is greatly improved in comparison to cohorts 1 and 2, it remains an unanswered question whether Phase II patients will show a similar improvement in vision.

Regenxbio took the approach of 5 cohorts with increasing dosages. For cohort 3, in considering BCVA figures, it is reasonable to remove results from a patient who had a procedure error and did not receive a full dosage of the study drug. That leaves 5 patients with BCVA changes of (+32, +17, +6, +7 and +25). Cohort 4 for which Regenxbio has not released individual patient data had a BCVA improvement of +2 for the twelve patients. The lack of individual patient data makes it hard to assess whether the general trend was an improvement in visual acuity. Early data from Cohort 5 showed that responders saw a +5 letter improvement in BCVA. Combining the Regenxbio data from Cohorts 3-5, with the limitation that we don't have BCVA for those who required rescue injections in cohort 5, gives an approximately +6 letter improvement.

The general trend is that BCVA is superior for RGX-314 when compared to ADVM-022. Visual acuity data for RGX-314 more closely parallels what is seen with the standard of care treatments. Studies of the standard of care drugs such as ranibizumab (RGX-314 transgene) showed a +7.2 mean letter change in BCVA after a year. The same study found that aflibercept (ADVM-022 transgene) produced a +4.9 mean change in BCVA letter score. For context, Adverum's data on BCVA (+1.34 letters) is worse than the data from standard of care studies. Most studies show a maximum of 8-11 letter improvement for wet AMD patients treated with anti-VEGF medications. In this context, Adverum's 1.3 letter improvement is concerning.

It is also possible that some of Adverum's patients fall into the category some retinal specialists call "treatment disappointments," where the fluid is removed but patients fail to have any improvement in vision. Given the small number of patients, it is difficult to extrapolate whether this trend in visual acuity would persist in studies with a large number of patients. Another factor to be considered is that "intravitreal AAVs causes more intraocular inflammation and elicits a more potent humoral immune response than does subretinal administration." It is unknown if this inflammation has any impact on vision but cohort 3, where inflammation was managed with steroid drops, did show an improvement in visual acuity.

Another explanation for the difference in outcome in visual acuity between RGX-314 and ADVM-022 may be that "baseline BCVA is one of the strongest predictors of visual acuity gains." Specifically, patients with "the highest baseline BCVA had lowest BCVA gains." Adverum's patients across all three cohorts had a baseline mean BCVA of approximately 65.5 vs 55.7 for Regenxbio. This could partially explain a difference in gains - Adverum's patients had less to gain. However, 5 of the patients in cohorts 1 and 2 had significant vision loss (-6, -7, -19, -14, -7), and this is highly concerning. There was no patient specific data released for cohort 3, and this is also a concern as one patient with a very impressive gain can conceal the pattern of most patients losing vision. It is encouraging to see positive data for cohort 3, but it is not prudent to ignore the data from the other two cohorts.

Most studies in wet AMD for the standard of care define success as a stabilization of vision loss. However, an article published in Review of Ophthalmology written by ophthalmologists at Barnes Retina Institute of Washington University commented on the evolving goals of treatment. They wrote that "as standards for treatment success are raised, more attention should be focused on visual acuity gains as the primary endpoint." One of the outcomes sought by developers of gene therapy is to provide a continual dose of anti-VEGF therapy that results in improved vision rather than the gradual decline in vision seen in real world studies of standard of care treatments. In this context, ADVM-022's results in visual acuity fall short.

Adverum shares are trading around $20, and the company has a market cap of approximately 1.6 billion reflecting a rich valuation even considering that the company has cash on hand to fund operations through 2022. ADVM-022 is a "one hit wonder", and the company has no other products in clinical trials should ADVM-022 fail or fail to deliver an extraordinary safety and efficacy profile. The current share price of Adverum assumes a very low risk of failure for a product, which is still in Phase I/IIa trials. This valuation also reflects expectations that ADVM-022 will be a superior gene therapy treatment and capture a large percentage of the gene therapy market.

RGNX is trading around $41 and has a market cap of approximately $1.6 billion, the same market cap that Adverum has. Just as Adverum, Regenxbio has cash on hand sufficient to fund their internal pipeline costs through 2022, so dilution is not a near-term risk. Regenxbio is a much more diverse company than Adverum, and the value of their other assets is substantial. Their internal pipeline has 4 products in clinical trials, although RGX-314 has by far the greatest commercial opportunity.

In addition to an internal pipeline, Regenxbio licenses intellectual property to partners who are engaged in 26 different gene therapy programs. This revenue stream is significant and should grow with time. Novartis (NYSE:NVS) sells a gene therapy, Zolgensma, for SMA which uses one of Regenxbio's AAVs. Regenxbio reported that Novartis, which started selling Zolgensma in the second quarter of 2019, has reached $530 million in sales as of the first quarter of 2020. Regenxbio receives approximately ten percent of sales as a royalty payment. This product is likely to exceed a billion dollars in sales by 2021 and perhaps have peak sales as high as $2.5 billion annually providing a secure revenue stream for Regenxbio to pursue their internal pipeline.

Regenxbio is also investing in manufacturing which "will allow for production of NAV Technology-based vectors at scales up to 2,000 liters using REGENXBIO's platform suspension cell culture process." Manufacturing capability is a very undervalued asset considering that "Thermo Fisher paid $1.7 billion last year to buy viral vector contract manufacturer Brammer Bio" and is further investing $180 million to build a new gene therapy plant. Catalent (NYSE:CTLT) last year paid $1.2 billion for Paragon Bioservices to bolster its manufacturing capacity for gene therapies further validating the value of gene therapy manufacturing infrastructure. The licensing revenue, three other products in the pipeline and the intrinsic value of the manufacturing infrastructure provide a margin of safety if RGX-314 disappoints in clinical trials.

There are concerning aspects of both Regenxbio's data (the need for rescue injections) and Adverum's data (the poor outcomes in visual acuity). Should ADVM-022 not prove to give vision improvements, the benefit of reduced rescue injections will not be as meaningful. Wet AMD is treated to prevent blindness and to improve vision. Therefore, it is logical that vision improvement is a goal and perhaps the most important metric of all. Along a similar line of reasoning, if only 60 percent of the patients are rescue injection free, it brings into question whether physicians would administer RGX-314 if ADVM-022 provided a much greater chance of requiring no rescue injections.

Assessing early data is extremely difficult. Trends that appear in Phase I can completely disappear in Phases II and III which involve larger cohorts with a more diverse set of patient characteristics. There is a wide range of responses from individual patients to the same treatment which makes it essential to see responses in large groups. Some side effects or efficacy patterns are not revealed until after FDA approval when a medication is used in even larger patient populations. These truths highlight the difficulty of drawing conclusions based on sample sizes as small as 6 patients in a cohort. Thirty percent of drugs fail in Phase 2 further reinforcing that early data that looked very promising can be misleading when larger cohorts are studied.

In this case, it is so early that NO data is yet available in the suprachoroidal administration of RGX-314. The lack of data in this administration makes it particularly difficult to compare RGX-314 to ADVM-022. Given this would be the preferred route of administration, this data is what is most important to assess in comparison to ADVM-022. In addition, both companies are still assessing varying dosages so it is far from clear at this moment what the final product that physicians would choose from would look like.

Larger data sets will be forthcoming in the next twelve to eighteen months which will provide greater clarity about whether RGX-314, ADVM-022 or both will be viable commercial products. Investors should keep a close eye on larger data sets and critically evaluate how these products compare. Investors considering diving into the wet AMD gene therapy market should also consider the wide margin of safety that Regenxbio's more diverse pipeline, secure licensing revenue and manufacturing assets provide.

Disclosure: I am/we are long ADVM, RGNX. I wrote this article myself, and it expresses my own opinions. I am not receiving compensation for it (other than from Seeking Alpha). I have no business relationship with any company whose stock is mentioned in this article.

Additional disclosure: This article is for information purposes only and does not constitute a recommendation to buy or sell any security.

See more here:
The Wet AMD Gene Therapy Race - Adverum Biotechnologies Vs. Regenxbio - Seeking Alpha

Recommendation and review posted by Bethany Smith

Gene Therapy Products Market 2020 Upcoming Opportunities | Key Players Novartis AG, Achieve Life Sciences, Inc., Spark Therapeutics, Inc., Abeona…

The Gene Therapy Products market analysis report contains a skilful and deep analysis of the present situation and challenges. This business report focuses on the key drivers, restraints, market opportunities, threats and risks for market major players. It also makes available analysis of market size, shares, growth, segmentation, revenue projection (USD Mn), and regional study till 2026. The market research document offers a wide-ranging overview of the global Gene Therapy Products market and contains thoughtful insights, facts, historical information, and statistically supported & industry-verified market data. This report comprises of forecasts that uses a suitable set of predictions and distinct research methodologies. Global Gene Therapy Products market document helps identify the latest growths, market shares, and policies employed by the major market players.

Get ExclusiveSample Copy of This Report Herehttps://www.databridgemarketresearch.com/request-a-sample?dbmr=global-gene-therapy-products-market

Global gene therapy products market is set to witness a substantial CAGR in the forecast period of 2019- 2026. The report contains data of the base year 2018 and historic year 2017. Rising cancer cases and unused potential for emerging markets are the major factors for the growth of this market.

Few of the major competitors currently working in the globalgene therapy products marketareAdaptimmune., Anchiano Therapeutics, bluebird bio, Inc., CELGENE CORPORATION, GlaxoSmithKline plc., Merck KGaA, Novartis AG, Achieve Life Sciences, Inc., Spark Therapeutics, Inc., Abeona Therapeutics, Inc, Adverum, agtc, Arbutus Biopharma, Audentes Therapeutics, AveXis, Inc., CRISPR Therapeutics, Intellia Therapeutics, Inc and Gilead Sciences,Inc. among others.

Market Definition:Global Gene Therapy Products Market

Gene therapy or human gene therapy is a process which is used to modify gene for the treatment of any disease. Plasmid DNA, bacterial vector, human gene editing technology and viral vectors are some of the most common type of gene therapy products. The main aim of the gene therapy is to replace the dysfunctional genes. Somatic and germline are some of the most common type of the gene therapy.

Complete report on Global Gene Therapy Product Market Research Report 2019-2026 spread across 350 Pages, profiling Top companies and supports with tables and figures

Segmentation: Global Gene Therapy Products Market

Gene Therapy Products Market : By Product

Gene Therapy Products Market : By Application

Gene Therapy Products Market : ByGeography

Read Complete Details with TOC Herehttps://www.databridgemarketresearch.com/toc?dbmr=global-gene-therapy-products-market

Key Developments in the Gene Therapy Products Market:

Gene Therapy Products Market Drivers

Gene Therapy Products Market Restraints

Competitive Analysis: Gene Therapy Products Market

Global gene therapy products market is highly fragmented and the major players have used various strategies such as new product launches, expansions, agreements, joint ventures, partnerships, acquisitions, and others to increase their footprints in this market. The report includes market shares of gene therapy products market for Global, Europe, North America, Asia-Pacific, South America and Middle East & Africa.

Key questions answered in the report :-

To get this report at an attractive cost, click herehttps://www.databridgemarketresearch.com/speak-to-analyst?dbmr=global-gene-therapy-products-market

About Data Bridge Market Research:

Data Bridge Market Researchis a versatile market research and consulting firm with over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Our coverage of industries include Medical Devices, Pharmaceuticals, Biotechnology, Semiconductors, Machinery, Information and Communication Technology, Automobiles and Automotive, Chemical and Material, Packaging, Food and Beverages, Cosmetics, Specialty Chemicals, Fast Moving Consumer Goods, Robotics, among many others.

Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude.We are content with our glorious 99.9 % client satisfying rate.

Contact Us

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475 Mail:[emailprotected]

Read this article:
Gene Therapy Products Market 2020 Upcoming Opportunities | Key Players Novartis AG, Achieve Life Sciences, Inc., Spark Therapeutics, Inc., Abeona...

Recommendation and review posted by Bethany Smith

Smart Pills Expand Horizon of Smart Healthcare Products; Market to Clock CAGR of 8.8% From 2019 to 2027, Finds Transparency Market Research – PR…

- Smart Medical Services powered by IoT and Sensors Key to Vast Avenues in Emerging Markets, particularly Asia Pacific; Governments Become Payers, Providers, and Policy Makers, thereby accelerating Growth of Smart Healthcare Products Market

- Application in Patient Treatments and Diagnostics Key to Growth; Digitization in Healthcare Industry Forms Key Underpinning to Market Expansion

ALBANY, New York, May 28, 2020 /PRNewswire/ --The smart healthcare products market has evolved on the back of the proposition of making medical and patient care more efficient, affordable, and accessible. Rapid pace of digitization in the healthcare industry on account of integration of an array of technologies such as sensors, IoT framework, smart data analytics with healthcare products contributes to broadening avenues in the market. Smart healthcare gadgets play crucial role in accessing patient data remotely and help in monitoring of chronic conditions.

The latest valuation of the smart healthcare products market was estimated to be US$ 37.5 Bn in 2018. Expanding at CAGR of 8.8% from 2019 to 2027, the global smart healthcare products market is anticipated to reach worth of US$ 80.3 bn by this period-end.

Increasing share of healthcare spending in the GDP of several countries will focus on adoption of smart healthcare products for patient care, note the analysts at Transparency Market Research. They further concede that addressing cost and privacy concerns should be crucial in making healthcare IT successful for disease diagnosis and treatment.

Download A PDF Brochure of Report -https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=9437

Key Findings of Smart Healthcare Products Market

Explore 90 pages of top-notch research, incisive insights, and detailed country-level projections. Gain business intelligence on Smart Healthcare Products Market (By Product Type - Smart Syringes, Smart Pills, Smart RFID Cabinets and Electronic Health Record; By Application - Health Data Storage and Exchange, Monitoring and Treatment, and Inventory Management - Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2019 2027 at https://www.transparencymarketresearch.com/report-toc/9437

Smart Healthcare Products Market: Key Driving Factors and Promising Avenues

A favorable macroeconomic framework in numerous countries is key to the rapid expansion of global smart healthcare products market. Few of the trends are worth noticing.

Inquire for a Sample Copy of Report - https://www.transparencymarketresearch.com/sample/sample.php?flag=S&rep_id=9437

Key Challenges for Players in Smart Healthcare Products Market

The smart healthcare products market has made some incredible strides in developing and developed world, unarguably. But a few concerns offset the gains of their uptake in the healthcare industry as following:

Nevertheless, the factors highlighting the silver lining are more than one:

Purchase the Smart Healthcare Products Market Report - https://www.transparencymarketresearch.com/checkout.php?rep_id=9437&ltype=S

The global smart healthcare products market has been segmented as follows:

Explore Transparency Market Research's award-winning coverage of the global Healthcare industry:

Swab and Viral Transport Medium Market The global swab and viral transport medium market is primarily driven by increase in demand for swabs & viral transport medium owing to COVID-19 pandemic, rise in use of viral transport medium in microbiology & diagnostic laboratories, and high investment in diagnostic equipment, kits, and accessories. Increase in the geriatric population, rise in adoption of diagnostic tests, and growth of the diagnostics industry are the other factors projected to drive the global market during the forecast period.

Cell and Gene Therapy Market Technological advancements in cell and gene therapy is one of the key factors projected to fuel the global cell and gene therapy market during the forecast period. Emerging technologies in cell and gene therapies, such as proprietary cell lines, gene vectors, cell expansion and separation systems, and single-use bioprocessing reactors, have become primary means by which single products have been transformed into a robust product portfolio. For example, Immunicum has offered three technological platforms i.e. gene editing, CAR-T cell expansion, and T-cell primers. These technologies allow the company to advance its series of immuno-oncology drug candidates. Immunicum has two technologies i.e. IMM-2 platform and IMM-3 platform undergoing preclinical studies for use in the treatment of different types of cancer. Immunicum is looking forward to developing an allogeneic dendritic cell in-vivo vaccine for use in the treatment of solid tumors.

Antivirals Market- Some of the primary trends in the global market for antivirals are the development of new mechanisms and research on second-generation molecules, combination therapies, and topical administration routes. Investors proactively pursue research and development of drug candidates for viral diseases that require long-term treatment. They also prefer initiatives that have a predominant patient-base in developed regions of the world and are readily accepted by physicians and drug formularies. Antivirals ideally fit the profile and hence are gaining strong investments. Moreover, the need to improve the quality of life of the patients on the available antiviral regimens is encouraging efforts for the development of second-generation molecules, such as IFN-.

Gain access to Market Ngage, an AI-powered, real-time business intelligence that goes beyond the archaic research solutions to solve the complex strategy challenges that organizations face today. With over 15,000+ global and country-wise reports across 50,000+ application areas, Market Ngage is your tool for research on-the-go. From tracking new investment avenues to keeping a track of your competitor's moves, Market Ngage provides you with all the essential information to up your strategic game. Power your business with Market Ngage's actionable insights and remove the guesswork in making colossal decisions.

About Us

Transparency Market Research is a next-generation market intelligence provider, offering fact-based solutions to business leaders, consultants, and strategy professionals.

Our reports are single-point solutions for businesses to grow, evolve, and mature. Our real-time data collection methods along with ability to track more than one million high growth niche products are aligned with your aims. The detailed and proprietary statistical models used by our analysts offer insights for making right decision in the shortest span of time. For organizations that require specific but comprehensive information we offer customized solutions through adhoc reports. These requests are delivered with the perfect combination of right sense of fact-oriented problem solving methodologies and leveraging existing data repositories.

TMR believes that unison of solutions for clients-specific problems with right methodology of research is the key tohelp enterprises reach right decision.

ContactMr. Rohit BhiseyTransparency Market ResearchState Tower,90 State Street,Suite 700,Albany NY - 12207United StatesUSA - Canada Toll Free: 866-552-3453Email: sales@transparencymarketresearch.comWebsite: http://www.transparencymarketresearch.com

Logo : https://mma.prnewswire.com/media/1085206/Transparency_Market_Research_Logo.jpg

SOURCE Transparency Market Research

Continue reading here:
Smart Pills Expand Horizon of Smart Healthcare Products; Market to Clock CAGR of 8.8% From 2019 to 2027, Finds Transparency Market Research - PR...

Recommendation and review posted by Bethany Smith

COVID-19 impact: Insight on the Growth of Hemophilia Gene Therapy Market Growth with Challenges, Standardization, Competitive Market Share and Top…

The report on the Hemophilia Gene Therapy market provides a birds eye view of the current proceeding within the Hemophilia Gene Therapy market. Further, the report also takes into account the impact of the novel COVID-19 pandemic on the Hemophilia Gene Therapy market and offers a clear assessment of the projected market fluctuations during the forecast period. The different factors that are likely to impact the overall dynamics of the Hemophilia Gene Therapy market over the forecast period (2019-2029) including the current trends, growth opportunities, restraining factors, and more are discussed in detail in the market study.

The Hemophilia Gene Therapy market study is a well-researched report encompassing a detailed analysis of this industry with respect to certain parameters such as the product capacity as well as the overall market remuneration. The report enumerates details about production and consumption patterns in the business as well, in addition to the current scenario of the Hemophilia Gene Therapy market and the trends that will prevail in this industry.

Get Free Sample PDF (including COVID19 Impact Analysis, full TOC, Tables and Figures) of Market Report @ https://www.marketresearchhub.com/enquiry.php?type=S&repid=2640005&source=atm

What pointers are covered in the Hemophilia Gene Therapy market research study?

The Hemophilia Gene Therapy market report Elucidated with regards to the regional landscape of the industry:

The geographical reach of the Hemophilia Gene Therapy market has been meticulously segmented into United States, China, Europe, Japan, Southeast Asia & India, according to the report.

The research enumerates the consumption market share of every region in minute detail, in conjunction with the production market share and revenue.

Also, the report is inclusive of the growth rate that each region is projected to register over the estimated period.

The Hemophilia Gene Therapy market report Elucidated with regards to the competitive landscape of the industry:

The competitive expanse of this business has been flawlessly categorized into companies such as

Competition AnalysisIn the competitive analysis section of the report, leading as well as prominent players of the global Hemophilia Gene Therapy market are broadly studied on the basis of key factors. The report offers comprehensive analysis and accurate statistics on revenue by the player for the period 2015-2020. It also offers detailed analysis supported by reliable statistics on price and revenue (global level) by player for the period 2015-2020.On the whole, the report proves to be an effective tool that players can use to gain a competitive edge over their competitors and ensure lasting success in the global Hemophilia Gene Therapy market. All of the findings, data, and information provided in the report are validated and revalidated with the help of trustworthy sources. The analysts who have authored the report took a unique and industry-best research and analysis approach for an in-depth study of the global Hemophilia Gene Therapy market.The following players are covered in this report:Spark TherapeuticsUltragenyxShire PLCSangamo TherapeuticsBioverativBioMarinuniQureFreeline TherapeuticsHemophilia Gene Therapy Breakdown Data by TypeHemophilia AHemophilia BHemophilia Gene Therapy Breakdown Data by ApplicationHemophilia A Gene TherapyHemophilia B Gene Therapy

Do You Have Any Query Or Specific Requirement? Ask to Our Industry [emailprotected] https://www.marketresearchhub.com/enquiry.php?type=E&repid=2640005&source=atm

Exclusive details pertaining to the contribution that every firm has made to the industry have been outlined in the study. Not to mention, a brief gist of the company description has been provided as well.

Substantial information subject to the production patterns of each firm and the area that is catered to, has been elucidated.

The valuation that each company holds, in tandem with the description as well as substantial specifications of the manufactured products have been enumerated in the study as well.

The Hemophilia Gene Therapy market research study conscientiously mentions a separate section that enumerates details with regards to major parameters like the price fads of key raw material and industrial chain analysis, not to mention, details about the suppliers of the raw material. That said, it is pivotal to mention that the Hemophilia Gene Therapy market report also expounds an analysis of the industry distribution chain, further advancing on aspects such as important distributors and the customer pool.

The Hemophilia Gene Therapy market report enumerates information about the industry in terms of market share, market size, revenue forecasts, and regional outlook. The report further illustrates competitive insights of key players in the business vertical followed by an overview of their diverse portfolios and growth strategies.

You can Buy This Report from Here @ https://www.marketresearchhub.com/checkout?rep_id=2640005&licType=S&source=atm

Some of the Major Highlights of TOC covers:

Original post:
COVID-19 impact: Insight on the Growth of Hemophilia Gene Therapy Market Growth with Challenges, Standardization, Competitive Market Share and Top...

Recommendation and review posted by Bethany Smith

Headed to PhII: Allogene CEO David Chang completes a positive early snapshot of their off-the-shelf CAR-T pioneer – Endpoints News

Another day, another win for Enhertu.

The antibody-drug conjugate AstraZeneca promised up-to $7 billion to partner on has had a quite a few months, beginning with splashy results in a Phase II breast cancer trial, a rapid approval and, earlier this month, breakthrough designations in both non-small cell lung cancer and gastric cancer.

Now, at ASCO, the British pharma and their Japanese partner, Daiichi Sankyo, have shown off the data that led to the gastric cancer designation, which theyll take back to the FDA. In a pivotal, 187-person Phase II trial, Enhertu shrunk tumors in 42.9% of third-line patients with HER2-positive stomach cancer, compared with 12.5% in a control arm where doctors prescribed their choice of therapy. Progression-free survival was 5.4 months for Enhertu compared to 3.5 months for the control.

Read More

See the original post here:
Headed to PhII: Allogene CEO David Chang completes a positive early snapshot of their off-the-shelf CAR-T pioneer - Endpoints News

Recommendation and review posted by Bethany Smith

Why ‘hot’ kidney tumors don’t respond to immunotherapy with PD-1 blockers – FierceBiotech

Its reasonableto assume immunotherapies such as PD-1 inhibitors, which unleashthe bodys own immune system to target and destroy cancer, work best in hot tumors that are flooded with immune cells in their microenvironment. But a new study by scientists at the Dana-Farber Cancer Institute found that is not the case in kidney cancer.

The researchers discovered that in advanced clear cell renal cell carcinoma (ccRCC)the most common form of kidney cancertumors that were infiltrated with large numbers of CD8 T cells were less likely to respond to Bristol Myers Squibbs PD-1 inhibitor Opdivo than cold tumors were.

The findings, presented at the American Society of Clinical Oncology virtual event and published in Nature Medicine, provide critical insights that may help predict which patients are more likely to benefit from immuno-oncology agents, the researchers argued.

The Dana-Faber scientists examined 592 tumors collected from three Opdivo kidney cancer clinical trials in an attempt to draw a correlation between patient outcomes and immune and genomic biomarkers. They discovered that kidney cancer deviates from several well-known tenets of cancer treatment. Normally, tumors containing a large number of neoantigensproteins formed as a result of tumor mutations and therefore new to the immune systemare often more susceptible to immunotherapy. But that didnt affect ccRCC responsiveness to Opdivo, the team found.

Perhaps most surprisingly, hot tumors with high levels of CD8 T cells didnt respond well to Opdivo, either. But why?

The researchers found that these hot tumors were depleted of mutated PBRM1 genes, which are often associated with improved survival from PD-1 blockade. Instead, they had more of an unfavorable genetic featurethe loss of a chromosomal segment called 9p21.3. When found within hot tumors, deletion of 9p21.3 was associated with worse clinical benefit and survival after PD-1 treatment.

We believe that these two factors may explain why CD8 T cell infiltration of the tumors did not make them responsive to checkpoint blocker therapy, while other types of cancer that exhibited CD8 T cell infiltration but did not have those chromosomal changes did respond, explained co-authorSachet Shukla, Ph.D., chief of the computational group at the Dana-Farber Translational Immunogenomics Laboratory,in a statement.

RELATED:Could the anti-cancer gene p53 be a target in treating kidney cancer?

The Dana-Farber study offers clues to mechanisms that contribute to response and resistance to PD-1 drugs in ccRCC and possibly other types of tumors as well, the researchers suggested. It can help identify patients most suitable for these immuno-oncology drugs and provide fundamental information to aid in development of rational combination therapies to overcome resistance in the future, said study co-author Toni Choueiri, M.D., director of the Lank Center for Genitourinary Oncology at Dana-Farber.

The presence of high numbers oftumor-infiltrating immune cells isoften linked to better immunotherapy treatment outcomes. Thats why scientists are constantly looking for ways to turn coldtumors hot. In October, a Yale University team described a method for using gene-editing system CRISPR to make tough-to-spot tumors more visible to the immune system.

Another approach aimed at improving immuno-oncology in kidney cancer involves combining immune-boosting treatments. A combo of BMS' Yervoy with Opdivo was approved for first-line treatment of kidney cancer in 2018. In February of this year, the company unveiled new data showing 56% of patients taking the combo in a trial were still alive at 42 months, versus 47% of patients taking Pfizer's Sutent alone.

Original post:
Why 'hot' kidney tumors don't respond to immunotherapy with PD-1 blockers - FierceBiotech

Recommendation and review posted by Bethany Smith


Archives