Page 468«..1020..467468469470..480490..»

melatonin | Description, Hormone, & Effects | Britannica.com

Melatonin, hormone secreted by the pineal gland, a tiny endocrine gland situated at the centre of the brain. Melatonin was first isolated in 1958 by American physician Aaron B. Lerner and his colleagues at Yale University School of Medicine. They gave the substance its name on the basis of its ability to lighten skin colour in frogs by reversing the skin-darkening effects of melanocyte-stimulating hormone. Melatonin, a derivative of the amino acid tryptophan, is produced in humans, other mammals, birds, reptiles, and amphibians.

In humans, melatonin plays an important role in the regulation of sleep cycles (i.e., circadian rhythm). Its production is influenced by the detection of light and dark by the retina of the eye. For example, the production of melatonin is inhibited when the retina detects light and is stimulated in the absence of light. Special photoreceptor cells in the retina send signals about light status to the suprachiasmatic nucleus (SCN) in the hypothalamus of the brain. These signals are then transmitted to the pineal gland. Melatonin generation by the pineal gland, which peaks during the nighttime hours, induces physiological changes that promote sleep, such as decreased body temperature and respiration rate. During the day, melatonin levels are low because large amounts of light are detected by the retina. Light inhibition of melatonin production is central to stimulating wakefulness in the morning and to maintaining alertness throughout the day.

Melatonin receptors are found in the SCN and the pituitary gland of the brain, as well as in the ovaries, blood vessels, and intestinal tract. There is a high concentration of receptors in the SCN because this is where melatonin mediates the majority of its affects on circadian rhythm. The binding of melatonin to its receptors on the pituitary gland and the ovaries appears to play a role in regulating the release of reproductive hormones in females. For example, the timing, length, and frequency of menstrual cycles in women are influenced by melatonin. In addition, in certain mammals (other than humans), such as horses and sheep, melatonin acts as a breeding and mating cue, since it is produced in greater amounts in response to the longer nights of winter and less so during summer. Animals who time their mating or breeding to coincide with favourable seasons (such as spring) may depend on melatonin production as a kind of biological clock that regulates their reproductive cycles on the basis of the length of the solar day.

Melatonin has antiaging properties. For example, it acts as an antioxidant, neutralizing harmful oxidative radicals, and it is capable of activating certain antioxidant enzymes. Melatonin production gradually declines with age, and its loss is associated with several age-related diseases. Melatonin also plays a role in modulating certain functions of the immune system.

Synthetic melatonin is available in pill form and can be used to treat insomnia and other sleep disorders, to adjust sleep schedules following jet lag or other major disruptions, and to help blind people establish night and day cycles. Melatonin supplements may also help lower blood pressure and aid in withdrawal from benzodiazepines, though further research is needed.

Read more:
melatonin | Description, Hormone, & Effects | Britannica.com

Recommendation and review posted by Bethany Smith

Androgen insensitivity syndrome – Wikipedia

Androgen insensitivity syndrome (AIS) is an intersex condition that results in the partial or complete inability of the cell to respond to androgens.[1][2][3] The unresponsiveness of the cell to the presence of androgenic hormones can impair or prevent the masculinization of male genitalia in the developing fetus, as well as the development of male secondary sexual characteristics at puberty, but does not significantly impair female genital or sexual development.[3][4] As such, the insensitivity to androgens is clinically significant only when it occurs in genetic males (i.e. individuals with a Y-chromosome, or more specifically, an SRY gene).[1] Clinical phenotypes in these individuals range from a normal male habitus with mild spermatogenic defect or reduced secondary terminal hair, to a full female habitus, despite the presence of a Y-chromosome.[1][5][6][7][8][9]

AIS is divided into three categories that are differentiated by the degree of genital masculinization: complete androgen insensitivity syndrome (CAIS) is indicated when the external genitalia are that of a normal female; mild androgen insensitivity syndrome (MAIS) is indicated when the external genitalia are that of a normal male, and partial androgen insensitivity syndrome (PAIS) is indicated when the external genitalia are partially, but not fully, masculinized.[1][2][5][6][7][10][11][12][13] Androgen insensitivity syndrome is the largest single entity that leads to 46,XY undermasculinized genitalia.[14]

Management of AIS is currently limited to symptomatic management; no method is currently available to correct the malfunctioning androgen receptor proteins produced by AR gene mutations. Areas of management include sex assignment, genitoplasty, gonadectomy in relation to tumor risk, hormone replacement therapy, genetic counseling, and psychological counseling.

The human androgen receptor (AR) is a protein encoded by a gene located on the proximal long arm of the X chromosome (locus Xq11-Xq12).[15] The protein coding region consists of approximately 2,757 nucleotides (919 codons) spanning eight exons, designated 1-8 or A-H.[1][3] Introns vary in size between 0.7 and 26 kb.[3] Like other nuclear receptors, the AR protein consists of several functional domains: the transactivation domain (also called the transcription-regulation domain or the amino / NH2-terminal domain), the DNA-binding domain, the hinge region, and the steroid-binding domain (also called the carboxyl-terminal ligand-binding domain).[1][2][3][13] The transactivation domain is encoded by exon 1, and makes up more than half of the AR protein.[3] Exons 2 and 3 encode the DNA-binding domain, while the 5' portion of exon 4 encodes the hinge region.[3] The remainder of exons 4 through 8 encodes the ligand binding domain.[3]

The AR gene contains two polymorphic trinucleotide microsatellites in exon 1.[2] The first microsatellite (nearest the 5' end) contains 8 [16] to 60 [17][18] repetitions of the glutamine codon "CAG" and is thus known as the polyglutamine tract.[3] The second microsatellite contains 4 [19] to 31 [20] repetitions of the glycine codon "GGC" and is known as the polyglycine tract.[21] The average number of repetitions varies by ethnicity, with Caucasians exhibiting an average of 21 CAG repeats, and Blacks 18.[22] In men, disease states are associated with extremes in polyglutamine tract length; prostate cancer,[23] hepatocellular carcinoma,[24] and intellectual disability [16] are associated with too few repetitions, while spinal and bulbar muscular atrophy (SBMA) is associated with a CAG repetition length of 40 or more.[25] Some studies indicate that the length of the polyglutamine tract is inversely correlated with transcriptional activity in the AR protein, and that longer polyglutamine tracts may be associated with male infertility [26][27][28] and undermasculinized genitalia in men.[29] However, other studies have indicated no such correlation exists.[30][31][32][33][34][35] A comprehensive meta-analysis of the subject published in 2007 supports the existence of the correlation, and concluded these discrepancies could be resolved when sample size and study design are taken into account.[11] Some studies suggest longer polyglycine tract lengths are also associated with genital masculinization defects in men.[36][37] Other studies find no such association.[38]

As of 2010, over 400 AR mutations have been reported in the AR mutation database, and the number continues to grow.[2] Inheritance is typically maternal and follows an X-linked recessive pattern;[1][39] individuals with a 46,XY karyotype always express the mutant gene since they have only one X chromosome, whereas 46,XX carriers are minimally affected. About 30% of the time, the AR mutation is a spontaneous result, and is not inherited.[10] Such de novo mutations are the result of a germ cell mutation or germ cell mosaicism in the gonads of one of the parents, or a mutation in the fertilized egg itself.[40] In one study,[41] three of eight de novo mutations occurred in the postzygotic stage, leading to the estimate that up to one-third of de novo mutations result in somatic mosaicism.[1] Not every mutation of the AR gene results in androgen insensitivity; one particular mutation occurs in 8 to 14% of genetic males,[42][43][44][45] and is thought to adversely affect only a small number of individuals when other genetic factors are present.[46]

Some individuals with CAIS or PAIS do not have any AR mutations despite clinical, hormonal, and histological features sufficient to warrant an AIS diagnosis; up to 5% of women with CAIS do not have an AR mutation,[2] as well as between 27[6][47] and 72%[48] of individuals with PAIS.

In one patient, the underlying cause for presumptive PAIS was a mutant steroidogenic factor-1 (SF-1) protein.[49] In another patient, CAIS was the result of a deficit in the transmission of a transactivating signal from the N-terminal region of the normal androgen receptor to the basal transcription machinery of the cell.[50] A coactivator protein interacting with the activation function 1 (AF-1) transactivation domain of the androgen receptor may have been deficient in this patient.[50] The signal disruption could not be corrected by supplementation with any coactivators known at the time, nor was the absent coactivator protein characterized, which left some in the field unconvinced that a mutant coactivator would explain the mechanism of androgen resistance in CAIS or PAIS patients with a normal AR gene.[1]

Depending on the mutation, a person with a 46,XY karyotype and AIS can have either a male (MAIS) or female (CAIS) phenotype,[51] or may have genitalia that are only partially masculinized (PAIS).[52] The gonads are testes regardless of phenotype due to the influence of the Y chromosome.[53][54] A 46,XY female, thus, does not have ovaries or a uterus,[55] and can neither contribute an egg towards conception nor gestate a child.

Several case studies of fertile 46,XY males with AIS have been published,[4][56][57][58][59] although this group is thought to be a minority.[13] Additionally, some infertile males with MAIS have been able to conceive children after increasing their sperm count through the use of supplementary testosterone.[1][60] A genetic male conceived by a man with AIS would not receive his father's X chromosome, thus would neither inherit nor carry the gene for the syndrome. A genetic female conceived in such a way would receive her father's X chromosome, thus would become a carrier.

Genetic females (46,XX karyotype) have two X chromosomes, thus have two AR genes. A mutation in one (but not both) results in a minimally affected, fertile, female carrier. Some carriers have been noted to have slightly reduced body hair, delayed puberty, and/or tall stature, presumably due to skewed X-inactivation.[3][4] A female carrier will pass the affected AR gene to her children 50% of the time. If the affected child is a genetic female, she, too, will be a carrier. An affected 46,XY child will have AIS.

A genetic female with mutations in both AR genes could theoretically result from the union of a fertile man with AIS and a female carrier of the gene, or from de novo mutation. However, given the scarcity of fertile AIS men and low incidence of AR mutation, the chances of this occurrence are small. The phenotype of such an individual is a matter of speculation; as of 2010, no such documented case has been published.

Individuals with partial AIS, unlike those with the complete or mild forms, present at birth with ambiguous genitalia, and the decision to raise the child as male or female is often not obvious.[1][40][61] Unfortunately, little information regarding phenotype can be gleaned from precise knowledge of the AR mutation itself; the same AR mutation may cause significant variation in the degree of masculinization in different individuals, even among members of the same family.[1][39][52][62][63][64][65][66][67][68] Exactly what causes this variation is not entirely understood, although factors contributing to it could include the lengths of the polyglutamine and polyglycine tracts,[69] sensitivity to and variations in the intrauterine endocrine milieu,[52] the effect of coregulatory proteins active in Sertoli cells,[21][70] somatic mosaicism,[1] expression of the 5RD2 gene in genital skin fibroblasts,[62] reduced AR transcription and translation from factors other than mutations in the AR coding region,[71] an unidentified coactivator protein,[50] enzyme deficiencies such as 21-hydroxylase deficiency,[4] or other genetic variations such as a mutant steroidogenic factor-1 protein.[49] The degree of variation, however, does not appear to be constant across all AR mutations, and is much more extreme in some.[1][4][46][52] Missense mutations that result in a single amino acid substitution are known to produce the most phenotypic diversity.[2]

The effects that androgens have on the human body (virilization, masculinization, anabolism, etc.) are not brought about by androgens themselves, but rather are the result of androgens bound to androgen receptors; the androgen receptor mediates the effects of androgens in the human body.[73] Likewise, under normal circumstances, the androgen receptor itself is inactive in the cell until androgen binding occurs.[3]

The following series of steps illustrates how androgens and the androgen receptor work together to produce androgenic effects:[1][2][3][13][18][74][75]

In this way, androgens bound to androgen receptors regulate the expression of target genes, thus produce androgenic effects.

Theoretically, certain mutant androgen receptors can function without androgens; in vitro studies have demonstrated that a mutant androgen receptor protein can induce transcription in the absence of androgen if its steroid binding domain is deleted.[76][77] Conversely, the steroid-binding domain may act to repress the AR transactivation domain, perhaps due to the AR's unliganded conformation.[3]

Human embryos develop similarly for the first six weeks, regardless of genetic sex (46,XX or 46,XY karyotype); the only way to tell the difference between 46,XX or 46,XY embryos during this time period is to look for Barr bodies or a Y chromosome.[79] The gonads begin as bulges of tissue called the genital ridges at the back of the abdominal cavity, near the midline. By the fifth week, the genital ridges differentiate into an outer cortex and an inner medulla, and are called indifferent gonads.[79] By the sixth week, the indifferent gonads begin to differentiate according to genetic sex. If the karyotype is 46,XY, testes develop due to the influence of the Y chromosomes SRY gene.[53][54] This process does not require the presence of androgen, nor a functional androgen receptor.[53][54]

Until around the seventh week of development, the embryo has indifferent sex accessory ducts, which consist of two pairs of ducts: the Mllerian ducts and the Wolffian ducts.[79] Sertoli cells within the testes secrete anti-Mllerian hormone around this time to suppress the development of the Mllerian ducts, and cause their degeneration.[79] Without this anti-Mllerian hormone, the Mllerian ducts develop into the female internal genitalia (uterus, cervix, fallopian tubes, and upper vaginal barrel).[79] Unlike the Mllerian ducts, the Wolffian ducts will not continue to develop by default.[80] In the presence of testosterone and functional androgen receptors, the Wolffian ducts develop into the epididymides, vasa deferentia, and seminal vesicles.[79] If the testes fail to secrete testosterone, or the androgen receptors do not function properly, the Wolffian ducts degenerate.[81]

Masculinization of the male external genitalia (the penis, penile urethra, and scrotum), as well as the prostate, are dependent on the androgen dihydrotestosterone.[82][83][84][85] Testosterone is converted into dihydrotestosterone by the 5-alpha reductase enzyme.[86] If this enzyme is absent or deficient, then dihydrotestosterone is not created, and the external male genitalia do not develop properly.[82][83][84][85][86] As is the case with the internal male genitalia, a functional androgen receptor is needed for dihydrotestosterone to regulate the transcription of target genes involved in development.[73]

Mutations in the androgen receptor gene can cause problems with any of the steps involved in androgenization, from the synthesis of the androgen receptor protein itself, through the transcriptional ability of the dimerized, androgen-AR complex.[3] AIS can result if even one of these steps is significantly disrupted, as each step is required for androgens to activate the AR successfully and regulate gene expression.[3] Exactly which steps a particular mutation will impair can be predicted, to some extent, by identifying the area of the AR in which the mutation resides. This predictive ability is primarily retrospective in origin; the different functional domains of the AR gene have been elucidated by analyzing the effects of specific mutations in different regions of the AR.[3] For example, mutations in the steroid binding domain have been known to affect androgen binding affinity or retention, mutations in the hinge region have been known to affect nuclear translocation, mutations in the DNA-binding domain have been known to affect dimerization and binding to target DNA, and mutations in the transactivation domain have been known to affect target gene transcription regulation.[3][80] Unfortunately, even when the affected functional domain is known, predicting the phenotypical consequences of a particular mutation (see Correlation of genotype and phenotype) is difficult.

Some mutations can adversely impact more than one functional domain. For example, a mutation in one functional domain can have deleterious effects on another by altering the way in which the domains interact.[80] A single mutation can affect all downstream functional domains if a premature stop codon or framing error results; such a mutation can result in a completely unusable (or unsynthesizable) androgen receptor protein.[3] The steroid binding domain is particularly vulnerable to the effects of a premature stop codon or framing error, since it occurs at the end of the gene, and its information is thus more likely to be truncated or misinterpreted than other functional domains.[3]

Other, more complex relationships have been observed as a consequence of mutated AR; some mutations associated with male phenotypes have been linked to male breast cancer, prostate cancer, or in the case of spinal and bulbar muscular atrophy, disease of the central nervous system.[9][23][87][88][89] The form of breast cancer seen in some men with PAIS is caused by a mutation in the AR's DNA-binding domain.[87][89] This mutation is thought to cause a disturbance of the AR's target gene interaction that allows it to act at certain additional targets, possibly in conjunction with the estrogen receptor protein, to cause cancerous growth.[3] The pathogenesis of spinal and bulbar muscular atrophy (SBMA) demonstrates that even the mutant AR protein itself can result in pathology. The trinucleotide repeat expansion of the polyglutamine tract of the AR gene that is associated with SBMA results in the synthesis of a misfolded AR protein that the cell fails to proteolyze and disperse properly.[90] These misfolded AR proteins form aggregates in the cell cytoplasm and nucleus.[90] Over the course of 30 to 50 years, these aggregates accumulate and have a cytotoxic effect, eventually resulting in the neurodegenerative symptoms associated with SBMA.[90]

The phenotypes that result from the insensitivity to androgens are not unique to AIS, thus the diagnosis of AIS requires thorough exclusion of other causes.[14][64] Clinical findings indicative of AIS include the presence of a short vagina [91] or undermasculinized genitalia,[1][63][82] partial or complete regression of Mllerian structures,[92] bilateral nondysplastic testes,[93] and impaired spermatogenesis and/or virilization.[1][5][6][9] Laboratory findings include a 46,XY karyotype[2] and normal or elevated postpubertal testosterone, luteinizing hormone, and estradiol levels.[2][14] The androgen binding activity of genital skin fibroblasts is typically diminished,[3][94] although exceptions have been reported.[95] Conversion of testosterone to dihydrotestosterone may be impaired.[3] The diagnosis of AIS is confirmed if androgen receptor gene sequencing reveals a mutation, although not all individuals with AIS (particularly PAIS) will have an AR mutation (see Other Causes).[2][6][47][48]

Each of the three types of AIS (complete, partial, and mild) has a different list of differential diagnoses to consider.[1] Depending on the form of AIS suspected, the list of differentials can include:[53][54][96][97][98]

AIS is broken down into three classes based on phenotype: complete androgen insensitivity syndrome (CAIS), partial androgen insensitivity syndrome (PAIS), and mild androgen insensitivity syndrome (MAIS).[1][2][5][6][7][10][11][12][13] A supplemental system of phenotypic grading that uses seven classes instead of the traditional three was proposed by pediatric endocrinologist Charmian A. Quigley et al. in 1995.[3] The first six grades of the scale, grades 1 through 6, are differentiated by the degree of genital masculinization; grade 1 is indicated when the external genitalia is fully masculinized, grade 6 is indicated when the external genitalia is fully feminized, and grades 2 through 5 quantify four degrees of decreasingly masculinized genitalia that lie in the interim.[3] Grade 7 is indistinguishable from grade 6 until puberty, and is thereafter differentiated by the presence of secondary terminal hair; grade 6 is indicated when secondary terminal hair is present, whereas grade 7 is indicated when it is absent.[3] The Quigley scale can be used in conjunction with the traditional three classes of AIS to provide additional information regarding the degree of genital masculinization, and is particularly useful when the diagnosis is PAIS.[2][99]

Management of AIS is currently limited to symptomatic management; no method is currently available to correct the malfunctioning androgen receptor proteins produced by AR gene mutations. Areas of management include sex assignment, genitoplasty, gonadectomy in relation to tumor risk, hormone replacement therapy, genetic counseling, and psychological counseling.

Estimates for the incidence of androgen insensitivity syndrome are based on a relatively small population size, thus are known to be imprecise.[1] CAIS is estimated to occur in one of every 20,400 46,XY births.[100] A nationwide survey in the Netherlands based on patients with genetic confirmation of the diagnosis estimates that the minimal incidence of CAIS is one in 99,000.[62] The incidence of PAIS is estimated to be one in 130,000.[101] Due to its subtle presentation, MAIS is not typically investigated except in the case of male infertility,[82] thus its true prevalence is unknown.[2]

Preimplantation genetic diagnosis (PGD or PIGD) refers to genetic profiling of embryos prior to implantation (as a form of embryo profiling), and sometimes even of oocytes prior to fertilization. When used to screen for a specific genetic sequence, its main advantage is that it avoids selective pregnancy termination, as the method makes it highly likely that a selected embryo will be free of the condition under consideration.

In the UK, AIS appears on a list of serious genetic diseases that may be screened for via PGD.[102] Some ethicists, clinicians, and intersex advocates have argued that screening embryos to specifically exclude intersex traits are based on social and cultural norms as opposed to medical necessity.[103][104][105][106][107]

Recorded descriptions of the effects of AIS date back hundreds of years, although significant understanding of its underlying histopathology did not occur until the 1950s.[1] The taxonomy and nomenclature associated with androgen insensitivity went through a significant evolution that paralleled this understanding.

The first descriptions of the effects of AIS appeared in the medical literature as individual case reports or as part of a comprehensive description of intersex physicalities. In 1839, Scottish obstetrician Sir James Young Simpson published one such description[117] in an exhaustive study of intersexuality that has been credited with advancing the medical community's understanding of the subject.[118] Simpson's system of taxonomy, however, was far from the first; taxonomies or descriptions for the classification of intersexuality were developed by Italian physician and physicist Fortun Affaitati in 1549,[119][120] French surgeon Ambroise Par in 1573,[118][121] French physician and sexology pioneer Nicolas Venette in 1687 (under the pseudonym Vnitien Salocini),[122][123] and French zoologist Isidore Geoffroy Saint-Hilaire in 1832.[124] All five of these authors used the colloquial term "hermaphrodite" as the foundation of their taxonomies, although Simpson himself questioned the propriety of the word in his publication.[117] Use of the word "hermaphrodite" in the medical literature has persisted to this day,[125][126] although its propriety is still in question. An alternative system of nomenclature has been recently suggested,[127] but the subject of exactly which word or words should be used in its place still one of much debate.[97][128][129][130][131]

"Pseudohermaphroditism" has, until very recently,[127] been the term used in the medical literature to describe the condition of an individual whose gonads and karyotype do not match the external genitalia in the gender binary sense. For example, 46,XY individuals who have a female phenotype, but also have testes instead of ovaries a group that includes all individuals with CAIS, as well as some individuals with PAIS are classified as having "male pseudohermaphroditism", while individuals with both an ovary and a testis (or at least one ovotestis) are classified as having "true hermaphroditism".[126][127] Use of the word in the medical literature antedates the discovery of the chromosome, thus its definition has not always taken karyotype into account when determining an individual's sex. Previous definitions of "pseudohermaphroditism" relied on perceived inconsistencies between the internal and external organs; the "true" sex of an individual was determined by the internal organs, and the external organs determined the "perceived" sex of an individual.[117][124]

German-Swiss pathologist Edwin Klebs is sometimes noted for using the word "pseudohermaphroditism" in his taxonomy of intersexuality in 1876,[133] although the word is clearly not his invention as is sometimes reported; the history of the word "pseudohermaphrodite" and the corresponding desire to separate "true" hermaphrodites from "false", "spurious", or "pseudo" hermaphrodites, dates back to at least 1709, when Dutch anatomist Frederik Ruysch used it in a publication describing a subject with testes and a mostly female phenotype.[132] "Pseudohermaphrodite" also appeared in the Acta Eruditorum later that same year, in a review of Ruysch's work.[134] Also some evidence indicates the word was already being used by the German and French medical community long before Klebs used it; German physiologist Johannes Peter Mller equated "pseudohermaphroditism" with a subclass of hermaphroditism from Saint-Hilaire's taxonomy in a publication dated 1834,[135] and by the 1840s "pseudohermaphroditism" was appearing in several French and German publications, including dictionaries.[136][137][138][139]

In 1953, American gynecologist John Morris provided the first full description of what he called "testicular feminization syndrome" based on 82 cases compiled from the medical literature, including two of his own patients.[1][3][140] The term "testicular feminization" was coined to reflect Morris' observation that the testicles in these patients produced a hormone that had a feminizing effect on the body, a phenomenon now understood to be due to the inaction of androgens, and subsequent aromatization of testosterone into estrogen.[1] A few years before Morris published his landmark paper, Lawson Wilkins had shown through experiment that unresponsiveness of the target cell to the action of androgenic hormones was a cause of "male pseudohermaphroditism".[64][108] Wilkins' work, which clearly demonstrated the lack of a therapeutic effect when 46,XY women were treated with androgens, caused a gradual shift in nomenclature from "testicular feminization" to "androgen resistance".[82]

A distinct name has been given to many of the various presentations of AIS, such as Reifenstein syndrome (1947),[141] Goldberg-Maxwell syndrome (1948),[142] Morris' syndrome (1953),[140] Gilbert-Dreyfus syndrome (1957),[143] Lub's syndrome (1959),[144] "incomplete testicular feminization" (1963),[145] Rosewater syndrome (1965),[146] and Aiman's syndrome (1979).[147] Since it was not understood that these different presentations were all caused by the same set of mutations in the androgen receptor gene, a unique name was given to each new combination of symptoms, resulting in a complicated stratification of seemingly disparate disorders.[64][148]

Over the last 60 years, as reports of strikingly different phenotypes were reported to occur even among members of the same family, and as steady progress was made towards the understanding of the underlying molecular pathogenesis of AIS, these disorders were found to be different phenotypic expressions of one syndrome caused by molecular defects in the androgen receptor gene.[1][13][64][148]

AIS is now the accepted terminology for the syndromes resulting from unresponsiveness of the target cell to the action of androgenic hormones.[1] CAIS encompasses the phenotypes previously described by "testicular feminization", Morris' syndrome, and Goldberg-Maxwell syndrome;[1][149] PAIS includes Reifenstein syndrome, Gilbert-Dreyfus syndrome, Lub's syndrome, "incomplete testicular feminization", and Rosewater syndrome;[148][150][151] and MAIS includes Aiman's syndrome.[152]

The more virilized phenotypes of AIS have sometimes been described as "undervirilized male syndrome", "infertile male syndrome", "undervirilized fertile male syndrome", etc., before evidence was reported that these conditions were caused by mutations in the AR gene.[58] These diagnoses were used to describe a variety of mild defects in virilization; as a result, the phenotypes of some men who have been diagnosed as such are better described by PAIS (e.g. micropenis, hypospadias, and undescended testes), while others are better described by MAIS (e.g. isolated male infertility or gynecomastia).[1][58][59][151][153][154]

In the film Orchids, My Intersex Adventure, Phoebe Hart and her sister Bonnie Hart, both women with CAIS, documented their exploration of AIS and other intersex issues.[155]

Recording artist Dalea is a Hispanic-American Activist who is public about her CAIS. She has given interviews about her condition[156][157] and founded "Girl Comet, a non-profit diversity awareness and inspiration initiative.[158]

In 2017, fashion model Hanne Gaby Odiele disclosed that she was born with the intersex trait androgen insensitivity syndrome. As a child, she underwent medical procedures relating to her condition,[159] which she said took place without her or her parents' informed consent.[160] She was told about her intersex condition weeks before beginning her modelling career.[160]

In the 1991 Japanese horror novel Ring, by Koji Suzuki (later adapted into Japanese, Korean, and American films), the central antagonist Sadako has this syndrome.

In season 2, episode 13 ("Skin Deep") of the TV series House, the main patient's cancerous testicle is mistaken for an ovary due to the patient's undiscovered CAIS.

In season 2 of the MTV series Faking It, a character has CAIS. The character, Lauren Cooper, played by Bailey De Young, was the first intersex series regular on American television.[161][162]

In season 8, episode 11 ("Delko for the Defense") of the TV series CSI: Miami, the primary suspect has AIS which gets him off a rape charge.

In series 8, episode 5 of Call the Midwife, a woman discovers that she has AIS. She attends a cervical smear and brings up that she has never had a period, and is concerned about having children as she is about to be married. She is then diagnosed with "testicular feminisation syndrome", the old term for AIS. [163]

View post:
Androgen insensitivity syndrome - Wikipedia

Recommendation and review posted by Bethany Smith

New Jersey Hormone Therapy Centers – Growth Hormone

Doctor Certified Testosterone Replacement Therapy, HGH and Hormone Optimization Treatments in New Jersey: New Brunswick, East Brunswick, Camden, andCranberry. We have locations in Jersey City, Newark, Atlantic City, Hoboken, Morristown, Alpine and Elizabeth. Also in Hackensack, Trenton, Parsippany, Secaucus, and in North Bergen.New Jersey Testosterone Replacement Therapy, HGH and HRT TherapyHormone Replacement and Testosterone Therapy Doctors in New Jersey

You can age optimally with medically supervised interventional wellness programs such as:

-- Are you feeling as strong and vital as you did in your 20s or 30s? -- Do you have the energy you once had? -- The body? -- The sex life? -- Would you like to look and feel that way again?

You can with testosterone replacement, HGH therapy, and Hormone Optimization.

Hormones are a key part of the way your body functions. They are the chemical messengers secreted by the many glands of the endocrine system, and carried by the blood stream that stimulate and regulate most body processes.

Hormones are responsible for:

As you age all hormone levels decline, but the loss of testosterone and human growth hormone (HGH), have the greatest impact on your vitality, health, and sexual wellness.

The decline of testosterone that begins after you reach your peak testosterone levels in your 20s, in particular, effects your ability to perform in, and out of the bedroom!

Low testosterone in men, also referred to as Low-T, causes a number of symptoms we commonly attribute to aging. These include: thinning hair, weight gain, fatigue, loss of muscle tone, depression, and sexual wellness issues.

Bioidentical Hormone Therapy for men, and HGH Therapy can help with these symptoms and put you back on your path to peak performance at any age.

Hormone replacement therapy, or HRT, as the name implies, is all about renewing vitality by giving you back what age takes away.

Biologically speaking, hormones stimulate, facilitate, or regulate almost all of your bodily functions. Your body naturally produces and replaces hormones as needed. However, its ability to do so is not unlimited. As we age, our ability to produce hormones decreases. In particular are the hormones associated with sexual function and youthful vitality.

Dr. Richard Gaines, who supervises all of our New Jersey Testosterone Replacement Clinics, is a pioneer in the use of Bioidentical Testosterone Replacement Therapy for men. Dr. Gaines was one of the first physicians in New Jersey to recognize the condition of andropause also known as male menopause and how testosterone replacement can be used to treat it. In fact, he literally wrote the book, on optimal aging.

In very general terms, the symptoms of a hormone deficiency affect three areas: mental health, physical health and sexual health. In many cases you may be experiencing all or some of these symptoms, and you may be deficient in more than one hormone.

Typical symptoms of less-then-optimal hormone levels include:

At New Jersey Hormone Therapy Centers we have helped hundreds of men just like you overcome the issues of decreased hormone with the best quality service and most competitive pricing on doctor certified Hormone Replacement (HRT) Therapy including Bioidentical Hormone Replacement (BHRT) for men, Testosterone replacement, and HGH replacement.

Contact us today to find our Hormone Lab Testing facilities throughout New Jersey and to see if any of our anti-aging and hormone optimization programs using Testosterone, HGH, Sermorelin, Thyroid replacement, and/or PRP for sexual wellness are right for you. If you live in Newark, New Brunswick, Princeton, or around the City of Trenton, we have a hormone optimization specialist that is in your area.

At New Jersey HealthGains hormone replacement centers we are pioneers and experts in testosterone, hormone optimization, PRP, Platelet Rich Plasma, and HGH replacement therapy.

We customize your anti-aging and hormone optimization plans to your particular needs and lifestyle.Your testosterone, HGH (IGF-1) levels and otherhormone levels will be thoroughly tested for any imbalances or deficiencies. Low Testosterone, Low-T, andropause, male menopause as well as Human Growth Hormone Deficiency are legitimate medical health conditions that require proper diagnosis and treatment.

The Hormone Optimization medical specialists at New Jersey Optimal Aging Centers are certified professionals. Not all physicians or general practitioners have equal training or understanding of bio-identical hormone therapy (BHRT), or our expertise in diagnosing and developing treatment plans for men with low testosterone and/or HGH deficiencies. At our Testosterone Replacement and HGH Optimization centers our doctors have the knowledge and the know-how to help you age well through hormone optimization.

New Jersey Hormone Therapy Centers has testosterone replacement and optimal aging clinics throughout New Jersey, including: Trenton, Newark, Camden, Jersey City, Hampton, Alpine, Secaucus, and Elizabeth. Found us inFort Lee or Cherry Hill. We have locations inAtlantic City, North Bergen Hackensack, Parsippany, Arlington, and Hoboken.

Testosterone and male enhancement, male enhancement and testosterone, testosterone and penis size, penis size and testosterone, Erectile dysfunction, erectile dysfunction cures, issues of erectile dysfunction, HGH, HRT therapy, hormone therapy for men, hormone replacement therapy, testosterone optimization, testosterone levels, HCG, HGH Diet, low testosterone, low testosterone symptoms, LowT, Low-T, low-T, penis enlargement, Priapus shot, andropause, male menopause, hormones for men, increase libido medically, medical treatments for Low-T, doctors who treat erectile dysfunction, Physicians specializing in Testosterone, medical treatments for testosterone, testosterones doctors, who fixes low testosterone, testosterone help, help with Low-T, medical male enhancement.

Common New Jersey Testosterone Searches: New Jersey Hormone Optimization, Testosterone Treatment NJ, penis enlargement in Trenton, California Male Clinic, Anti-aging in New Jersey, male enhancement California, Testosterone Therapies New Jersey, testosterone and penis size NJ, penis size and testosterone NJ, Erectile Dysfunction Clinic California, Mens Testosterone Clinic New Jersey, erectile dysfunction cures NJ, HGH in New Brunswick, HRT therapy Ft. Lee, hormone therapy Hoboken, Hormones for men NJ, East Brunswick, hormone replacement therapy, California testosterone optimization, testosterone levels, HCG, HGH Diet Providers New Jersey, low testosterone California, testosterone symptoms NJ, Low-T treatment New Jersey, California Low-T, penis enlargement New Jersey, Jersey Shore Priapus shot, hormones NJ, male hormones NJ.

When it comes to the production of testosterone, most men hit their peak around the age of 17. By the time you reach 80,your testosterone level will likely be about half of what it was when you were atyour peak. For some men, the decrease in production has little effect. But for many men, as you hit your 50s, 60s and older, you may actually start to feel the impact of the reduced level, experiencing low testosterone or Low-T.

Symptoms of Low-T include reduction of libido or sex drive, a feeling of reduced virility or vitality, changes in mood, erectile dysfunction, decreased energy, reduced muscle and bone mass, and memory issues.

If you are a man over 40, and you are experiencing any of these, you may have low testosterone. However, the only way to truly determine if you have an imbalance of one or more hormones related to your vitality, is with proper diagnosis and analysis.

All of our hormone optimization programs are overseen by Dr. Richard Gaines, a world-renowned leader in the field of hormone replacement therapy for men.

Call HealthGains (800) 325-1325 to find out if testosterone replacement, HGH treatments, or any of our other Hormone Optimization, or Hormone Replacement Therapies are right for you.

Continue reading here:
New Jersey Hormone Therapy Centers - Growth Hormone

Recommendation and review posted by Bethany Smith

What is cryonics? – Cryogenics Human & Pet Freezing for …

Cryonics is an effort to save lives by using temperatures so cold that a person beyond help by today's medicine might be preserved for decades or centuries until a future medical technology can restore that person to full health. Cryonics is a second chance at life. It is the reasoned belief in the advancement of future medicinal technologies being able to cure things we cant today.

Many biological specimens, including whole insects, many types of human tissue including brain tissue, and human embryos have been cryogenically preserved, stored at liquid nitrogen temperature where all decay ceases, and revived. This leads scientists to believe that the same can be done with whole human bodies, and that any minimal harm can be reversed with future advancements in medicine.

Neurosurgeons often cool patients bodies so they can operate on aneurysms without damaging or rupturing the nearby blood vessels. Human embryos that are frozen in fertility clinics, defrosted, and implanted in a mothers uterus grow into perfectly normal human beings. This method isnt new or groundbreaking- successful cryopreservation of human embryos was first reported in 1983 by Trounson and Mohr with multicellular embryos that had been slow-cooled using dimethyl sulphoxide (DMSO).

And just in Feb. of 2016, there was a cryonics breakthrough when for the first time, scientists vitrified a rabbits brain and, after warming it back up, showed that it was in near perfect condition. This was the first time a cryopreservation was provably able to protect everything associated with learning and memory.

Read more:
What is cryonics? - Cryogenics Human & Pet Freezing for ...

Recommendation and review posted by Bethany Smith

Embryo stem cells created from skin cells Scope of …

These are 4-cell stage mouse embryos.

Researchers have found a way to transform skin cells into the three major stem cell types that comprise early-stage embryos. The work (in mouse cells) has significant implications for modeling embryonic disease and placental dysfunctions, as well as paving the way to create whole embryos from skin cells.

Researchers at the Hebrew University of Jerusalem (HU) have found a way to transform skin cells into the three major stem cell types that comprise early-stage embryos. The work (in mouse cells) has significant implications for modelling embryonic disease and placental dysfunctions, as well as paving the way to create whole embryos from skin cells.

As published in Cell Stem Cell, Dr. Yossi Buganim of HUs Department of Developmental Biology and Cancer Research and his team discovered a set of genes capable of transforming murine skin cells into all three of the cell types that comprise the early embryo: the embryo itself, the placenta and the extra-embryonic tissues, such as the umbilical cord. In the future, it may be possible to create entire human embryos out of human skin cells, without the need for sperm or eggs. This discovery also has vast implications for modelling embryonic defects and shedding light on placental dysfunctions, as well as solving certain infertility problems by creating human embryos in a petri dish.

Back in 2006, Japanese researchers discovered the capacity of skin cells to be reprogrammed into early embryonic cells that can generate an entire fetus, by expressing four central embryonic genes. These reprogrammed skin cells, termed Induced Plutipotent Stem Cells (iPSCs), are similar to cells that develop in the early days after fertilization and are essentially identical to their natural counterparts. These cells can develop into all fetal cell types, but not into extra-embryonic tissues, such as the placenta.

Now, the Hebrew University research team, headed by Dr. Yossi Buganim, Dr. Oren Ram from the HUs Institute of Life Science and Professor Tommy Kaplan from HUs School of Computer Science and Engineering, as well as doctoral students Hani Benchetrit and Mohammad Jaber, found a new combination of five genes that, when inserted into skin cells, reprogram the cells into each of three early embryonic cell types iPS cells which create fetuses, placental stem cells, and stem cells that develop into other extra-embryonic tissues, such as the umbilical cord. These transformations take about one month.

The HU team used new technology to scrutinize the molecular forces that govern cell fate decisions for skin cell reprogramming and the natural process of embryonic development. For example, the researchers discovered that the gene Eomes pushes the cell towards placental stem cell identity and placental development, while the Esrrb gene orchestrates fetus stem cells development through the temporary acquisition of an extrae-mbryonic stem cell identity.

To uncover the molecular mechanisms that are activated during the formation of these various cell types, the researchers analyzed changes to the genome structure and function inside the cells when the five genes are introduced into the cell. They discovered that during the first stage, skin cells lose their cellular identity and then slowly acquire a new identity of one of the three early embryonic cell types, and that this process is governed by the levels of two of the five genes.

Recently, attempts have been made to develop an entire mouse embryo without using sperm or egg cells. These attempts used the three early cell types isolated directly from a live, developing embryo. However, HUs study is the first attempt to create all three main cell lineages at once from skin cells. Further, these findings mean there may be no need to sacrifice a live embryo to create a test tube embryo.

Like Loading...

Related

Read the original post:
Embryo stem cells created from skin cells Scope of ...

Recommendation and review posted by Bethany Smith

Could skin-related stem cells help in treating …

UMSOM Researchers Discovered that Pigment-Producing Stem Cells Can Help Regenerate Vital Part of Nervous System

Neurodegenerative diseases like multiple sclerosis (MS) affect millions of people worldwide and occur when parts of the nervous system lose function over time. Researchers at the University of Maryland School of Medicine (UMSOM) have discovered that a type of skin-related stem cell could be used to help regenerate myelin sheaths, a vital part of the nervous system linked to neurodegenerative disorders.

The discovery into these types of stem cells is significant because they could offer a simpler and less invasive alternative to using embryonic stem cells. This early stage research showed that by using these skin-related stem cells, researchers were able to restore myelin sheath formation in mice.

This research enhances the possibility of identifying human skin stem cells that can be isolated, expanded, and used therapeutically. In the future, we plan to continue our research in this area by determining whether these cells can enhance functional recovery from neuronal injury, saidThomas J. Hornyak, MD, PhD, Associate Professor and Chairman of theDepartment of Dermatology, and Principal Investigator in this research. In the future, we plan to continue our research in this area by determining whether these cells can enhance functional recovery from neuronal injury.

Using a mouse model, Dr. Hornyaks team of researchers discovered a way to identify a specific version of a cell known as a melanocyte stem cell. These are the precursor cells to the cells in skin and hair follicles that make a pigment know as melanin, which determines the color of skin and hair. These melanocyte stem cells have the ability to continue to divide without limit, which is a trait that is not shared by other cells in the body. Additionally, the researchers discovered that these stem cells can make different types of cells depending on the type of signals they receive. This research was published inPLoS Genetics.

Importantly, unlike the embryonic stem cell, which must be harvested from an embryo, melanocyte stem cells can be harvested in a minimally-invasive manner from skin.

Dr. Hornyaks research team found a new way to not only identify the right kind of melanocyte stem cells, but also the potential applications for those suffering from neurodegenerative disorders. By using a protein marker that is only found on these specialized cells, Dr. Hornyaks research group was able to isolate this rare population of stem cells from the majority of the cells that make up skin. Additionally, they found that there exist two different types of melanocyte stem cells, which helped in determining the type of cells they could create.

Using this knowledge, the UMSOM researchers determined that under the right conditions, these melanocyte stem cells could function as cells that produce myelin, the major component of a structure known as the myelin sheath, which protects neurons and is vital to the function of our nervous system. Some neurodegenerative diseases, like multiple sclerosis, are caused by the loss of these myelin-producing, or glial, cells which ultimately lead to irregular function of the neurons and ultimately a failure of our nervous system to function correctly.

Dr. Hornyak and members of his laboratory grew melanocyte stem cells with neurons isolated from mice that could not make myelin. They discovered that these stem cells behaved like a glial cell under these conditions. These cells ultimately formed a myelin sheath around the neurons that resembled structures of a healthy nerve cell. When they took this experiment to a larger scale, in the actual mouse, the researchers found that mice treated with these melanocyte stem cells had myelin sheath structures in the brain as opposed to untreated mice who lacked these structures.

This research holds promise for treating serious neurodegenerative diseases that impact millions of people each year. Our researchers at the University of Maryland School of Medicine have discovered what could be a critical and non-invasive way to use stem cells as a therapy for these diseases,said UMSOM Dean,E. Albert Reece, MD, PhD, MBA, Executive Vice President for Medical Affairs, UM Baltimore, and the John Z. and Akiko K. Bowers Distinguished Professor.

Learn more: UMSOM Researchers Discover Certain Skin-Related Stem Cells Could Help in Treating Neurogenerative Diseases

viaGoogle News

via Bing News

Like Loading...

Read the original here:
Could skin-related stem cells help in treating ...

Recommendation and review posted by Bethany Smith

Embryo stem cells created from skin cells | SciSeek

Researchers at the Hebrew University of Jerusalem (HU) have found a way to transform skin cells into the three major stem cell types that comprise early-stage embryos. The work (in mouse cells) has significant implications for modelling embryonic disease and placental dysfunctions, as well as paving the way to create whole embryos from skin cells.

As published in Cell Stem Cell, Dr. Yossi Buganim of HUs Department of Developmental Biology and Cancer Research and his team discovered a set of genes capable of transforming murine skin cells into all three of the cell types that comprise the early embryo: the embryo itself, the placenta and the extra-embryonic tissues, such as the umbilical cord. In the future, it may be possible to create entire human embryos out of human skin cells, without the need for sperm or eggs. This discovery also has vast implications for modelling embryonic defects and shedding light on placental dysfunctions, as well as solving certain infertility problems by creating human embryos in a petri dish.

Back in 2006, Japanese researchers discovered the capacity of skin cells to be reprogrammed into early embryonic cells that can generate an entire fetus, by expressing four central embryonic genes. These reprogrammed skin cells, termed Induced Plutipotent Stem Cells (iPSCs), are similar to cells that develop in the early days after fertilization and are essentially identical to their natural counterparts. These cells can develop into all fetal cell types, but not into extra-embryonic tissues, such as the placenta.

Now, the Hebrew University research team, headed by Dr. Yossi Buganim, Dr. Oren Ram from the HUs Institute of Life Science and Professor Tommy Kaplan from HUs School of Computer Science and Engineering, as well as doctoral students Hani Benchetrit and Mohammad Jaber, found a new combination of five genes that, when inserted into skin cells, reprogram the cells into each of three early embryonic cell types iPS cells which create fetuses, placental stem cells, and stem cells that develop into other extra-embryonic tissues, such as the umbilical cord. These transformations take about one month.

The HU team used new technology to scrutinize the molecular forces that govern cell fate decisions for skin cell reprogramming and the natural process of embryonic development. For example, the researchers discovered that the gene Eomes pushes the cell towards placental stem cell identity and placental development, while the Esrrb gene orchestrates fetus stem cells development through the temporary acquisition of an extrae-mbryonic stem cell identity.

To uncover the molecular mechanisms that are activated during the formation of these various cell types, the researchers analyzed changes to the genome structure and function inside the cells when the five genes are introduced into the cell. They discovered that during the first stage, skin cells lose their cellular identity and then slowly acquire a new identity of one of the three early embryonic cell types, and that this process is governed by the levels of two of the five genes.

Recently, attempts have been made to develop an entire mouse embryo without using sperm or egg cells. These attempts used the three early cell types isolated directly from a live, developing embryo. However, HUs study is the first attempt to create all three main cell lineages at once from skin cells. Further, these findings mean there may be no need to sacrifice a live embryo to create a test tube embryo.

Story Source:

Materials provided by The Hebrew University of Jerusalem. Note: Content may be edited for style and length.

Read this article:
Embryo stem cells created from skin cells | SciSeek

Recommendation and review posted by Bethany Smith

‘Extraordinary’ tale: Stem cells heal a young boy’s lethal …

The complications of the little boys genetic skin disease grew as he did. Tiny blisters had covered his back as a newborn. Then came the chronic skin wounds that extended from his buttocks down to his legs.

By June 2015, at age 7, the boy had lost nearly two-thirds of his skin due to an infection related to the genetic disorder junctional epidermolysis bullosa, which causes the skin to become extremely fragile. Theres no cure for the disease, and it is often fatal for kids. At the burn unit at Childrens Hospital in Bochum, Germany, doctors offered him constant morphine and bandaged much of his body, but nothing not even his fathers offer to donate his skin worked to heal his wounds.

We were absolutely sure we could do nothing for this kid, Dr. Tobias Rothoeft, a pediatrician with Childrens Hospital in Bochum, which is affiliated with Ruhr University. [We thought] that he would die.

advertisement

As a last-ditch effort, the boys father asked if there were any available experimental treatments. The German doctors reached out to Dr. Michele De Luca, an Italian stem cell expert who heads the Center for Regenerative Medicine at the University of Modena and Reggio Emilia, to see if a transplant of genetically modified skin cells might be possible. De Luca knew the odds were against them such a transplant had only been performed twice in the past, and never on such a large portion of the body. But he said yes.

The doctors were ultimately able to reconstruct fully functional skin for 80 percent of the boys body by grafting on genetically modified cells taken from the boys healthy skin. The researchers say the results of this single-person clinical trial, published on Wednesday in Nature, show that transgenic stem cells can regenerate an entire tissue. De Luca told reporters the procedure not only offers hope to the 500,000 epidermolysis bullosa patients worldwide but also could offer a blueprint for using genetically modified stem cells to treat a variety of other diseases.

To cultivate replacement skin, the medical team took a biopsy the size of a matchbook from the boys healthy skin and sent it to De Lucas team in Italy. There, researchers cloned the skin cells and genetically modified them to have a healthy version of the gene LAMB3, responsible for making the protein laminin-332. They grew the corrected cultures into sheets, which they sent back to Germany. Then, over a series of three operations between October 2015 and January 2016, the surgical team attached the sheets on different parts of the boys body.

The gene-repaired skin took, and spread. Within just a month the wounds were islands within intact skin. The boy was sent home from the hospital in February 2016, and over the next 21 months, researchers said his skin healed normally. Unlike burn patients whose skin grafts arent created from genetically modified cells the boy wont need ointment for his skin and can regrow his hair.

And unlike simple grafts of skin from one body part to another, we had the opportunity to reproduce as much as those cells as we want, said plastic surgeon Dr. Tobias Hirsch, one of the studys authors. You can have double the whole body surface or even more. Thats a fantastic option for a surgeon to treat this child.

Dr. John Wagner, the director of the University of Minnesota Masonic Childrens Hospitals blood and marrow transplant program, told STAT the findings have extraordinary potential because, until now, the only stem cell transplants proven to work in humans was of hematopoietic stem cells those in blood and bone marrow.

Theyve proven that a stem cell is engraftable, Wagner said. In humans, what we have to demonstrate is that a parent cell is able to reproduce or self-renew, and differentiate into certain cell populations for that particular organ. This is the first indication that theres another stem cell population [beyond hematopoietic stem cells] thats able to do that.

The researchers said the aggressive treatment outlined in the study necessary in the case of the 7-year-old patient could eventually help other patients in less critical condition. One possibility, they noted in the paper, was to bank skin samples from infants with JEB before they develop symptoms. These could then be used to treat skin lesions as they develop rather than after they become life-threatening.

The treatment might be more effective in children, whose stem cells have higher renewal potential and who have less total skin to replace, than in adults, Mariaceleste Aragona and Cdric Blanpain, stem cell researchers with the Free University of Brussels, wrote in an accompanying commentary for Nature.

But De Luca said more research must be conducted to see if the methods could be applied beyond this specific genetic disease. His group is currently running a pair of clinical trials in Austria using genetically modified skin stem cells to treat another 12 patients with two different kinds of epidermolysis bullosa, including JEB.

For the 7-year-old boy, life has become more normal now that it ever was before, the researchers said. Hes off pain meds. While he has some small blisters in areas that didnt receive a transplant, they havent stopped him from going to school, playing soccer, or behaving like a healthy child.

The kid is doing quite well. If he gets bruises like small kids [do], they just heal as normal skin heals, Rothoeft said. Hes quite healthy.

See the rest here:
'Extraordinary' tale: Stem cells heal a young boy's lethal ...

Recommendation and review posted by Bethany Smith

Hebrew University researchers create embryo stem cells …

Researchers at the Hebrew University of Jerusalem say they have found a way to transform skin cells into the three major stem cell types that comprise early-stage embryos.

The discovery could pave the way to creating entire human embryos out of human skin cells, without the need for sperm or eggs, the researchers say. And it could also have vast implications for modeling embryonic defects and shedding light on placental dysfunctions, as well as solving certain infertility problems by creating human embryos in a petri dish, a Hebrew University statement said.

You could say we are close to generating a synthetic embryo, which is a really crazy thing, said Dr. Yossi Buganim of the universitys Department of Developmental Biology and Cancer Research, who led the study that was published in Cell Stem Cell.

Get The Start-Up Israel's Daily Start-Up by email and never miss our top storiesFree Sign Up

This discovery could allow researchers in future to generate embryos from sterile men and women, using only their skin cells, and generate a real embryo in a dish and implant the embryo in the mother, Buganim said in a phone interview.

Researchers at the Hebrew Hebrew University of Jerusalem say they have found a way to transform skin cells into the three major stem cell types that comprise early-stage embryos; the image shows 4-cell stage mouse embryos (Kirill Makedonski)

Buganim and his team discovered a set of five genes capable of transforming murine skin cells into all three of the cell types that make up the early embryo: the fetus itself, the placenta and the extra-embryonic tissues, such as the umbilical cord.

In 2006, Japanese researchers Kazutoshi Takahashi and Shinya Yamanaka discovered the capacity of skin cells to be reprogrammed into early embryonic cells that can generate an entire fetus through the use of four central embryonic genes. These genes reprogrammed the skin cells into induced pluripotent stem cells (iPSCs), which are similar to cells that develop in the early days after fertilization and are essentially identical to their natural counterparts. These cells can develop into all fetal cell types, but not into extra-embryonic tissues, such as the placenta.

The Japanese researchers discovered that the four central embryonic genes can be used to rejuvenate the skin cells to function like embryonic stem cells, explained Buganim.

After fertilization of the egg, the cell divides into 64, creating a bowl of cells that make up the three crucial parts of an embryo the epiblast, the inner cell mass which gives rise to the fetus itself; the primitive endoderm that is responsible for the umbilical cord; and a third part, the trophectoderm, that is responsible for creating the placenta.

What the Japanese managed to do, Buganim said, was to transform the skin cells into fetus stem cells. But that is not enough to create an entire embryo, he said, because the other parts are also needed those that develop the umbilical cord and the placenta.

Dr. Yossi Buganim of The Hebrew Universitys Department of Developmental Biology and Cancer Research (Shai Herman)

The breakthrough of the Hebrew University team, Buganim said, was creating with five genes all of the three essential compartments that make up the embryonic and extra-embryonic features necessary for the creation of an in-vitro embryo. The work was done with mice, and the team is now starting to apply the same research to human embryos, he added.

The researchers used five genes that are completely different from those used by the Japanese researchers, Buganim noted. The genes the Israeli researchers used are those that play a role in the early development of the embryo. They specify and direct what each cell will develop into, whether the umbilical cord, the placenta or the fetus itself.

The team used new technology to study the molecular forces that dictate how each of the cells develop. For example, the researchers discovered that the gene Eomes pushes the cell toward placental stem cell identity and placental development, while Esrrb orchestrates the development of fetus stem cells, attaining first, but just temporarily, an extra-embryonic stem cell identity.

It was our idea to use those genes, Buganim said.

The researchers then combined these five genes in such a way that, when inserted into skin cells, they managed to reprogram the cells into each of three early embryonic cell types in the same petri dish.

The discovery will enable researchers to better understand and address embryonic malfunctions and diseases such as placental insufficiencies or miscarriages, he said. This could enable researchers to use a dish to model the embryonic cells and identify early markers for risk.

The challenges ahead, however, are still huge, said Buganim. An embryo is a three dimensional structure. We need to learn how to put this all together to generate a real embryo. We need to identify the ratios of placental stem cells, umbilical cord cells and iPS cells, which create the fetuses, and in what scaffold to place them, he said.

These cells know how to stick together, Buganim said. I need to give them the proper environment and the proper ratio to organize themselves into a real embryo.

The study was done by Buganim together with Dr. Oren Ram from Hebrew Universitys Institute of Life Science and Professor Tommy Kaplan from the universitys School of Computer Science and Engineering, as well as doctoral students Hani Benchetrit and Mohammad Jaber.

Visit link:
Hebrew University researchers create embryo stem cells ...

Recommendation and review posted by Bethany Smith

Hebrew U Researchers Created Embryo Stem Cells from Skin …

Photo Credit: Hebrew U

A new, groundbreaking study by the Hebrew University of Jerusalem (HU) found a way to transform skin cells into the three major stem cell types that comprise early-stage embryos. This work has significant implications for modelling embryonic disease and placental dysfunctions, as well as paving the way to create whole embryos from skin cells.

As published in Cell Stem Cell, Dr. Yossi Buganim of HUs Department of Developmental Biology and Cancer Research and his team discovered a set of genes capable of transforming murine skin cells into all three of the cell types that comprise the early embryo: the embryo itself, the placenta and the extraembryonic tissues, such as the umbilical cord. In the future, it may be possible to create entire human embryos out of human skin cells, without the need for sperm or eggs. This discovery also has vast implications for modelling embryonic defects and shedding light on placental dysfunctions, as well as solving certain infertility problems by creating human embryos in a petri dish.

Back in 2006, Japanese researchers discovered the capacity of skin cells to be reprogrammed into early embryonic cells that can generate an entire fetus, by expressing four central embryonic genes. These reprogrammed skin cells, termed Induced Plutipotent Stem Cells (iPSCs), are similar to cells that develop in the early days after fertilization and are essentially identical to their natural counterparts. These cells can develop into all fetal cell types, but not into extra-embryonic tissues, such as the placenta.

Now, the Hebrew University research team, headed by Dr. Yossi Buganim, Dr. Oren Ram from the HUs Institute of Life Science and Professor Tommy Kaplan from HUs School of Computer Science and Engineering, as well as doctoral students Hani Benchetrit and Mohammad Jaber, found a new combination of five genes that, when inserted into skin cells, reprogram the cells into each of three early embryonic cell typesiPS cells which create fetuses, placental stem cells, and stem cells that develop into other extraembryonic tissues, such as the umbilical cord. These transformations take about one month.

The HU team used new technology to scrutinize the molecular forces that govern cell fate decisions for skin cell reprogramming and the natural process of embryonic development. For example, the researchers discovered that the gene Eomes pushes the cell towards placental stem cell identity and placental development, while the Esrrb gene orchestrates fetus stem cells development through the temporary acquisition of an extraembryonic stem cell identity.

To uncover the molecular mechanisms that are activated during the formation of these various cell types, the researchers analyzed changes to the genome structure and function inside the cells when the five genes are introduced into the cell. They discovered that during the first stage, skin cells lose their cellular identity and then slowly acquire a new identity of one of the three early embryonic cell types, and that this process is governed by the levels of two of the five genes.

Recently, attempts have been made to develop an entire mouse embryo without using sperm or egg cells. These attempts used the three early cell types isolated directly from a live, developing embryo. However, HUs study is the first attempt to create all three main cell lineages at once from skin cells. Further, these findings mean there may be no need to sacrifice a live embryo to create a test tube embryo.

Visit link:
Hebrew U Researchers Created Embryo Stem Cells from Skin ...

Recommendation and review posted by Bethany Smith

The genetics of baldness: More complex than you might …

From bald eagles to Bruce Willis, bald spots are a common sight and part of the fabric of our society. Its often assumed that baldness has a genetic component to it, and thats absolutely true; it does. But its also commonly believed that baldness is inherited from your maternal grandfather. That part isnt entirely true. As with many concepts in genetics, theres a lot more to it than that!

Both men and women experience hair loss, but research has historically focused primarily on male subjects (and efforts to link the two have shown that female pattern hair loss is not predicted by the same genetic markers). Because of this, significantly less is known about female hair loss. We do know that approximately 30% of males experience some degree of hair loss (including simple hair thinning or a receding hairline) by the age of 30, 50% by the age of 50, and 80% by the age of 701.

Male pattern baldness (MPB) is a condition where hair loss occurs in multiple parts of the scalp, ultimately leading to a bald region surrounded by hair in a horseshoe-like pattern3.The process of going bald is more complex than simply hair falling out, though. For starters, individuals with MPB are known to have smaller hair follicles on their scalp. Hair follicles are made of multiple cell types, each one dedicated to a particular process in building hair, which is actually a long chain of proteins (mostly keratin, which you can read about here) outside those cells. These follicles are where hair gains its unique features like curliness and color. Individuals with MPB not only have smaller follicles, but those follicles produce less hair, which contributes to the hair thinning process. Eventually, these follicles die, which produces a bald spot1-4.

But why do some people go bald while others dont?

Large scale genetic studies have shown that DNA plays a big part in determining whether MPB will develop2-4. A common saying is that hair loss can be traced back to a persons grandfather on their mothers side. While this isnt entirely true, there is some genetic evidence behind it. One of the well-known genes related to hair loss is the AR gene which codes for the androgen receptor protein. Among other functions, this protein helps hair follicle cells detect androgen hormones (like testosterone) that circulate through the body. Testosterone and other androgens can affect when, where, and how much a persons hair grows1. The AR gene is located on the X chromosome, which means that, for males, it was inherited from their mother. While this seems to lend credence to the notion that baldness is inherited from a persons maternal grandfather, research indicates that the story is more complex than that. Recent studies report that MPB is a polygenic condition, meaning there are many genetic variants involved2. In fact, many of the genetic variants associated with MPB are not located on sex chromosomes. When considered together, these variants have been found to be more predictive of MPB development than variants that are located on sex chromosomes2.

MPB can be inherited from either side of a persons family

Although scientists have found DNA variants that seem to predict the likelihood of MPB development, its not entirely clear how these minor changes in the DNA lead to hair loss. Many of these variants are located in or near genes involved in the process of forming and maintaining hair follicle cells, indicating that these changes somehow affect the biology of hair follicles. Lots of proteins are involved in making and maintaining hair follicles, and we need to take all of them into account if we want to find the most complete answer1.

DNA cannot be used to predict everything about a persons future, but it can be used to make useful estimates of how likely it is that a person will have certain physical traits. MPB is a good example of this. Scientists can determine how many MPB associated DNA variants a person has, and use them to estimate their likelihood of experiencing hair loss. Individually, each gene may be associated with slightly higher odds of going bald; however, a persons chances increase with each additional variant they inherit. Some people inherit a specific combination of variants that increases their likelihood of developing MPB by 58%2. This kind of analysiswhere multiple genetic variants are taken into considerationis common in genetics and helps strengthen the predictive ability of some types of genetic tests.

So, whats the bald truth on baldness? MPB can be inherited from either side of a persons family, and there are ways you can learn more through a DNA test. In the Helix Store, HumanCodes BABYglimpse and DNAPassport can give you insights into your predisposition for male pattern baldness. And if the evidence comes back strong, who knows? You might just be the next Samuel L. Jackson.

2Hagenaars, Saskia P. et al. Genetic Prediction of Male Pattern Baldness. Ed. Markus M. Noethen. PLoS Genetics 13.2 (2017): e1006594. PMC. Web. 11 Dec. 2017.

3Heilmann-Heimbach, Stefanie et al. Meta-Analysis Identifies Novel Risk Loci and Yields Systematic Insights into the Biology of Male-Pattern Baldness. Nature Communications 8 (2017): 14694. PMC. Web. 11 Dec. 2017.

4Pirastu, Nicola et al. GWAS for Male-Pattern Baldness Identifies 71 Susceptibility Loci Explaining 38% of the Risk. Nature Communications 8 (2017): 1584. PMC. Web. 11 Dec. 2017.

Helix Newsletter

Stay up to date with the latest news from Helix!

You're on the list!

We'll send you updates on Helix.

The rest is here:
The genetics of baldness: More complex than you might ...

Recommendation and review posted by Bethany Smith

Hypopituitarism | Endocrinology | Dartmouth-Hitchcock

Alternative names: Pituitary Insufficiency

What is hypopituitarism? What are the signs of hypopituitarism? What causes hypopituitarism? How does my doctor tell if I have hypopituitarism? How is hypopituitarism treated?

Hypopituitarism is a condition in which the pituitary gland is not producing one or more of its hormones, or is producing them at lower than normal levels. These hormones stimulate other endocrine glands to produce their hormones. For example, if the pituitary gland doesn't make thyroid stimulating hormone (TSH), the thyroid gland doesn't work correctly.

Hypopituitarism is a rare disorder.

The symptoms of hypopituitarism depend on which hormones are being under-produced by the pituitary gland:

Hypopituitarism is often caused by an abnormal growth, or tumor, on the pituitary gland. Most pituitary tumors are benign (non-cancerous), and are called adenomas.

Damage to the pituitary gland can also cause hypopituitarism. Such damage can be caused by head injuries, radiation treatment for cancer, autoimmune disorders, a stroke, infections, and disease.

Diseases of the hypothalamus, the part of the brain located just above the pituitary, can also cause hypopituitarism.

Your doctor may recommend one or more of the following tests to diagnose hypopituitarism:

If hypopituitarism is caused by a pituitary tumor, treatment is aimed at removing the tumor, or reducing its effects. This can include medication, surgery, and/or radiation therapy.

Pituitary hormone replacement therapy is often required after successful treatment of a pituitary tumor.

Information on the Dartmouth-Hitchcockwebsite:

Our goals are to provide people with meaningful information to make informed decisions about their health and health care.

Dartmouth-Hitchcock and its affiliated component organizations aspire to deliver consistent high quality medical care to all patients and to continually improve its quality of care as evolving technology and medical knowledge permits.

Please call 911 in the case of any medical emergency.

Original post:
Hypopituitarism | Endocrinology | Dartmouth-Hitchcock

Recommendation and review posted by Bethany Smith

Xconomy: SMA Moment: Will Gene Therapy Shift Treatment …

XconomyNational

This is a big moment for people diagnosed with spinal muscular atrophy, or SMA, a rare and potentially lethal genetic disorder that destroys muscles. For decades, there was no way to change the trajectory of their disease. They now have one marketed medicine, and this month, chances are theyll have another: a gene therapy that promises a long-lasting treatment, if not an outright cure, through a one-time dose.

This weekend at the annual American Academy of Neurology meeting, patients, their families, and doctors will gain more insight about the gene therapy, Zolgensma, which is owned by drug giant Novartis (NYSE: NVS), and how it might stack up against the approved medicine nusinersen (Spinraza), owned by Biogen (NASDAQ: BIIB). They can also look forward to the latest clinical data from an SMA drug, risdiplam, from Roche, that, if successful, would be the first that a patient could take orallya big deal, because the most severe cases of SMA are in newborns and infants, and Spinraza requires chronic spinal infusions.

Its ridiculously exciting, says Jahannaz Dastgir, a pediatric neurologist at Goryeb Childrens Hospital in Morristown, NJ. Its a great time to be a doctor.

All the new information comes amid anticipation that the FDA this month will approve Zolgensma. With the agencys green light, it would be the second approved gene therapy in the US, and one of just a handful around the world.

Zolgensma will also face something other gene therapies havent: competition. Approved in late 2016, Spinraza has already proven effective and, after early hiccups, has become a big seller for the beleaguered Biogen, with $1.7 billion in sales in 2018 and $518 million in the first quarter of 2019.

Novartis has high hopes for Zolgensma, too, having paid $8.7 billion to buy its developer AveXis in 2018. Its success or failure will be a bellwether for the economics of gene therapy. (Nationwide Childrens Hospital in Columbus, OH, where the therapy was developed, will be watching closely too.)

If both Spinraza and Zolgensma are available, doctors, payers, patients, and their families will face tough medical, logistical, and economic decisions. So far, Spinraza has far more data to support it. But it has a $750,000 first-year price tag and requires a few spinal infusions a year at a $375,000 annual cost thereafter, for life. Zolgensma could cost $1 million or more (Novartis has hinted much more) for a single dose, theoretically a bargain if it saves lives and negates downstream medical and social costs that SMA patients and their families would otherwise face.

A recent survey of 30 physicians in the US and Europe by the investment bank Jefferies suggested that a majority of newly diagnosed SMA patients, as well as those currently on Spinraza, will get Zolgensma. Jefferies predicts $2.6 billion in peak sales for Zolgensma.

Its possible that the best results could come from combination therapy, but that hasnt been tested and the costs would be exorbitant.

Alex Fay, a pediatric neurologist at UCSF Benioff Childrens Hospital in San Francisco, CA, says he would be hesitant to switch patients if Spinraza is well tolerated and working. Adding more complication, says Fay, is the fast progress of the disease. Those decisions are going to have to be made pretty quickly, says Fay.

Information revealed soon could make those decisions easier. Babies diagnosed with Type 1 SMA, the most common and deadly form of the disease, often die before the age of two. Type 2 patients may never be able to walk, while Type 3 patients can walk initially before losing strength later in life. In all types, it seems that the earlier the treatment, the more benefit.

Thus far, all public Zolgensma data have been in babies with Type 1. There will be more of that at AAN. Studies presented at the meeting this weekend will also, for the first time, reveal Zolgensmas effects on more moderate forms of SMA, and in patients who havent shown symptoms yet. Those data could help determine Zolgensmas eventual reach.

More than 7,500 patients across several SMA types have now received Spinraza, some as long as six years. Biogen recently used that experience to turn up the heat on Novartis.

Last week it published results in Neurology, the AANs medical journal, from a long-term study in later-onset patients, aged 5 to 19, who were likely to develop Type 2 or Type 3 SMA. Each group showed improvements on tests of motor function; historical data suggest they should get weaker. A couple patients with Type 3 SMA even regained the ability to walk during the trial, Biogen said.

Citing the study and other data supporting Spinraza, Biogen CEO Michel Vounatsos was adamant on an April 24 conference call that the drug will remain the standard of care for SMA for years to come.

The presentations this weekend will shed more light on the potential benefits and risks of the new world of SMA treatments, but there will plenty of questions left unanswered. Here we break down four key SMA topics that will be under intense discussion.

Fast Access: SMA is a battle against time. Neurons die and dont come back. Muscles waste away and are replaced by scar tissue and fat. The muscle-wasting is particularly fast for babies with Type 1. Time to treatment is of the essence. They may never Next Page

Ben Fidler is Xconomy's Deputy Editor, Biotechnology. You can e-mail him at bfidler@xconomy.com

See more here:
Xconomy: SMA Moment: Will Gene Therapy Shift Treatment ...

Recommendation and review posted by Bethany Smith

What are the ethical issues surrounding gene therapy …

Because gene therapy involves making changes to the bodys set of basic instructions, it raises many unique ethical concerns. The ethical questions surrounding gene therapy include:

How can good and bad uses of gene therapy be distinguished?

Who decides which traits are normal and which constitute a disability or disorder?

Will the high costs of gene therapy make it available only to the wealthy?

Could the widespread use of gene therapy make society less accepting of people who are different?

Should people be allowed to use gene therapy to enhance basic human traits such as height, intelligence, or athletic ability?

Current gene therapy research has focused on treating individuals by targeting the therapy to body cells such as bone marrow or blood cells. This type of gene therapy cannot be passed to a persons children. Gene therapy could be targeted to egg and sperm cells (germ cells), however, which would allow the inserted gene to be passed to future generations. This approach is known as germline gene therapy.

The idea of germline gene therapy is controversial. While it could spare future generations in a family from having a particular genetic disorder, it might affect the development of a fetus in unexpected ways or have long-term side effects that are not yet known. Because people who would be affected by germline gene therapy are not yet born, they cant choose whether to have the treatment. Because of these ethical concerns, the U.S. Government does not allow federal funds to be used for research on germline gene therapy in people.

View post:
What are the ethical issues surrounding gene therapy ...

Recommendation and review posted by Bethany Smith

CRISPR Therapeutics Provides Business Update and Reports …

-Enrollment ongoing in Phase 1/2 clinical trials of CTX001 for patients with severe hemoglobinopathies-

-IND and CTA approved for CTX110, wholly-owned allogeneic CAR-T cell therapy targeting CD19+ malignancies-

-On track to initiate Phase 1/2 clinical trial for CTX110 in 1H 2019-

-$437.5 million in cash as of March 31, 2019-

ZUG, Switzerland and CAMBRIDGE, Mass., April 29, 2019 (GLOBE NEWSWIRE) -- CRISPR Therapeutics(CRSP), a biopharmaceutical company focused on creating transformative gene-based medicines for serious diseases, today reported financial results for the first quarter ended March 31, 2019.

This past quarter, we began an important new period for CRISPR Therapeutics with the treatment of the first patient in our clinical trial for CTX001 in hemoglobinopathies, said Samarth Kulkarni, Ph.D., Chief Executive Officer of CRISPR Therapeutics. This is a significant landmark for the Company and we continue to enroll patients in our trials for both beta thalassemia and sickle cell disease. With the acceptance of our IND and CTA for CTX110, we look forward to the initiation of our clinical trials for our allogeneic CAR-T programs in the near-term and hope to bring other CAR-T programs to the clinic in the next six to twelve months.

Recent Highlights and Outlook

First Quarter 2019 Financial Results

About CRISPR TherapeuticsCRISPR Therapeutics is a leading gene editing company focused on developing transformative gene-based medicines for serious diseases using its proprietary CRISPR/Cas9 platform. CRISPR/Cas9 is a revolutionary gene editing technology that allows for precise, directed changes to genomic DNA. CRISPR Therapeutics has established a portfolio of therapeutic programs across a broad range of disease areas including hemoglobinopathies, oncology, regenerative medicine and rare diseases. To accelerate and expand its efforts, CRISPR Therapeutics has established strategic collaborations with leading companies including Bayer AG, Vertex Pharmaceuticals and ViaCyte, Inc. CRISPR Therapeutics AG is headquartered in Zug, Switzerland, with its wholly-owned U.S. subsidiary, CRISPR Therapeutics, Inc., and R&D operations based in Cambridge, Massachusetts, and business offices in London, United Kingdom. For more information, please visit http://www.crisprtx.com.

CRISPR Forward-Looking StatementThis press release may contain a number of forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, as amended, including statements regarding CRISPR Therapeutics expectations about any or all of the following: (i) clinical trials (including, without limitation, the timing of filing of clinical trial applications and INDs, any approvals thereof and the timing of commencement of clinical trials), development timelines and discussions with regulatory authorities related to product candidates under development by CRISPR Therapeutics and its collaborators; (ii) the number of patients that will be evaluated, the anticipated date by which enrollment will be completed and the data that will be generated by ongoing and planned clinical trials, and the ability to use that data for the design and initiation of further clinical trials; (iii) the scope and timing of ongoing and potential future clinical trials; (iv) the intellectual property coverage and positions of CRISPR Therapeutics, its licensors and third parties; (v) the sufficiency of CRISPR Therapeutics cash resources; and (vi) the therapeutic value, development, and commercial potential of CRISPR/Cas9 gene editing technologies and therapies. Without limiting the foregoing, the words believes, anticipates, plans, expects and similar expressions are intended to identify forward-looking statements. You are cautioned that forward-looking statements are inherently uncertain. Although CRISPR Therapeutics believes that such statements are based on reasonable assumptions within the bounds of its knowledge of its business and operations, forward-looking statements are neither promises nor guarantees and they are necessarily subject to a high degree of uncertainty and risk. Actual performance and results may differ materially from those projected or suggested in the forward-looking statements due to various risks and uncertainties. These risks and uncertainties include, among others: the outcomes for each CRISPR Therapeutics planned clinical trials and studies may not be favorable; that one or more of CRISPR Therapeutics internal or external product candidate programs will not proceed as planned for technical, scientific or commercial reasons; that future competitive or other market factors may adversely affect the commercial potential for CRISPR Therapeutics product candidates; uncertainties inherent in the initiation and completion of preclinical studies for CRISPR Therapeutics product candidates; availability and timing of results from preclinical studies; whether results from a preclinical trial will be predictive of future results of the future trials; uncertainties about regulatory approvals to conduct trials or to market products; uncertainties regarding the intellectual property protection for CRISPR Therapeutics technology and intellectual property belonging to third parties; and those risks and uncertainties described under the heading "Risk Factors" in CRISPR Therapeutics most recent annual report on Form 10-K, and in any other subsequent filings made by CRISPR Therapeutics with the U.S. Securities and Exchange Commission, which are available on the SEC's website at http://www.sec.gov. Existing and prospective investors are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date they are made. CRISPR Therapeutics disclaims any obligation or undertaking to update or revise any forward-looking statements contained in this press release, other than to the extent required by law.

Story continues

CRISPR Therapeutics AGCondensed Consolidated Statements of Operations(Unaudited, In thousands except share data and per share data)

CRISPR Therapeutics AGCondensed Consolidated Balance Sheets Data(Unaudited, in thousands)

Investor Contact:Susan Kimsusan.kim@crisprtx.com

Media Contact:Jennifer PaganelliWCG on behalf of CRISPR347-658-8290jpaganelli@wcgworld.com

Visit link:
CRISPR Therapeutics Provides Business Update and Reports ...

Recommendation and review posted by Bethany Smith

Genetic Testing FAQ | NHGRI

Benefits: Genetic testing may be beneficial whether the test identifies a mutation or not. For some people, test results serve as a relief, eliminating some of the uncertainty surrounding their health. These results may also help doctors make recommendations for treatment or monitoring, and give people more information for making decisions about their and their family's health, allowing them to take steps to lower his/her chance of developing a disease. For example, as the result of such a finding, someone could be screened earlier and more frequently for the disease and/or could make changes to health habits like diet and exercise. Such a genetic test result can lower a person's feelings of uncertainty, and this information can also help people to make informed choices about their future, such as whether to have a baby.

Drawbacks: Genetic testing has a generally low risk of negatively impacting your physical health. However, it can be difficult financially or emotionally to find out your results.

Emotional: Learning that you or someone in your family has or is at risk for a disease can be scary. Some people can also feel guilty, angry, anxious, or depressed when they find out their results.

Financial: Genetic testing can cost anywhere from less than $100 to more than $2,000. Health insurance companies may cover part or all of the cost of testing.

Many people are worried about discrimination based on their genetic test results. In 2008, Congress enacted the Genetic Information Nondiscrimination Act (GINA) to protect people from discrimination by their health insurance provider or employer. GINA does not apply to long-term care, disability, or life insurance providers. (For more information about genetic discrimination and GINA, see http://www.genome.gov/10002328/genetic-discrimination-fact-sheet/).

Limitations of testing: Genetic testing cannot tell you everything about inherited diseases. For example, a positive result does not always mean you will develop a disease, and it is hard to predict how severe symptoms may be. Geneticists and genetic counselors can talk more specifically about what a particular test will or will not tell you, and can help you decide whether to undergo testing.

Read the original here:
Genetic Testing FAQ | NHGRI

Recommendation and review posted by Bethany Smith

CI MEMBER | Cryonics Institute

EMERGENCY RESPONSE FOR A CRYONICS INSTITUTE MEMBER WHO IS IN CRITICAL CONDITION OR LEGALLY DECEASEDCritical Condition

If the person is in critical condition or hospice care, collect all required legal documents relating to suspension and confirm plans for standby and transport as soon as possible.

If the person has been legally pronounced dead and is currently a CI member, then entirely cover and cool his or her head with bags of crushed ice.Do NOT place ice on a Member until there has been a legal pronouncement of death -- attempt to obtain a pronouncement as soon as possible.

*Requirements

In order to fund a suspension at the $28,000 fee, a member must sign all required CI documents themselves with their signature witnessed by a notary. The membership documents and funding must be in place for a minimum of two weeks otherwise, the suspension fee will cost $35,000 and other nonmember restrictions may apply.

In either situation, contact the Cryonics Institute as soon as possible at:

Also see the listing below for exit codes for countries that do not use 00

Calling from Outside North America: + 1 586 791 5961 where +represents the exit code for your country,see http://www.howtocallabroad.com/codes.html "

Excerpt from:
CI MEMBER | Cryonics Institute

Recommendation and review posted by Bethany Smith

Vancouver Stem Cell Treatment Centre | Stem Cells

How do Stem Cellsfunction?Stem cells have the capacity to migrate to injured tissues, a phenomenon calledhoming. This occurs by injury or disease signals that are released from the distressed cells and tissue. Once stem cells arrive,they dock on adjacent cells to commence performing their job to repair the problem.

Stem cells serve as a cell replacementwhere they change into the required cell type such as a muscle cell, bone orcartilage. This is ideal for traumaticinjuries and many orthopedic indications.

They do not express specific human leukocyte antigens (HLAs) which helpthem avoid the immune system. Stemcells dock on adjacent cells and release proteins called growth factors, cytokines and chemokines. These factors help control many aspects of the healing and repairprocess systemically.

Stem cells control the immune system and regulate inflammation which is a keymediator of disease, aging, and is ahallmark of autoimmune diseases such as rheumatoid arthritis and multiple sclerosis.

They help to increase new blood vesselformation so that tissues receive proper blood flow and the correct nutrients needed to heal as in stroke, peripheral arterydisease and heart disease.

Stem cells provide trophic support forsurrounding tissues and help hostendogenous repair. This works wellwhen used for orthopedics. In case ofdiabetes, it may help the remaining beta cells in the pancreas to reproduce orfunction optimally.

As CSN research evolves, the field ofregenerative medicine and stem cells offers the greatest hope for those suffering from degenerative diseases, conditions for which there is currently no effective treatment or conditions that have failed conventional medical therapy.

Stem cell treatment is a complex process allowing us to harvest the bodys own repair mechanism to fight against degeneration, inflammation and general tissue damage. Stem cells are cells that can differentiate into other types of tissue to restore function and reduce pain.

Adult stem cells are found in abundance in adipose (fat) tissue, where more than 5million stem cells reside in every gram. These stem cells are called adult mesenchymal stem cells.

Our medical doctors extract stromal vascular fraction (SVF) from your own body to provide treatment using your very own cells. This process is calledautologous mesenchymal stem celltherapy. Our multi-specialty team deploys SVF under an institutional review board (IRB). This is an approved protocol that governs investigational work and the focus is to maintain safety of autologous use of SVF for various degenerative conditions.

How do we perform the stem cell treatment?Our procedure is very safe and completed in a single visit to our clinic. On the day of treatment, our physicians inject a localanaesthetic and harvest approximately 60 cc (2 oz.) of stromalvascular fraction (SVF) from under the skin of your flanks or abdomen. The extracted SVF is then refined in a closed system using strictCSN protocols to produce pure stromalvascular fraction (SVF). SVF containsregenerative cells including mesenchymal and hematopoietic stem cells, macrophages, endothelial cells, immune regulatory cells, and important growth factors that facilitate your stem cell activity. CSN technology allows us to isolate high numbers of viable stem cells that we can immediately deploy directly into a joint, trigger point, and/or byintravascular infusion. Specific deployment methods have been developed that are unique for each condition being treated.

During the refinement process, thesubcutaneous harvested cells andtheir connecting collagen matrix willbe separated, leaving purified free stem cells. About half of the SVF will be pure stem cells, while the remainder will be acombination of other regenerative cellsand growth factors. Before the SVF isre-injected into your body during the final part of the process we perform a qualityand quantity test which will examine the cell count and viability.

Perfecting the stem cell treatmentOur team records cell numbers and viability so that we can gain a better understanding of what constitutes a successful treatment. Although it is not yet possible to predict what number of cells that will be recovered in a harvest, it is very important that we know the total cell count and cell viability. It is only with this data that we will beginto understand why treatments are verysuccessful, only slightly successful orunsuccessful.

While vigilant about patient safety, we are also learning and sharing with the CSN data bank about which diseases respond best and which deployment methods are most effective with over 80 other clinics.

This data collection from all over the world makes the Cell Surgical Network the worlds largest regenerative medicineclinical research organization.

Network physicians have the opportunity to share their data, as well as their clinical experiences, thus helping one anotherto achieve higher levels of scientificunderstanding and optimizing medical protocols.

Injecting into thevascular system and/ora jointWe will administer the stem cell treatment with two methods:

The belief is that for many degenerative joint conditions IV and intra-articulardeployment is superior because each of these conditions have a local pathology and a central pathology. The local resident stem cell population has been working very hard to repair the damage and over the course of time these stem cells have become worn out, depleted and slowly die. This essentially causes a state of stem cell depletion. When we inject our mix of stem cells, cytokines and growth factors (known as SVF)inflammation is decreased and theregenerative process improved.

The stem cells that we have injected will then bring the level of stem cells closer to the normal level, thus restoring the natural balance and allow the body to heal itself.

Caplan et al, The MSC: An Injury Drugstore, DOI 10.1016/j .stem.2011.06.008

How long does it last?Many studies have shown the healing and regenerative ability of stem cells. Forexample, a study in World Journal of Plastic Surgery (Volume 5[2]; May 2016) followed a woman with knee arthritis. Before and after analysis of MRI images confirmed new growth of cartilage tissue. Unlike steroids, lubricants, and other injectable treatments, stem cells actually repair damaged tissue.

As published in Experimental andTherapeutic Medicine (Volume 12[2]; August 2016), numerous studies with hundreds of patients showed continuous improvement of arthritis for two years. Patients showed improvement three months after a single treatment and they continued to show improvement for two full years. This is why stem cells are often referred to as regenerative medicine.

No one can guarantee results for this or any other treatment. Outcomes will vary from patient to patient. Each potential patient must be assessed individually to determine the potential for optimum results from this regenerative therapy. To learn more about stem cell therapy, please contact us by clicking here or calling our clinic at 604-708-CELL (604-708-2355).

Like Loading...

Read the original here:
Vancouver Stem Cell Treatment Centre | Stem Cells

Recommendation and review posted by Bethany Smith

Gene therapy reverses rare immune disorder | National …

April 30, 2019

Children born with a rare genetic disorder called X-linked severe combined immunodeficiency (X-SCID) dont have a functioning immune system. As a result, they cant fight off infections. Without treatment, an infant with X-SCID will usually die within the first year or two of life.

The best option for treatment of newly diagnosed infants with X-SCID has been stem-cell transplantation from a genetically matched sibling. But less than a quarter of children with X-SCID have a matched donor available. For those without a matched donor, standard treatment has been a half-matched bone marrow transplant from a parent. But most infants receiving this type of transplant only have part of their immune system, called T lymphocytes, restored. These infants will need lifelong injections of protective antibodies. In addition, as they grow into young adulthood, they may have chronic medical problems that affect growth, nutrition, and quality of life.

To develop a better approach to fix the immune systems of children with X-SCID, researchers have used gene therapy to alter patients own blood stem cells. An engineered virus brings a healthy copy of the gene into the stem cells to replace the mutated gene that causes the disease.

Early results from trials of gene therapy for X-SCID resulted in life-saving correction of T lymphocytes. But similar to bone marrow transplant from a parent, the immune restoration was incomplete. In addition, in those first gene therapy studies, almosta third of the children developed leukemia. The approach accidentally stimulated cells to grow uncontrollably. In later studies, improved design of the engineered virus didnt cause cancer, but also didnt fully restore a healthy immune system.

In 2010, Dr. Harry Malech of NIHs National Institute of Allergy and Infectious Diseases (NIAID) and Dr. Brian Sorrentino of St. Jude Childrens Research Hospital reported a new and safer version of gene therapy for X-SCID. They designed a harmless engineered virus (called a lentivector) that could deliver genes into cells without activating other genes that can cause cancer. Before the altered stem cells were returned to their bodies, patients were given low doses of the chemotherapy drug busulfan. This made it easier for the new stem cells to grow in the bone marrow. In young adults and children treated at the NIH Clinical Center, the new therapy proved to be both safe and effective at restoring the full range of immune functions.

Based on this work, a team led by Dr. Ewelina Mamcarz of St. Jude Childrens Research Hospital began treatment in 2015 of newly diagnosed infants with X-SCID using the lentivector and busulfan. The work was funded in part by NHLBI. The team described the treatment of eight infants with the disorder on April 18, 2019, in the New England Journal of Medicine.

By 3 to 4 months after infusion of the repaired stem cells, 7 of the 8 infants had normal levels of multiple types of immune cells in their blood. The last infant required a second stem-cell infusion, after which his immune-cell levels rose to a normal range.

The infants new immune systems were able to fight off infections that the researchers had detected before the gene therapy. Four of the eight discontinued immune-system boosting medications that theyd previously needed. Of those four, three developed antibodies in response to vaccination, indicating a fully functional immune system.

A year and a half after gene therapy, all children were healthy and growing normally.

The broad scope of immune function that our gene therapy approach has restored to infants with X-SCID as well as to older children and young adults in our continuing study at NIH is unprecedented, Malech says.

The researchers will continue to follow the participants over time. They plan to track how the childrens immune systems develop and look for any late side effects.

References:Lentiviral Gene Therapy Combined with Low-Dose Busulfan in Infants with SCID-X1. Mamcarz E, Zhou S, Lockey T, Abdelsamed H, Cross SJ, Kang G, Ma Z, Condori J, Dowdy J, Triplett B, Li C, Maron G, Aldave Becerra JC, Church JA, Dokmeci E, Love JT, da Matta Ain AC, van der Watt H, Tang X, Janssen W, Ryu BY, De Ravin SS, Weiss MJ, Youngblood B, Long-Boyle JR, Gottschalk S, Meagher MM, Malech HL, Puck JM, Cowan MJ, Sorrentino BP. N Engl J Med. 2019 Apr 18;380(16):1525-1534. doi: 10.1056/NEJMoa1815408. PMID: 30995372.

Funding:NIHs National Institute of Allergy and Infectious Diseases (NIAID); National Heart, Lung, and Blood Institute (NHLBI); and National Cancer Institute (NCI); American Lebanese Syrian Associated Charities; California Institute of Regenerative Medicine; and Assisi Foundation of Memphis.

Link:
Gene therapy reverses rare immune disorder | National ...

Recommendation and review posted by Bethany Smith

Gene Therapy Market Emerging Trends, Growth and New …

Global Gene Therapy Market report offers clients the most efficient and dependable insight into the Gene Therapy market, ranging across different major players.

Pune, India April 29, 2019

The Global Gene Therapy Industry, 2014-2024 Market Research Report is a professional and in-depth study on the current state of the Global Gene Therapy Market with a focus on the market conditions. The report provides key statistics on the market status of the Gene Therapy manufacturer and is a valuable source of guidance and direction for companies and individuals interested in the industry. Firstly, the report provides a basic overview of the industry including its definition, applications and manufacturing technology. Then, the report explores the international major industry players in detail.

The report includes Global key players of Gene Therapy Market in which at least 7 companies are included:SangamoSpark TherapeuticsDimension TherapeuticsAvalanche BioCelladonVical Inc.For complete companies list, please ask for sample pages

To know more about Gene Therapy market Report request sample@ https://www.reportsnreports.com/contacts/requestsample.aspx?name=2160345

This report lists major product type of Gene Therapy market in Global Market.Ex vivoIn Vivo

This report focuses on the status and outlook for key applications and End users are also listed:CancerMonogenicInfectious diseaseCardiovascular diseaseOther

Get access to the complete report on Gene Therapy market spread across 139 pages and different major key players available @ https://www.reportsnreports.com/contacts/discount.aspx?name=2160345

The Gene Therapy Market report initially provides a basic overview of the industry that covers definition, applications and manufacturing technology post which the report explores into the international players in the market. In this part, the report presents the company profile, product specifications, capacity, production value and 2014-2019 market shares for each company. The report depicts the global market of Gene Therapy Industry including capacity, production, production value, cost and profit, supply and demand and import-export. The total market is further divided by company, by country, and by application or type for the competitive landscape analysis. The report also estimates 2019-2024 market development trends of Gene Therapy Industry. Analysis of upstream raw materials, downstream demand, and current market dynamics is also carried out. In the end, the report makes some important proposals for a new project of Gene Therapy Industry before evaluating its feasibility. Overall, the report provides an in-depth insight of 2014-2024 Global Gene Therapy Industry covering all important parameters.

Purchase a Copy of this Report at https://www.reportsnreports.com/purchase.aspx?name=2160345

Reasons to Purchase this Report:Estimates 2019-2024 Gene Therapy market development trends with the recent trends and SWOT analysisMarket dynamics scenario, along with growth opportunities of the market in the years to comeMarket segmentation analysis including qualitative and quantitative research incorporating the impact of economic and policy aspectsRegional and country level analysis integrating the demand and supply forces that are influencing the growth of the market.Market value (USD Million) and volume (Units Million) data for each segment and sub-segmentCompetitive landscape involving the market share of major players, along with the new projects and strategies adopted by players in the past five yearsComprehensive company profiles covering the product offerings, key financial information, recent developments, SWOT analysis, and strategies employed by the major market players1-year analyst support, along with the data support in excel format

Browse an In-depth TOC and list of tables and figure available in the report.

About Us:ReportsnReports.com is your single source for all market research needs. Our database includes 500,000+ market research reports from over 95 leading global publishers & in-depth market research studies of over 5000 micro markets. With comprehensive information about the publishers and the industries for which they publish market research reports, we help you in your purchase decision by mapping your information needs with our huge collection of reports. Feel free to Call us at +1 888 391 5441 or Email us at sales@reportsandreports.com

Contact Info:Name: Vishal KalraOrganization: ReportsnReportsAddress: Tower B5, office 101, Magarpatta SEZ, Hadapsar, PunePhone: +1 888 391 5441Website: https://www.reportsnreports.com/reports/2160345-gene-therapy-market-insights-2019-global-and-chinese-analysis-and-forecast-to-2024.html

This content is not produced by Reuters Editorial News. It is produced by VC NewsNetwork. For content enquiry, please reach us at

Originally posted here:
Gene Therapy Market Emerging Trends, Growth and New ...

Recommendation and review posted by Bethany Smith

Menopause hormone therapy and your heart – Mayo Clinic

Menopause hormone therapy and your heart

Are you taking or considering hormone therapy to treat bothersome menopause symptoms? Understand potential risks to your heart and whether hormone therapy is right for you.

Long-term hormone replacement therapy used to be routinely prescribed for postmenopausal women to relieve hot flashes and other menopause symptoms. Hormone replacement therapy was also thought to reduce the risk of heart disease.

Before menopause, women have a lower risk of heart disease than men do. But as women age, and their estrogen levels decline after menopause, their risk of heart disease increases. In the 1980s and 1990s, experts advised older women to take estrogen and other hormones to keep their hearts healthy.

However, hormone replacement therapy or menopause hormone therapy, as it's now called has had mixed results. Many of the hoped-for benefits failed to materialize for large numbers of women. The largest randomized, controlled trial to date actually found a small increase in heart disease in postmenopausal women using combined (both estrogen and progestin) hormone therapy. For women in this study using estrogen alone, there was no increased risk in heart disease.

Other studies suggest that hormone therapy, especially estrogen alone, may not affect or may even decrease the risk of heart disease when taken early in postmenopausal years. However, these studies can be confusing to interpret into practice, since study outcomes can be affected by many factors, such as the ages of the study participants, the time elapsed since menopause and the duration of hormone therapy use. Continued research will help doctors more clearly understand the relationship between menopause hormone therapy and heart disease.

If you're having a tough time with symptoms of menopause but worry about how hormone therapy will affect your heart, talk with your doctor to put your personal risk into perspective. Consider these points:

Menopause hormone therapy risks may vary depending on:

If you've already had a heart attack, menopause hormone therapy is not for you. If you already have heart disease or you have a history of blood clots, the risks of hormone therapy have been clearly shown to outweigh any potential benefits.

Talk with your doctor about these strategies to reduce the risks of menopause hormone therapy:

Women of all ages should take heart disease seriously. Among U.S. women, nearly 1 in 3 deaths each year is due to heart and blood vessel (cardiovascular) disease.

Most healthy women who are within five years of menopause can safely take short-term hormone therapy for menopausal symptoms without significantly increasing the risk of heart disease. If you experience classic menopausal symptoms, including intolerable hot flashes, vaginal dryness or insomnia, talk to your doctor about how you can relieve troublesome symptoms without putting your health at risk.

.

See the article here:
Menopause hormone therapy and your heart - Mayo Clinic

Recommendation and review posted by Bethany Smith

What Are Induced Pluripotent Stem Cells? – Stem Cell: The …

Today, induced pluripotent stem cells are mostly used to understand how certain diseases occur and how they work. By using IPS cells, one can actually study the cells and tissues affected by the disease without causing unnecessary harm to the patient.For example, its extremely difficult to obtain actual brain cells from a living patient with Parkinsons Disease. This process is even more complicated if you want to study the disease in its early stages before symptoms begin presenting themselves.

Fortunately, with genetic reprogramming, researchers can now achieve this. Scientists can do a skin biopsy of a patient with Parkinsons disease and create IPS cells. These IPS cells can then be converted into neurons, which will have the same genetic make-up as the patients own cells.

Because of IPS cells, researchers can now study conditions like Parkinsons disease to determine what went wrong and why. They can also test out new treatment methods in hopes of protecting the patient against the disease or curing it after diagnosis.

In addition, IPS cells have also been looked to as a way to replace cells that are often destroyed by certain diseases. However, there is still research to be done here.

Read more:
What Are Induced Pluripotent Stem Cells? - Stem Cell: The ...

Recommendation and review posted by Bethany Smith

Stem Cell Basics VII. | stemcells.nih.gov

There are many ways in which human stem cells can be used in research and the clinic. Studies of human embryonic stem cells will yield information about the complex events that occur during human development. A primary goal of this work is to identify how undifferentiated stem cells become the differentiated cells that form the tissues and organs. Scientists know that turning genes on and off is central to this process. Some of the most serious medical conditions, such as cancer and birth defects, are due to abnormal cell division and differentiation. A more complete understanding of the genetic and molecular controls of these processes may yield information about how such diseases arise and suggest new strategies for therapy. Predictably controlling cell proliferation and differentiation requires additional basic research on the molecular and genetic signals that regulate cell division and specialization. While recent developments with iPS cells suggest some of the specific factors that may be involved, techniques must be devised to introduce these factors safely into the cells and control the processes that are induced by these factors.

Human stem cells are currently being used to test new drugs. New medications are tested for safety on differentiated cells generated from human pluripotent cell lines. Other kinds of cell lines have a long history of being used in this way. Cancer cell lines, for example, are used to screen potential anti-tumor drugs. The availability of pluripotent stem cells would allow drug testing in a wider range of cell types. However, to screen drugs effectively, the conditions must be identical when comparing different drugs. Therefore, scientists must be able to precisely control the differentiation of stem cells into the specific cell type on which drugs will be tested. For some cell types and tissues, current knowledge of the signals controlling differentiation falls short of being able to mimic these conditions precisely to generate pure populations of differentiated cells for each drug being tested.

Perhaps the most important potential application of human stem cells is the generation of cells and tissues that could be used for cell-based therapies. Today, donated organs and tissues are often used to replace ailing or destroyed tissue, but the need for transplantable tissues and organs far outweighs the available supply. Stem cells, directed to differentiate into specific cell types, offer the possibility of a renewable source of replacement cells and tissues to treat diseases including maculardegeneration, spinal cord injury, stroke, burns, heart disease, diabetes, osteoarthritis, and rheumatoid arthritis.

Figure 3. Strategies to repair heart muscle with adult stem cells. Click here for larger image.

2008 Terese Winslow

For example, it may become possible to generate healthy heart muscle cells in the laboratory and then transplant those cells into patients with chronic heart disease. Preliminary research in mice and other animals indicates that bone marrow stromal cells, transplanted into a damaged heart, can have beneficial effects. Whether these cells can generate heart muscle cells or stimulate the growth of new blood vessels that repopulate the heart tissue, or help via some other mechanism is actively under investigation. For example, injected cells may accomplish repair by secreting growth factors, rather than actually incorporating into the heart. Promising results from animal studies have served as the basis for a small number of exploratory studies in humans (for discussion, see call-out box, "Can Stem Cells Mend a Broken Heart?"). Other recent studies in cell culture systems indicate that it may be possible to direct the differentiation of embryonic stem cells or adult bone marrow cells into heart muscle cells (Figure 3).

Cardiovascular disease (CVD), which includes hypertension, coronary heart disease, stroke, and congestive heart failure, has ranked as the number one cause of death in the United States every year since 1900 except 1918, when the nation struggled with an influenza epidemic. Nearly 2,600 Americans die of CVD each day, roughly one person every 34 seconds. Given the aging of the population and the relatively dramatic recent increases in the prevalence of cardiovascular risk factors such as obesity and type 2 diabetes, CVD will be a significant health concern well into the 21st century.

Cardiovascular disease can deprive heart tissue of oxygen, thereby killing cardiac muscle cells (cardiomyocytes). This loss triggers a cascade of detrimental events, including formation of scar tissue, an overload of blood flow and pressure capacity, the overstretching of viable cardiac cells attempting to sustain cardiac output, leading to heart failure, and eventual death. Restoring damaged heart muscle tissue, through repair or regeneration, is therefore a potentially new strategy to treat heart failure.

The use of embryonic and adult-derived stem cells for cardiac repair is an active area of research. A number of stem cell types, including embryonic stem (ES) cells, cardiac stem cells that naturally reside within the heart, myoblasts (muscle stem cells), adult bone marrow-derived cells including mesenchymal cells (bone marrow-derived cells that give rise to tissues such as muscle, bone, tendons, ligaments, and adipose tissue), endothelial progenitor cells (cells that give rise to the endothelium, the interior lining of blood vessels), and umbilical cord blood cells, have been investigated as possible sources for regenerating damaged heart tissue. All have been explored in mouse or rat models, and some have been tested in larger animal models, such as pigs.

A few small studies have also been carried out in humans, usually in patients who are undergoing open-heart surgery. Several of these have demonstrated that stem cells that are injected into the circulation or directly into the injured heart tissue appear to improve cardiac function and/or induce the formation of new capillaries. The mechanism for this repair remains controversial, and the stem cells likely regenerate heart tissue through several pathways. However, the stem cell populations that have been tested in these experiments vary widely, as do the conditions of their purification and application. Although much more research is needed to assess the safety and improve the efficacy of this approach, these preliminary clinical experiments show how stem cells may one day be used to repair damaged heart tissue, thereby reducing the burden of cardiovascular disease.

In people who suffer from type1 diabetes, the cells of the pancreas that normally produce insulin are destroyed by the patient's own immune system. New studies indicate that it may be possible to direct the differentiation of human embryonic stem cells in cell culture to form insulin-producing cells that eventually could be used in transplantation therapy for persons with diabetes.

To realize the promise of novel cell-based therapies for such pervasive and debilitating diseases, scientists must be able to manipulate stem cells so that they possess the necessary characteristics for successful differentiation, transplantation, and engraftment. The following is a list of steps in successful cell-based treatments that scientists will have to learn to control to bring such treatments to the clinic. To be useful for transplant purposes, stem cells must be reproducibly made to:

Also, to avoid the problem of immune rejection, scientists are experimenting with different research strategies to generate tissues that will not be rejected.

To summarize, stem cells offer exciting promise for future therapies, but significant technical hurdles remain that will only be overcome through years of intensive research.

Previous|VII. What are the potential uses of human stem cells and the obstacles that must be overcome before these potential uses will be realized?|Next

Original post:
Stem Cell Basics VII. | stemcells.nih.gov

Recommendation and review posted by Bethany Smith

Why are Adult Stem Cells Important? Boston Children’s …

Adult stem cells are the bodys toolbox, called into action by normal wear and tear on the body, and when serious damage or disease attack. Researchers believe that adult stem cells also have the potential, as yet untapped, to be tools in medicine. Scientists and physicians are working towards being able to treat patients with their own stem cells, or with banked donor stem cells that match them genetically.

Grown in large enough numbers in the lab, then transplanted into the patient, these cells could repair an injury or counter a diseaseproviding more insulin-producing cells for people with type 1 diabetes, for example, or cardiac muscle cells to help people recover from a heart attack. This approach is called regenerative medicine.

A number of challenges must be overcome before the full therapeutic potential of adult stem cells can be realized. Scientists are exploring practical ways of harvesting and maintaining most types of adult stem cells. Right now, scientists do not have the ability to grow the cells in the amounts needed for treatment. More work is also needed to find practical ways to direct the different kinds of cells to where theyre needed in the body, preferably without the need for surgery or other invasive methods.

Research in all aspects of adult stem cells and their potential is underway at Childrens Hospital Boston. Realizing that potential will require years of research, but promising strides are being made.

Read this article:
Why are Adult Stem Cells Important? Boston Children's ...

Recommendation and review posted by Bethany Smith

Creating Embryonic Stem Cells Without Embryo Destruction

By: Ian Murnaghan BSc (hons), MSc - Updated: 12 Sep 2015| *Discuss

One of the biggest hurdles in stem cell research involves the use of embryonic stem cells. While these stem cells have the greatest potential in terms of their ability to differentiate into many different kinds of cells in the human body, they also bring with them enormous ethical controversies. The extraction of embryonic stem cells involves the destruction of an embryo, which upsets and outrages some policy makers and researchers as well as a number of public members. Not only that, but actually obtaining them is a challenge in itself and one that has become more difficult in places such as the United States, where policies have limited the availability of embryonic stem cells for use.

Although researchers have focused on harnessing the power of adult stem cells, there have still been many difficulties in the practical aspects of these potential therapies. In an ideal world, we would be able to use embryonic stem cells without destroying an embyro. Now, however, this ideal hope may actually have some realistic basis. In recent medical news, there has been important progress in the use of embryonic stem cells.

There are still many more tests and research that must be conducted to verify the safety and reliability of the procedure but it is indeed hopeful that funding can now increase for stem cell research. If you are an avid reader of health articles, you will probably be able to stay up-to-date on the latest developments related to this medical news. This newest research into embryonic stem cells holds promise and hope for appeasing the controversy around embryonic stem cell use and allowing for research to finally move forward with fewer challenges and controversies. For those who suffer from one of the many debilitating diseases and conditions that stem cell treatments may help or perhaps cure one day, this is welcome news.

You might also like...

Share Your Story, Join the Discussion or Seek Advice..

Time for Change - 12-Sep-15 @ 12:54 PM

Ellie - 25-Apr-14 @ 6:02 PM

Title:

(never shown)

Excerpt from:
Creating Embryonic Stem Cells Without Embryo Destruction

Recommendation and review posted by Bethany Smith


Archives