Page 508«..1020..507508509510..520530..»

Losing My Hair: If I’m Not Bothered, Why Are You? – Yahoo News UK

Going bald was always a foregone conclusion for me. From a young age, I was aware that I had inherited most of my physical traits from my maternal family. Whereas my father's side was blessed with voluminous mops of thick, black hair and olive skin, all three of my mother's brothers and my grandfather were (and obviously still are) bald as coots. I grew up being told repeatedly that a similar fate awaited me and, as foretold, my hairline began to recede around the age of 16. To be honest, given the truly hideous 'curtain' hairstyle I was rocking in 1995, many might say this was no bad thing.

However, the years passed and somehow, most of my hair remained. In 2006, my hairdresser, who was always very keen to reassure me that I was 'unlikely to go bald' given that I hadn't done so already, suggested a hairstyle which involved sweeping my hair forward over my forehead and spiking the hair around my crown. This was fairly la mode at that time (but then, so were mullets) and I literally thought nothing of it. It's only with the benefit of hindsight that I can see that actually, my hairdresser was concealing the inevitable truth and helping me to forestall my follicular fate.

I fared quite well. It wasn't until the age of 32 that the hair loss was of such an extent that I began to shave my head. Given that the aforementioned uncles had, by all accounts, lost their hair by their late teens, I felt fortunate to have held on to mine for so long. What's more, I was lucky enough to have a partner who reassured me that they found my shaven look attractive. I am, for want of less dramatic terminology, at peace with my premature baldness. Why, then, are so many other people so disappointed on my behalf?

From my mother - who, frankly, should know better given that it's her contribution to my genetics that has caused it - to random people I barely know, there is never a shortage of people ready and willing to express their sympathy with my 'plight'. 'Are you gutted to have lost your hair at such a young age?'. 'Have you ever considered a hair transplant?'. 'It's such a shame as you had such lovely hair'. The comments are numerous and made without a second thought as to how they might make me feel. For some unfathomable reason, unsolicited remarks about this aspect of someone's appearance seem to be socially acceptable. Conversely, it is rightly considered to be inappropriate or downright offensive to casually mention a person's weight gain, physical ageing or acne, for example, 'Are you devastated to have become so wrinkly?' is certain to offend and understandably so. There is a double standard at play and it could, for some people, be incredibly damaging.

The curiosity, misplaced sympathy and callousness does make me question whether I should be more perturbed about losing my hair than I actually am. Should I, in fact, be spending more time dolefully gazing into the mirror, lamenting the gradual disappearance of my golden locks and frantically researching ways to return to the 'glory days' of hairbrushes, combs, shampoo and regular trips to the barber? I think not. After all, for many, hair loss is symptomatic of serious illness, stress and trauma. To self-indulgently bemoan my male pattern baldness as a relatively healthy man headed for 40 with relatively little to complain about would, for me, feel unseemly.

That's not to say everyone does or should feel the same. Men who seek to regain (see what I did there?) their beautiful barnets should be neither mocked nor castigated - but neither should those who are at ease with the hand dealt to them by genetics, hormones or a mix of the two. Male pattern baldness continues to be open season for uninvited jest, lampooning and commiseration. It's insensitive, anti-social and wildly inappropriate. Balding, like any other physical change, affects individuals in a variety of ways - a little consideration for the feelings of others costs nothing.

Now, if you'll excuse me, I have a date with a certain Mr Remington...

Here is the original post:
Losing My Hair: If I'm Not Bothered, Why Are You? - Yahoo News UK

Recommendation and review posted by Bethany Smith

Transgender clinic for kids and teens opens in St. Louis – WENY-TV

Marielle Mohs

St. Louis, MO -- St. Louis is now home to a first-of-its-kind clinic for transgender teens and kids. It's being administered by Washington University physicians based out of St. Louis Children's hospital.

The clinic aims to provide transgender children and teens with comprehensive health care including mental health resources, hormonal therapy, voice therapy, and reconstructive surgery. Washington University physicians have been taking care of transgender children and teens since 2009 and noticed the growing demand which sparked the push to establish a fully operating clinic.

In 2016, Washington University physicians had 74 transgender patients. From just January to May 2017, they've already seen 71 patients.

This clinic is a huge milestone for the Seay family this month, especially for 15-year-old Leslie.

"Sometimes I identify as a girl, sometimes a boy, sometimes neither," said Leslie Seay.

She started exploring gender identity at 13-years-old, ultimately assigning to being gender fluid, which means she will always feel a mix of identifying between a boy and a girl.

"I would really like to go on hormone blockers so that my voice doesn't get any more feminine and [no] more feminine features show up," said Seay.

Leslie's identity is simple to her, so she needs a pediatrician who understands transgender health simply too.

"Having support and acceptance is extremely important for this patient population," said Dr. Christopher Lewis, founder and physician of the Transgender clinic. "Transgender patients already deal with harassment and discrimination within the medical community and that is a barrier to them accessing care."

Leslie's dad, Peter Seay, is thrilled to know his child is in safe, supportive care with an expertise in transgender health.

"To find out that the gender center was opening this month was something we've been celebrating for a little while. We've been very excited about this," said Peter Seay. "There could not be a greater value, the gratitude will not stop."

The Transgender Center of Excellence opened the first week of August. They are already booked through mid-September with new patient appointments. It's the only clinic of its kind within a 250-mile radius.

KMOV

TM & 2017 Cable News Network, Inc., a Time Warner Company. All rights reserved.

Originally posted here:
Transgender clinic for kids and teens opens in St. Louis - WENY-TV

Recommendation and review posted by sam

Health Matters: Answering Questions about Menopause – NBC2 News

Any health change can bring questions and concerns. One of the most common issues patients ask OB/GYN Dr. Lesley Furman about is menopause. A lot of women come into the office with either questions about menopause or symptoms of menopause and want to know whats going on? Is what Im going through normal?

Dr. Furman says while the symptoms are normal, they can be uncomfortable. Hot flashes are the biggest one. Hot flashes, night sweats, sleeplessness, decrease in libido, vaginal dryness, those are the main ones, said Dr. Furman.

The average age of menopause is 51, but doctors say symptoms can start when women are in their 40s and can last a few years. Its important for them to know that it is a natural process. Its not going to last forever but there are treatment options, said Dr. Furman.

Treatment options, like medications, lifestyle changes, even hormone therapy can help. Each treatment option should be tailored for each patient, not just one size fits all. They should be aware that there are certain factors in their lifestyle that they can alter to help. There can be medications that we can offer that will help, said Dr. Furman.

Doctors may recommend different treatments to help with different symptoms. Patients often have a lot of symptoms; in fact most of the symptoms start way before that last menstrual period occurs, said Dr. Furman.

Women may even experience anxiety or depression during menopause. Whatever the symptoms are, doctors say they are normal and its important to explain them to your physician so treatment can be started.

Continue reading here:
Health Matters: Answering Questions about Menopause - NBC2 News

Recommendation and review posted by simmons

WBIR: Genetic Testing Kits Help Reveal Family History – Tennessee Today

August 7, 2017

WBIR TV Channel 10 recently interviewed Bruce McKee, UT professor in the Department of Biochemistry and Cellular and Molecular Biology, for a story examining genetic testing.

WBIRs Marketing Director Kara McFarland knew from a very young age she was adopted. It was never a secret. But all these years later she still knows very little about her biological family. McFarland turned to science to get some answers by using the genetic testing kit 23andMe. Its one of many for sale online and can be taken at home. She collected a saliva sample, sent it off the in mail and a month lager the results were in her computer inbox.

McKee said this type of genetic testing is called microarray technology and is reliable and validated. He noted that thisinformation could be of value for people like Kara who dont know much about their family background. But he added, you need to be prepared for the information your genes hold.

Read the full story online.

Read the original:
WBIR: Genetic Testing Kits Help Reveal Family History - Tennessee Today

Recommendation and review posted by simmons

Funding debate aside, this is why we need a new heart hospital – The Sydney Morning Herald

Current debate about the future of the Victorian Heart Hospital, which when completed will be Australia's first cardiac hospital,focuses on issues such as cost and contracts. And, in these tight economic times, it is right to ask these questions.

However, Australia's first dedicated specialist heart hospital will be so much more. Thehospital will be in the same league as some of the great cardiac hospitals, such as the Barts Heart Centre in London and the Montreal Heart Institute in Canada.

More Victorians, men and women, die from heart disease than any other cause. People are living longer long enough to have, and survive, heart attacksthat may become heart disease and heart failure further down the line.

In the catchment area that will feed into the Victorian Heart Hospital the population projections for people at risk of heart disease are even worse. Aboutone-quarter (or eight out of 31) of the metropolitan local government areas with above average heart attack rates fall into the catchment area of the new hospital. This is an area whose population needs a facility like this.

But the hospitalwill be so much more than a hospital for patients with cardiovascular disease and events. Much has been said about the dedicated areas for Monash University and Monash Health researchers devoted to cardiac research.

Having the researchers sitting in the midst of the clinicians and patients, and in many cases being situated within the hospital means the problems the scientists address are the ones that are identified by those at the coalface, the clinicians and health professionals.

One of the hospital'score research areas, for example, will be stem cell research. We have recruited some of the best stem cell scientists in the world. They will work with Monash University's Australian Regenerative Medicine Institute and heart hospital clinicians to develop cellular patches that can be created from a patient's own cells to replace the areas of the heart left dead by a heart attack. This damaged tissue, currently cannot be fixed, and often leads to heart failure, so the need for this sort of research is paramount.

Get the latest news and updates emailed straight to your inbox.

Monash Health has an outstanding international reputation for attracting clinical trials into new heart procedure techniques, with more than 30 trials currently being conducted. As an example, the international medical device makerMedtronicchose Monash Heart cardiologists to conduct the first trial of a new way to replace mitral valves in the hearts of patients whose health would not withstand traditional open-heart surgery. These trial patients have had their life saved by this device.

This is translational research at its best taking new discoveries and therapies and making sure they are safe in patients. These innovations then become, as fast as possible, treatments we can offer all Victorians. It is no surprise that many of Australia's largest medical device manufacturers and innovators are situated around Monash University and benefit from the strong biomedical focus the university offers.

Co-location of the Victorian Heart Hospital at the Monash University campus will strengthen the nexus between industry, biomedical research and clinical care, including clinical trials that will result in Victorians benefiting from the best advances in cardiac care.

The Victorian Heart Hospitalis a way for Victoria to future-proof its citizens against heart disease for the next five decades. It will be where we develop new technologies, devices and treatments that can be used to deal with the patients that come throughour doors.

There will be more non-surgical alternatives and prevention strategies developed and offered. We will provide a health and wellness department that assists patients in dealing with the depression that can follow cardiac surgery, as well as assisting patients in techniques that can help them lower their risk of further cardiac events.

The hospitalwill not only put Victoria on the world map, it will be a groundbreaking commitment to the health of Victorians.

Sarah Newton is deputy dean, external relations, Monash University's faculty of medicine, nursing and health sciences.

See the original post here:
Funding debate aside, this is why we need a new heart hospital - The Sydney Morning Herald

Recommendation and review posted by sam

Indian-origin doctor helps gene editing of human embryos – Times of India

NEW DELHI: For the first time, genetically modified human embryos have been developed in the US and Kashmir-born doctor Sanjeev Kaul has played a lead role in this breakthrough.

Scientists have now demonstrated an effective way of using a gene-editing tool to correct a disease-causing gene mutation in human embryos and stop it from passing to future generations.

Though this is not a full-fledged start of a revolution of having 'designer babies', the first steps, however, have been laid. China attempted this earlier.

A team of scientists has altered human embryos using a new technique called CRISPR CAS9 that edits genes and in this case it helped remove a fatal mutation that leads to heart attacks.

This now opens up an ethical 'Pandora's Box' if germline repairs and enhancements may become a thing in vogue.

As of now, the human embryos were not implanted in humans. But this now opens up exciting prospects of the world having designer babies soon.

The research published in British journal Nature shows the first genetically modified human embryos made in America.

A team of South Korean, Chinese and American scientists has identified how they could edit out a faulty gene that causes heart attacks in later life due to the thickening of heart walls.

One of the team members is Dr Kaul, who was born in Kashmir, studied in New Delhi and later immigrated to America.

"Although the rare heart mutation affects men and women of all ages, it is a common cause of sudden cardiac arrest in young people, and it could be eliminated in one generation in a particular family," said co-author Kaul, a professor of medicine (cardiovascular medicine) in the OHSU School of Medicine and director of the OHSU Knight Cardiovascular Institute.

"Thanks to advances in stem cell technologies and gene editing, we are finally starting to address disease-causing mutations that impact potentially millions of people," says Juan Carlos Izpisua Belmonte, a professor in California-based Salk Institutes Gene Expression Laboratory and a corresponding author of the paper.

"Gene editing is still in its infancy so even though this preliminary effort was found to be safe and effective, it is crucial that we continue to proceed with the utmost caution, paying the highest attention to ethical considerations."

CRISPR CAS9 or Clustered Regularly Interspaced Short Palindromic Repeats is a kind of a precise molecular scissor the scientists use to edit faulty genes.

Only selected healthy embryos were allowed to grow further that too only for a few days. The embryos were not implanted in humans.

The big step forward is that a higher percentage embryos were found to have been repaired in this American experiment than earlier attempts.

CRISPR holds promise for correcting mutations in the human genome to prevent genetic disease. Using an enzyme called Cas9, it is possible to snip a specific target sequence on a mutant gene.

The new study found that human embryos effectively repair these breaks in the mutant gene using the normal copy of this gene from a second parent as a template.

The resulting embryos contain now repaired, mutation-free copies of this gene.

The technique already has been used in animals for generating mutant models; however, the new study is the first to demonstrate that technique can be used in human embryos to convert mutant genes back to normal.

The study also demonstrated a way for overcoming a crucial problem in genome editing in embryos known as mosaicism.

Mosaicism refers to an outcome when not all cells in a multicellular embryo get repaired and some cells still carry a mutation.

"Every generation on would carry this repair because we have removed the disease-causing gene variant from that family's lineage," said senior author Shoukhrat Mitalipov, PhD, who directs the Center for Embryonic Cell and Gene Therapy at Oregon Health and Science University (OHSU), in Portland, Oregon, USA.

"By using this technique, it is possible to reduce the burden of this heritable disease on the family and eventually the human population."

The study provides new insight into a technique that could apply to thousands of inherited genetic disorders affecting millions of people worldwide.

The gene-editing technique described in this study, done in concert with in vitro fertilisation, could provide a new avenue for people with known heritable disease-causing genetic mutations to eliminate the risk of passing the disease to their children.

"If proven safe, this technique could potentially decrease the number of cycles needed for people trying to have children free of genetic disease," said co-author Paula Amato, associate professor of obstetrics and gynaecology in the OHSU School of Medicine.

Designer babies could be in the offing.

"Our results demonstrate the great potential of embryonic gene editing, but we must continue to realistically assess the risks as well as the benefits," adds Belmonte.

In this landmark study, the researchers worked with healthy donated human oocytes and sperm carrying the genetic mutation that causes cardiomyopathy or the thickening of heart walls.

View original post here:
Indian-origin doctor helps gene editing of human embryos - Times of India

Recommendation and review posted by simmons

Gene editing breakthrough: Perspective from a geneticist and a pastor – WTSP 10 News

A test eliminated a disease-causing gene, but some fear the technique could lead to designer babies.

Mark Rivera, WTSP 11:25 PM. EDT August 02, 2017

Genetics (iStock)

ST. PETE People have been sharing aNew York Times story all over social media: For the first time, scientists in the US have successfully changed a disease-causing gene inside a human embryo.

It was just a basic test. But the technique could one day stop genetic diseases and even birth defects.

The possibilities are incredible but where do you draw the line?

Could the same technique be used to change genes so babies are smarter, taller, and have the exact eye colors you want?

We spoke with a geneticist and a pastor to get perspective on the debate.

Scientists say diseases like breast and ovarian cancer, Huntington's disease and more could be cured before birth - never to be passed on again.

Before birth - during fertilization - doctors use a natural enzyme to cut out the bad gene and replace it with the good one.

The possibilities are enormous, said Johns Hopkins All Childrens Hospital geneticist Dr. Maxine Sutcliffe.

She says this could be a new paradigm of disease prevention in humans.

But there are two big issues. Safety first.

If you're going to cut into something. you want to make sure you don't damage something else, Sutcliffe said.

And ethics.

We have the potential, we have the expertise, we have the ability to keep this under control and let it work for the good of mankind as opposed to the destructive side, the manipulative side, or the wrong side, she said.

Sutcliffe said we are decades upon decades away from being able to pick the traits for our kids -- if we ever will be -- but should we cure a disease in a fetus if we can?

I mean who benefits from it? If it's only the wealthy that can benefit from this, then the wealthy that become healthier, the wealthy become smarter, the wealthy become better looking, whatever that is. Is that what we want as a culture? asked Rev. Dr. Craig Nelson.

Nelson pastors the First United Methodist Church in St. Petersburg.

There can be great benefits and people can become incredible gifts to society with all kinds of diversity that we have, he said.

Rev. Nelson said he is alive today in part because he received a gene therapy treatment to fight his stage 4 lung cancer.

First doctor said I had 6 months to a year to live 5 1/2 years ago, he said.

Where technologies can help us in eliminating pain and suffering, where it can lead to a healthier world and culture, pursue it, but you can't just say, 'Oh yeah it can do this, we're all in.'

When there's a preference that would start permeating culture, then that leads to uniformity. That leads to stormtroopers on 'Star Wars,' you know? ... I mean, Hitler tried it, you know? And where did that get us?

Makeit easy to keep up-to-date with more stories like this.Download the 10 Newsapp now.

Have a news tip? Email tips@wtsp.com, visit ourFacebook pageorTwitter feed.

2017 WTSP-TV

Read more:
Gene editing breakthrough: Perspective from a geneticist and a pastor - WTSP 10 News

Recommendation and review posted by Bethany Smith

WBZ-TV Riders Take On Pan-Mass Challenge – CBS Boston / WBZ

WELLESLEY (CBS) Several members of the WBZ-TV team took part in the Pan-Mass Challenge this weekend.

Among the 600 riders heading to Foxboro from Wellesley Sunday morning was WBZ-TV meteorologist Barry Burbank, riding his second PMC as a member of the WBZ Cyclones.

Its a fantastic ride, its great to be with everybody here, Burbank told WBZ NewsRadio 1030s Doug Cope. Were here for a common goal. Were all getting to the end line, and we want to find that cure for this horrendous disease cancer.

He and WBZ anchor David Wade talked to WBZ-TVs Nick Giovanni Sunday morning about why they ride the PMC.

WBZ-TVs David Wade at the start of day 2 of the Pan-Mass Challenge. (WBZ-TV)

This year was Wades fourth ride. He was riding for Team Gene Therapy. They ride in honor of Gene Aaron, a doctor who delivered Wades sons. Aaron is now battling pancreatic cancer, and the team is working to raise money for research.

The energy is incredible, and you get to meet some of the kids, some of the survivors, some of the people that youre riding for, he said.

Burbank said cancer has struck some of his friends, family, both young and old.

WBZ-TV anchor Lisa Hughes did the complete 192-mile ride.

It is the most perfect biking day, its beautiful, Hughes said. We saw the sun come up over the Cape Cod Canal, and all the fishermen and the blue herons, and he whole day has been perfect so far.

WBZ-TV reporter Mike LaCrosse also rode the PMC this year.

He finished the 192-mile route Sunday afternoon.

WBZ NewsRadio 1030s Doug Cope reports

Go here to read the rest:
WBZ-TV Riders Take On Pan-Mass Challenge - CBS Boston / WBZ

Recommendation and review posted by Bethany Smith

Scientists successfully doctor human embroyo – Examiner Enterprise

By Melissa Healy Los Angeles Times

(TNS) Using a powerful gene-editing technique, scientists have rid human embryos of a mutation that causes an inherited form of heart disease often deadly to healthy young athletes and adults in their prime.

The experiment marks the first time that scientists have altered the human genome to ensure a disease-causing mutation would disappear not only from the DNA of the subject on which its performed, but from the genes of his or her progeny as well.

The controversial procedure, known as germ-line editing, was conducted at Oregon Health & Science University using human embryos expressly created for the purpose. It was reported Wednesday in the journal Nature.

The new research comes less than six months after the National Academies of Science, Engineering and Medicine recommended that scientists limit their trials of human germ-line editing to diseases that could not be treated with reasonable alternatives at least for now.

In a bid to make the experiment relevant to real-life dilemmas faced by parents who carry genes for inherited diseases, the researchers focused their editing efforts on a mutation that causes inherited hypertrophic cardiomyopathy.

In this genetic condition, a parent who carries one normal and one faulty copy of a the MYBPC3 gene has a 50-50 chance of passing that mutation on to his or her offspring. If the child inherits the mutation, his or her heart muscle is likely to grow prematurely weak and stiff, causing heart failure and often early death.

In diseases where one parent carries such an autosomal dominant mutation, a couple will often seek the assistance of fertility doctors to minimize the risk of passing such a mutation on to a child. A womans egg production is medically stimulated, and eggs and sperm meet in a lab a process called in vitro fertilization. Then embryologists inspect the resulting embryos, cull the ones that have inherited an unwanted mutation, and transfer only unaffected embryos into a womans uterus to be carried to term.

In the new research, researchers set out to test whether germ-line gene editing could make the process of choosing healthy embryos more effective and efficient by creating more of them.

In the end, their experiment showed it could. The targeted correction of a disease-causing gene carried by a single parent can potentially rescue a substantial portion of mutant human embryos, thus increasing the number of embryos available for transfer, the authors wrote in Nature. Co-author Dr. Paula Amato, an Oregon Health & Science University (OHSU) professor of obstetrics and gynecology, said the technique could potentially decrease the number of cycles needed for people trying to have children free of genetic disease if its found safe for use in fertility clinics.

Along the way, though, many of the researchers findings were scientifically surprising. Long-feared effects of germ-line editing, including collateral damage to off-target genetic sequences, scarcely materialized. And mosaicism, a phenomenon in which edited DNA appears in some but not all cells, was found to be minimal.

The studys lead author, OHSU biologist Shoukhrat Mitalipov, called these exciting and surprising moments. But he cautioned that there is room to improve the techniques demonstrated to produce mutation-free embryos. As for conducting human clinical trials of the germ-line correction, he said those would have to wait until results showed a near-perfect level of efficiency and accuracy, and could be limited by state and federal regulations.

Eventually, Mitalipov said, such germ-line gene editing might also make it easier for parents who carry other gene mutations that follow a similar pattern of inheritance including some that cause breast and ovarian cancers, cystic fibrosis and muscular dystrophy to have healthy children who would not pass those genes to their own offspring.

There is still a long road ahead, predicted Mitalipov, who heads the Center for Embryonic Cell and Gene Therapy at the Portland university.

The research drew a mix of praise and concern from experts in genetic medicine.

Dr. Richard O. Hynes, who co-chaired the National Academies report issued in February, called the new study very good science that advances understanding of genetic repair on many fronts. Hynes, who was not involved with the latest research effort, said he was pleasantly surprised by researchers clever modifications and their outcomes.

Its likely to become feasible, technically not tomorrow, not next year, but in some foreseeable time. Less than a decade, Id say, said Haynes, a biologist and cancer researcher at MIT and the Howard Hughes Medical Institute.

University of California, Berkeley molecular and cell biologist Jennifer Doudna, one of pioneers of the CRISPR-Cas9 gene-editing technique, acknowledged the new research highlights a prospective use of gene editing for one inherited disease and offers some insights into the process.

But Doudna questioned how broadly the experiments promising results would apply to other inherited diseases. She said she does not believe the use of germ-line editing as a means to improve efficiency at infertility clinics meets the criteria laid out by the National Academies of Science, which urged that the techniques only be explored as treatment for diseases with no reasonable alternative.

Already, 50 percent of embryos would be normal, said Doudna. Why not just implant those?

Doudna said she worried that the new findings will encourage people to proceed down this road before the scientific and ethical implications of germ-line editing have been fully considered.

A large group of experts concluded that clinical use should not proceed until and unless theres broad societal consensus, and that just hasnt happened, Doudna said. This study underscores the urgency of having those debates. Because its coming.

What is clear is that the researchers a multinational team of geneticists, cardiologists, fertility experts and embryologists from OHSU and from labs in South Korea and China tried a number of innovations in an effort to improve the safety, efficiency and fidelity of gene editing. And most yielded promising results.

After retrieving eggs from 12 healthy female volunteers, researchers simultaneously performed two steps that had never been combined in a lab: At the same moment that they fertilized the eggs with the sperm of a man who carried a single copy of the mutated gene, they introduced the CRISPR-Cas9 repair machinery.

The resulting embryos took up the genetic-editing program so efficiently and uniformly that, after five days of incubation, 72.4 percent of the embryos (42 of 58) created and tested were free of the MYBPC3 mutation. By comparison, when sperm carrying the single mutation was used to fertilize eggs without any genetic manipulation, just 47.4 percent of embryos were free of the mutation linked to the deadly heart condition.

The researchers believe the timing and the techniques they used prompted the embryos to rely on the healthy maternal copy of the gene as a model for fixing the MYBPC3 mutation, and not a repair template they introduced alongside the editing machinery when the eggs were fertilized. Only one of the 42 embryos used the introduced template for repair. The scientists contrasted this process to the DNA-repair mechanism operating in stem cells, which do use repair templates.

As the embryos cells divided and they matured to the blastocyst stage the point at which they would usually be ready for transfer to a womans uterus _ they did so normally. After extensive testing, the embryos were used to make embryonic stem-cell lines, which are stored in liquid nitrogen and can be used in future research.

Researchers also noted that genetic mosaicism _ a concern raised by earlier experimental efforts at gene editing _ was virtually absent from the 42 embryos that were free of the disease-causing mutation. Only one of the 42 embryos exhibited mosaicism, a condition in which cells did not all carry the same mutation-free genetic code.

MITs Hynes said such findings offer important insights into how human embryos grow, develop and respond to anomalies, and will help families facing infertility and inherited illnesses.

Human embryogenesis is clearly different from that of a mouse, which we know a lot about, said Hynes. That needs to be studied in human embryos, and theres no other way to do it.

The results of the current study are not low enough yet for most applications _ certainly not for clinical applications, but its a big step forward, he added.

While calling the new research very nice science, Hynes downplayed fears that germ-line editing would soon lead to tinkering with such attributes as looks, personality traits and intelligence in human children. Were not looking at designed babies around the corner not for a long time, he said.

But we need to take advantage of the time and space we now have, he said, to make decisions about which uses of the technique are legitimate and which are not.

More here:
Scientists successfully doctor human embroyo - Examiner Enterprise

Recommendation and review posted by simmons

Selecting at negative 9 months – High Plains Journal

In 2014, the University of Arkansas estimated one purebred calf born from embryo transfer must have a market premium of $1,500 to $2,000 greater than naturally conceived calves in order to pay for the costs to produce it.

In the roughly 40 years or so that ET has been conducted in cattle, it wasnt until recently that embryos could be sorted according to sex. And most of that has been done in the dairy cattle businessnot the beef cattle business. That means even a successful ET calf on the ground may not in fact meet the ranchers selection requirements for that premium price that would pay their costs of production. Or, the calf may not exhibit the physiological traits that would match what his or her genetic potential had been on paper.

Months of planning and thousands of dollars invested in harvesting and implanting an embryo may either wind up in a stellar replacement female to advance your herds geneticsor it might result in a bull destined for the steer pen.

But Matt Barten, of Embruon, Salina, Kansas, is working to change that one beef calf embryo at a time. His company uses bovine embryo biopsy and genomic data captured by the various purebred beef cattle associations to evaluate embryos for producers. With a few cells, Bartens company can tell a rancher not only the sex of the embryo, but also what genetic traits the calf will exhibit in the pasture or in the feedlot.

I say that its making those genetic decisions at negative nine months, Barten said. By the time you have an embryo calf on the ground, you could have up to $2,000 in that calf. So, if you can make the decision to implant that embryo based on what that calf is in the nitrogen tank, it saves you time and money.

With embryo transfer, by and large, the biggest dollar figure and resources that you have tied up are in the recipient herd, Barten explained. Using his embryo biopsy technology a rancher can make transplant decisions as to not only what gender those embryos are, but if they have a recessive genetic profile or traits that a rancher would like to bring into a herd, before a pregnancy occurs.

Maybe more important is that it can help cattlemen build the desired genetics in their herds with more precision than they have ever had in the past.

Early adopter

Charlie Cartwright owns Cannon Ridge Angus in Shelbyville, Tennessee. He and his wife have built their Angus herd using artificial insemination, in vitro fertilization and embryo transfer since he retired from the military in 2013.

We bought the first 10 pregnant cows in September of 2013, just by going to various sales across the nation and trying to build our genetics, Cartwright said. Cannon Ridge markets replacement females to purebred cattlemen, so its important that he be able to select female embryos to transfer. But some ranchers might be more interested in the other capabilities of the testing, such as telling if an embryo carries harmful genetic traits that theyd like to select against.

My focus right now is on getting more females, Cartwright said. But as we get down the road and as GE-EPDs and DNA testing is more prevalent, we might start to look more at the DNA of the embryos. If Matt can tell me that these are her numbers, I can choose if I want to put that embryo in. If the embryo shows more traits coming from the mother or the sire, maybe I decide not to put the embryo in.

When we got started it was because I wanted to do full genomic profiling, Barten said. We wanted to offer the GE-EPD at Embruon. So now, using information from the Angus breed association, we can know genomically what that calf will be at the embryo level. We can tell within a group of 10 or 100 which embryos will have more carcass potential or more maternal potential genomically.

And, with each breed association collecting more genomic data on its cattle, the Embruon process can be used for practically any purebred cattle embryos.

Cell amplification

The process is breed-specific, Barten said. Probably the most applicable in the dairy industry because they have so many genotyped animals already. The Angus breed, though, is one that has built up its number of genotyped animals, he added.

Embruons process is fairly simple. A rancher like Cartwright can use conventional flushing methods to get embryos from his cows. Then, he overnight ships the embryos to Barten at Embruon in a culture media to grow while theyre on the way. Barten said its like culturing bacteria on a petri dish. The embryos are biopsied the next day.

The biopsy just takes a few cells from the outer layer of the embryo cell, what would eventually develop into the placenta for the calf in utero, Barten explained. This is where the process gets really delicate. Unlike a DNA sample from a live animals hair or tissue that is composed of hundreds of thousands of cells, there are fewer cells in an embryo to test. Barten works with Neogens GeneSeek Operations in Lincoln, Nebraska, to amplify the number of cells to get enough DNA for evaluation using the genomic data from the breed association.

Embryo before biopsy. (Photo courtesy ofEmbruon.)

Embryo after biopsy. (Photo courtesy ofEmbruon.)

Embryo recovering from biopsy. (Photo courtesy ofEmbruon.)

Embryo before biopsy. (Photo courtesy ofEmbruon.)

Embryo after biopsy. (Photo courtesy ofEmbruon.)

Embryo recovering from biopsy. (Photo courtesy ofEmbruon.)

The most difficult part of this was trying to get the DNA to amplify, Barten said. Its like having to turn a bushel basket of corn into two semi-loads so that you can run it through the pipeline.

Except, in this case every copy of those embryonic cellsevery corn kernelhas to be identical following amplification, or youll introduce errors. Barten said if theres an error in the cell amplification, it can introduce bias into the testing.

These cells have to go through amplification somewhere on the scale of 2,100 times, Barten explained. If you introduce an error, then the genetic prediction starts to get really skewed. Think about a sniper taking a shot at a half of a mile. If youre just one-eighth of an inch off, when you shoot, by the time the bullet reaches the target its a foot off. It took Barten working with GeneSeek a year to get the process fine-tuned so that theres a high degree of accuracy.

We need two things at the end of the day, Barten said. We have to have a high degree of accuracy in predicting what the embryo will become, and we have to be able to transfer the embryo for pregnancy.

Following their biopsy, the embryos stay on their culture for a little while to recover. Barten will look at the embryos under the microscope and evaluate if they are recovered and able to be implanted.

Moving the cost curve

From here, a breeder has two choices. The embryos can be frozen and the breeder can wait on the data to decide to implant them, or they can go ahead and implant them and decide after he gets the data if the pregnancies are what he desired. It all depends on their market goals, their labor resources and other factors.

This process works well for ranchers who dont have an infinite pool of recipient cows at their disposal, and who really need to make every decision count before they tie up their resources, Barten said. Its about moving the cost curve back to the point before theres a calf, and resources are devoted to something that isnt desired.

By making their decisions at negative nine months, the rancher can do in a year or two what it would take some other operation three to four years to do, Barten explained. Thats because every year hes making his decisions on the embryonic level, knowing what hell get. Barten worked with a Kansas State University graduate student, Dustin Aherin, to crunch the numbers. Using computer modeling they found the expense to run double the number of recipient cows in a year can add up to $40,000 in costs in a year, and a rancher could still wind up with calves he would not be able to sell at or above market value.

Bovine embryo biopsy isnt new, Barten said. The technology is used in many other applications. Barten developed his concept for Embruon after he graduated from Fort Hays State University. Hes worked as a bovine ultrasound technician and as an embryo transfer technician. In 2014, he had some clients who were dealing with a recessive trait in their herd, and he thought if he could identify the embryos that were free of the disorder versus those who were carriers, that he could help them. Eventually that led to the creation of Embruon, Barten said.

The science of the technology is what appeals to Cartwright and one of the reasons why hes an early adopter. Hes looking to see this fall in the 10 recipient cows hes implanted with Embruon-evaluated embryos what their pregnancy rates were and what were the final costs of his operation invested in the procedure.

Every cow and every rancher is different, and there are a lot of ways to do embryonic production, Cartwright said. I look at each one as a tool in the box. He added that ranchers need to evaluate for themselves if technology like this will work for them.

Barten is optimistic about the future of his company. They have plans to expand laboratory space into Wichita, Kansas, and adding staff to ease the workload. But for him, the real point of pride is helping cattlemen like his dad improve their herds more efficiently than they were ever able to before.

And all before an embryo is ever implanted.

Jennifer M. Latzke can be reached at 620-227-1807 or jlatzke@hpj.com.

Read more:
Selecting at negative 9 months - High Plains Journal

Recommendation and review posted by simmons

Researchers Explore the Science of Gender Identity – NBCNews.com

NEW YORK While President Donald Trump has thrust transgender people back into the conflict between conservative and liberal values in the United States, geneticists are quietly working on a major research effort to unlock the secrets of gender identity.

A consortium of five research institutions in Europe and the United States, including Vanderbilt University Medical Center, George Washington University and Boston Children's Hospital, is looking to the genome, a person's complete set of DNA, for clues about whether transgender people are born that way.

Two decades of brain research have provided hints of a biological origin to being transgender, but no irrefutable conclusions.

A worker checks the serial number on a slice of human brain before using a saw to cut a piece from the sample at a brain bank in the Bronx borough of New York City, New York, U.S. June 28, 2017. CARLO ALLEGRI / Reuters

Now scientists in the consortium have embarked on what they call the largest-ever study of its kind, searching for a genetic component to explain why people assigned one gender at birth so persistently identify as the other, often from very early childhood.

Researchers have extracted DNA from the blood samples of 10,000 people, 3,000 of them transgender and the rest non-transgender, or cisgender. The project is awaiting grant funding to begin the next phase: testing about 3 million markers, or variations, across the genome for all of the samples.

Knowing what variations transgender people have in common, and comparing those patterns to those of cisgender people in the study, may help investigators understand what role the genome plays in everyone's gender identity.

"If the trait is strongly genetic, then people who identify as trans will share more of their genome, not because they are related in nuclear families but because they are more anciently related," said Lea Davis, leader of the study and an assistant professor of medicine at the Vanderbilt Genetics Institute.

The search for the biological underpinnings is taking on new relevance as the battle for transgender rights plays out in the U.S. political arena.

One of the first acts of the new Trump administration was to revoke Obama-era guidelines directing public schools to allow transgender students to use bathrooms of their choice. Last week, the president announced on Twitter he intends to ban transgender people from serving in the military.

Related: Despite Trump's Tweets, Trans Army Sergeant Keeps Proudly Serving

Texas lawmakers are debating a bathroom bill that would require people to use the bathroom of the sex listed on their birth certificate. North Carolina in March repealed a similar law after a national boycott cost the state hundreds of millions of dollars in lost business.

Currently, the only way to determine whether people are transgender is for them to self-identify as such. While civil rights activists contend that should be sufficient, scientists have taken their search to the lab.

That quest has made some transgender people nervous. If a "cause" is found it could posit a "cure," potentially opening the door to so-called reparative therapies similar to those that attempt to turn gay people straight, advocates say. Others raise concerns about the rights of those who may identify as trans but lack biological "proof."

Davis stressed that her study does not seek to produce a genetic test for being transgender, nor would it be able to. Instead, she said, she hopes the data will lead to better care for transgender people, who experience wide health disparities compared to the general population.

One-third of transgender people reported a negative healthcare experience in the previous year such as verbal harassment, refusal of treatment or the need to teach their doctors about transgender care, according to a landmark survey of nearly 28,000 people released last year by the National Center for Transgender Equality.

Related: Major Transgender Rights Case Returns to Lower Court

Some 40 percent have attempted suicide, almost nine times the rate for the general population.

"We can use this information to help train doctors and nurses to provide better care to trans patients and to also develop amicus briefs to support equal rights legislation," said Davis, who is also director of research for Vanderbilt's gender health clinic.

The Vanderbilt University Medical Center in Tennessee has one of the world's largest DNA databanks. It also has emerged as a leader in transgender healthcare with initiatives such as the Trans Buddy Program, which pairs every transgender patient with a volunteer to help guide them through their healthcare visits.

The study has applied for a grant from the National Institutes of Health and is exploring other financial sources to provide the $1 million needed to complete the genotyping, expected to take a year to 18 months. Analysis of the data would take about another six months and require more funding, Davis said.

The other consortium members are Vrije University in Amsterdam and the FIMABIS institute in Malaga, Spain.

PROBING THE BRAIN

Until now, the bulk of research into the origins of being transgender has looked at the brain.

Neurologists have spotted clues in the brain structure and activity of transgender people that distinguish them from cisgender subjects.

A seminal 1995 study was led by Dutch neurobiologist Dick Swaab, who was also among the first scientists to discover structural differences between male and female brains. Looking at postmortem brain tissue of transgender subjects, he found that male-to-female transsexuals had clusters of cells, or nuclei, that more closely resembled those of a typical female brain, and vice versa.

Swaab's body of work on postmortem samples was based on just 12 transgender brains that he spent 25 years collecting. But it gave rise to a whole new field of inquiry that today is being explored with advanced brain scan technology on living transgender volunteers.

Dr. Ivanka Savic points to a study on the screen of her computer at her home in Los Angeles, California, U.S. June 30, 2017. Lucy Nicholson / Reuters

Among the leaders in brain scan research is Ivanka Savic, a professor of neurology with Sweden's Karolinska Institute and visiting professor at the University of California, Los Angeles.

Her studies suggest that transgender men have a weakened connection between the two areas of the brain that process the perception of self and one's own body. Savic said those connections seem to improve after the person receives cross-hormone treatment.

Her work has been published more than 100 times on various topics in peer-reviewed journals, but she still cannot conclude whether people are born transgender.

"I think that, but I have to prove that," Savic said.

Related: Pressure Mounts to Curtail Surgery on Intersex Children

A number of other researchers, including both geneticists and neurologists, presume a biological component that is also influenced by upbringing.

But Paul McHugh, a university professor of psychiatry at the Johns Hopkins School of Medicine, has emerged as the leading voice challenging the "born-this-way" hypothesis.

He encourages psychiatric therapy for transgender people, especially children, so that they accept the gender assigned to them at birth.

McHugh has gained a following among social conservatives, while incensing LGBTQ advocates with comments such as calling transgender people "counterfeit."

Last year he co-authored a review of the scientific literature published in The New Atlantis journal, asserting there was scant evidence to suggest sexual orientation and gender identity were biologically determined.

The article drew a rebuke from nearly 600 academics and clinicians who called it misleading.

McHugh told Reuters he was "unmoved" by his critics and says he doubts additional research will reveal a biological cause.

"If it were obvious," he said, "they would have found it long ago."

Follow NBC Out on Twitter, Facebook and Instagram

Read more from the original source:
Researchers Explore the Science of Gender Identity - NBCNews.com

Recommendation and review posted by Bethany Smith

Gene therapy via skin could treat diseases such as obesity – UChicago News

A University of Chicago-based research team has overcome challenges that have limited gene therapy and demonstrated how their novel approach with skin transplantation could enable a wide range of gene-based therapies to treat many human diseases.

In a study inthe journal Cell Stem Cell, the researchers provide proof-of-concept. They describe gene-therapy administered through skin transplants to treat two related and extremely common human ailments: Type 2 diabetes and obesity.

We resolved some technical hurdles and designed a mouse-to-mouse skin transplantation model in animals with intact immune systems, said study author Xiaoyang Wu, assistant professor in the Ben May Department for Cancer Research at the University of Chicago. We think this platform has the potential to lead to safe and durable gene therapy in mice and, we hope, in humans, using selected and modified cells from skin.

Beginning in the 1970s, physicians learned how to harvest skin stem cells from a patient with extensive burn wounds, grow them in the laboratory, then apply the lab-grown tissue to close and protect a patients wounds. This approach is now standard. However, the application of skin transplants is better developed in humans than in mice.

The mouse system is less mature, Wu said. It took us a few years to optimize our 3-D skin organoid culture system.

This study is the first to show that an engineered skin graft can survive long term in wild-type mice with intact immune systems. We have a better than 80 percent success rate with skin transplantation, Wu said. This is exciting for us.

The researchers focused on diabetes because it is a common non-skin disease that can be treated by the strategic delivery of specific proteins.

They inserted the gene for glucagon-like peptide 1 (GLP1), a hormone that stimulates the pancreas to secrete insulin. This extra insulin removes excessive glucose from the bloodstream, preventing the complications of diabetes. GLP1 can also delay gastric emptying and reduce appetite.

Using CRISPR, a tool for precise genetic engineering, they modified the GLP1 gene. They inserted one mutation, designed to extend the hormones half-life in the blood stream, and fused the modified gene to an antibody fragment so that it would circulate in the blood stream longer. They also attached an inducible promoter, which enabled them to turn on the gene to make more GLP1, as needed, by exposing it to the antibiotic doxycycline. Then they inserted the gene into skin cells and grew those cells in culture.

When these cultured cells were exposed to an air/liquid interface in the laboratory, they stratified, generating what the authors referred to as a multi-layered, skin-like organoid. Next, they grafted this lab-grown gene-altered skin onto mice with intact immune systems. There was no significant rejection of the transplanted skin grafts.

When the mice ate food containing minute amounts of doxycycline, they released dose-dependent levels of GLP1 into the blood. This promptly increased blood-insulin levels and reduced blood-glucose levels.

When the researchers fed normal or gene-altered mice a high-fat diet, both groups rapidly gained weight. They became obese. When normal and gene-altered mice got the high-fat diet along with varying levels of doxycycline, to induce GLP1 release, the normal mice grew fat and mice expressing GLP1 showed less weight gain.

Expression of GLP1 also lowered glucose levels and reduced insulin resistance.

Together, our data strongly suggest that cutaneous gene therapy with inducible expression of GLP1 can be used for the treatment and prevention of diet-induced obesity and pathologies, the authors wrote.

When they transplanted gene-altered human cells to mice with a limited immune system, they saw the same effect. These results, the authors wrote, suggest that cutaneous gene therapy for GLP1 secretion could be practical and clinically relevant.

This approach, combining precise genome editing in vitro with effective application of engineered cells in vivo, could provide significant benefits for the treatment of many human diseases, the authors note.

We think this can provide a long-term safe option for the treatment of many diseases, Wu said. It could be used to deliver therapeutic proteins, replacing missing proteins for people with a genetic defect, such as hemophilia. Or it could function as a metabolic sink, removing various toxins.

Skin progenitor cells have several unique advantages that are a perfect fit for gene therapy. Human skin is the largest and most accessible organ in the body. It is easy to monitor. Transplanted skin can be quickly removed if necessary. Skins cells rapidly proliferate in culture and can be easily transplanted. The procedure is safe, minimally invasive and inexpensive.

There is also a need. More than 100 million U.S. adults have either diabetes (30.3 million) or prediabetes (84.1 million), according the Centers for Disease Control and Prevention. More than two out of three adults are overweight. More than one out of three are considered obese.

Additional authors of the study were Japing Yue, Queen Gou, and Cynthia Li from the University of Chicago and Barton Wicksteed from the University of Illinois at Chicago. The National Institutes of Health, the American Cancer Society and the V Foundation funded the study.

Article originally appeared on Science Life.

Visit link:
Gene therapy via skin could treat diseases such as obesity - UChicago News

Recommendation and review posted by simmons

Nano-chip promises to heal organs at a touch | Cosmos – Cosmos

Injured tissues can be repaired and damaged organs healed using a new nanotech device that adapts a patients own skin to generate stem cells, according to a paper published in the journal Nature Nanotechnology.

Researchers from Ohio State University call the new technology tissue nanotransfection (TNT).

They say TNT which is basically a lab on a chip can adapt skin cells to change into any type of tissue required, which can then be introduced to injured or degenerated areas. They claim a success rate of 98%.

With this technology we can convert skin cells into elements of any organ with just one touch, says co-author Chandan Sen. This process only takes less than a second and is non-invasive, and then you're off. The chip does not stay with you, and the reprogramming of the cell starts. Our technology keeps the cells in the body under immune surveillance, so immune suppression is not necessary."

Lead author Daniel Gallego-Perez says the new technology comprises two elements: the nanotech chip designed to introduce reprogrammed DNA into existing adult cells; and a specific biological cargo that induces the cells to change from one type to another.

The device works using a small electrical charge.

It does not require any laboratory-based procedures, according to Gallego-Perez, and can be used at the point of care a doctors office, say, or an outpatient clinic.

The paper describes experiments on mice and pigs. These included using the device to act upon badly injured legs that lacked blood flow. One week after the application of TNT, vascular vessels reappeared. Within a fortnight flow was back within normal parameters.

In a second experiment, skin cells were converted into nerve cells and introduced into the brains of mice crippled by stroke.

Says Sen: By using our novel nanochip technology, injured or compromised organs can be replaced. We have shown that skin is a fertile land where we can grow the elements of any organ that is declining.

The concept is very simple, adds co-author James Lee: As a matter of fact, we were even surprised how it worked so well. In my lab, we have ongoing research trying to understand the mechanism and do even better. So this is the beginning, more to come.

Lee, Sen and Gallego-Perez were part of a group of researchers that lodged a patent application in 2016 for an earlier iteration of TNT: a device that enables compositions and methods for reprogramming somatic cells into induced endothelial cells.

Read the original:
Nano-chip promises to heal organs at a touch | Cosmos - Cosmos

Recommendation and review posted by Bethany Smith

First implants of stem-cell pouches to ‘cure’ type 1 diabetes – New Scientist

Stem cells have been cultured to treat many different of conditions

Lewis Houghton/Science Photo Library

By Andy Coghlan

Last week, two people with type 1 diabetes became the first to receive implants containing cells generated from embryonic stem cells to treat their condition. The hope is that when blood sugar levels rise, the implants will release insulin to restore them to normal.

About 10 per cent of the 422 million people who have diabetes worldwide have type 1 diabetes, which is caused by the bodys immune system mistakenly attacking cells in the pancreas that make insulin. For more than 15 years, researchers have been trying to find a way to use stem cells to replace these, but there have been several hurdles not least, how to get the cells to work in the body.

Viacyte, a company in San Diego, California, is trying a way to get round this. The firms thumbnail-sized implant, called PEC-Direct, contain cells derived from stem cells that can mature inside the body into the specialised islet cells that get destroyed in type 1 diabetes.

Advertisement

The implant sits just below the skin, in the forearm, for example, and is intended to automatically compensate for the missing islet cells, releasing insulin when blood sugar levels get too high.

If it works, we would call it a functional cure, says Paul Laikind, of Viacyte. Its not truly a cure because we wouldnt address the autoimmune cause of the disease, but we would be replacing the missing cells.

The device has already been safety tested in 19 people with diabetes, using smaller numbers of cells. Once implanted, the progenitor cells housed in the device did mature into islet cells, but the trial didnt use enough stem cells to try to treat the condition.

Now Viacyte has implanted PEC-Direct packages containing more cells into two people with type 1 diabetes. A third person will also get the implant in the near future. Once inside the body, pores in the outer fabric of the device allow blood vessels to penetrate inside, nourishing the islet progenitor cells. Once these cells have matured which should take about three months the hope is that they will be able to monitor sugar levels in the blood, and release insulin as required.

If effective, it could free people with type 1 diabetes from having to closely monitor their blood sugar levels and inject insulin, although they would need to take immunosuppressive drugs to stop their bodies from destroying the new cells.

If successful, this strategy could really change the way we treat type 1 diabetes in the future, says Emily Burns of the charity Diabetes UK. A similar way to treat the condition with pancreas cells from organ donors has been in use for nearly 20 years, successfully freeing recipients from insulin injections, but a shortage of donors limits how many people are able to have this treatment.

This isnt a problem with stem cells. The embryonic stem cells used to make the progenitor cells originally came from a spare early stage embryo donated by a woman who was having IVF. Because embryonic stem cells, and the progenitor cells made from them, can be multiplied in limitless amounts, Laikand says that, if the treatment works, the method would be able to treat everyone who has the condition.

A limitless source of human insulin-producing cells would be a major step forward on the journey to a potential cure for diabetes, says James Shapiro at the University of Alberta, Canada, who has collaborated with Viacyte on this project, and who pioneered the donor pancreas method decades ago. For sure, this will in the end prove to be a durable landmark for progress in diabetes care.

More on these topics:

Link:
First implants of stem-cell pouches to 'cure' type 1 diabetes - New Scientist

Recommendation and review posted by Bethany Smith

Breakthrough Stem Cell Study Offers New Clues to Reversing Aging – Singularity Hub

What causes the body to age?

The Greek Philosopher Aristotle thought it was the hearta hot, dry organ at the seat of intelligence, motion and sensation.

Fast-forward a few centuries, and the brain has overthrown the heart as master of thought. But its control over bodily agingif anywas unclear. Because each organ has its own pool of stem cells to replenish aged tissue, scientists have long thought that the body has multiple aging clocks running concurrently.

As it turns out, thats not quite right.

This week, a study published in Nature threw a wrench into the classical theory of aging. In a technical tour-de-force, a team led by Dr. Dongsheng Cai from the Albert Einstein College of Medicine pinpointed a critical source of aging to a small group of stem cells within the hypothalamusan ancient brain region that controls bodily functions such as temperature and appetite.

Like fountains of youth, these stem cells release tiny fatty bubbles filled with mixtures of small biological molecules called microRNAs. With age, these cells die out, and the animals muscle, skin and brain function declines.

However, when the team transplanted these stem cells from young animals into a middle-aged one, they slowed aging. The recipient mice were smarter, more sociable and had better muscle function. Andget thisthey also lived 10 to 15 percent longer than mice transplanted with other cell types.

To Dr. David Sinclair, an aging expert at Harvard Medical School, the findings represent a breakthrough in aging research.

The brain controls aging, he says. I can see a day when we are implanted with stem cells or treated with stem cell RNAs that improve our health and extend our lives.

Its incredible to think that a tiny group of cells in one brain region could be the key to aging.

But to Cai, there are plenty of examples throughout evolution that support the theory. Experimentally changing a few of the 302 neurons in the nematode worm C. elegans is often sufficient for changing its lifespan, he says.

Of course, a mammalian brain is much more complicated than a simple worm. To narrow the problem down, Cai decided to zero in on the hypothalamus.

The hypothalamus has a classical function to regulate the whole bodys physiology, he says, so theres a natural logic for us to reason that the hypothalamus might be involved in aging, which was never studied before.

Even so, it was a high-risk bet. The hippocampusbecause of its importance in maintaining memory with ageis the most popular research target. And while the hypothalamus was previously somehow linked to aging, no one knew how.

Cais bet paid off. In a groundbreaking paper published in 2013, he found that a molecule called NF-kappaB increased in the hypothalamus as an animal grew older. Zap out NF-kappaB activity in mice, and they showed much fewer age-related symptoms as they grew older.

But heres the kicker: the effects werent limited to brain function. The animals also better preserved their muscle strength, skin thickness, bone and tendon integrity. In other words, by changing molecules in a single part of the brain, the team slowed down signs of aging in the peripheral body.

But to Cai, he had only solved part of the aging puzzle.

At the cellular level, a cornucopia of factors control aging. There is no the key to aging, no single molecule or pathway that dominates the process. Inflammation, which NF-kappaB regulates, is a big contributor. As is the length of telomeres, the protective end caps of DNA, and of course, stem cells.

Compared to other tissues in the body, stem cells in the brain are extremely rare. So imagine Cais excitement when, just a few years ago, he learned that the hypothalamus contains these nuggets of youth.

Now we can put the two threads together, and ask whether stem cells in the hypothalamus somehow regulate aging, he says.

In the first series of experiments, his team found that these stem cells, which line a V-shaped region of the hypothalamus, disappear as an animal ages.

To see whether declined stem cell function contributes to aging, rather as a result of old age, the researchers used two different types of toxins to wipe out 70 percent of stem cells while keeping mature neurons intact.

The results were striking. Over a period of four months, these mice aged much faster: their muscle endurance, coordination and treadmill performance tanked. Mentally, they had trouble navigating a water maze and showed less interest in socializing with other mice.

All of these physiological changes reflected an acceleration in aging, Cai and team concluded in their article.

And the consequences were dire: the animals died months earlier than similar transgenic animals without the toxin treatment.

If the decline in stem cell function is to blame for aging, then resupplying the aged brain with a fresh source of stem cells should be able to reinvigorate the animal.

To test this idea, the team isolated stem cells from the hippocampus of newborn mice, and tinkered with their genes so that they were more resilient to inflammation.

We know the aged hypothalamus has more inflammation and that hurts stem cells, so this step was necessary, explained the authors.

When transplanted into middle-aged mice, they showed better cognitive and muscular function four months later. Whats more, they lived, on average, 10 percent longer than mice transplanted with other cell types. For a human, that means extending an 85-year life expectancy into 93. Not too shabby.

But the best was yet to come. How can a few cells have such a remarkable effect on aging? In a series of follow-up experiments, the team found that the pool of biological molecules called microRNAs was to thank.

microRNAs are tiny molecules with gigantic influence. They come in various flavors, bearing rather unimaginative names like 106a-5p, 20a-5p and so on. But because they can act on multiple genes at the same time, they pack a big punch. A single type of microRNA can change the way a cell workswhether it activates certain signaling pathways or makes certain proteins, for example.

While most cells make microRNAs, Cai found that the hypothalamus stem cells have a unique, very strong ability to pack these molecules up into blobs of membrane and shoot them out like a bubble gun.

Once outside the cell, the microRNAs go on a fantastic voyage across the brain and body, where they tweak the biology of other tissues.

In fact, when the team injected purified little bubbles of microRNAs into middle-aged mice, they also saw broad rejuvenating effects.

Cai explains: we dont know if the microRNAs are pumped out to directly affect the rest of the body, or if they first act on different areas of the brain, and the brain goes on to regulate aging in the body.

Even so, the aging field is intrigued.

According to Dr. Leonard Guarente, an aging biologist at MIT, the study could lead to new ways to develop anti-aging therapies.

Whats more, its possible the intervention could stack with other known rejuvenating methods, such as metformin, young blood or molecules that clean out malfunctioning cells.

Its possible that stem-cell therapy could boost the hypothalamus ability to regulate aging. However, scientists still need to know how stem cells link with the hypothalamus other main role, that is, releasing hormones.

Of course, injecting cells into the brain isnt a practical treatment. The team is now working hard to identify which of the thousands of types of microRNAs control aging and what exactly they do.

Then the goal is to validate those candidate anti-aging microRNAs in primates, and eventually, humans.

Of course humans are more complex. However, if the mechanism is fundamental, you might expect to see effects when an intervention is based on it, says Cai.

Stock Media provided by digitalreflections / Pond5

The rest is here:
Breakthrough Stem Cell Study Offers New Clues to Reversing Aging - Singularity Hub

Recommendation and review posted by simmons

Scientists Use Artificial Skin Implants to Treat Type 2 Diabetes The … – The Merkle

Very few people have ever heard ofthe concept of artificial skin transplants.That will change in the near future, though. Artificial skin transplants may be the one thing we need most to treat type 2 diabetes. The skin grafts based on CRISPR gene editing couldyield some very powerful results. Their first tests involving mice werepositive, butensuring the technology works for humans in the same way will besomething else entirely.

Alot of people may not like the sound of artificial skin transplants. It sounds a lot scarier than it really is, however. There is actually nothing to fear about them. In fact, we have been using artificial skin implants for several decades now.Burn patients often recover thanks to these implants, for example. Artificial skin implants have proven to be an invaluable tool in the world of healthcare so far, and it seems thenumber of use cases may be expanded upon. However,they havenever been deployed to treat diabetesup untilnow.

Scientists have now successfully used these implants to treat diabetes in mice. That is a major development in medicine. The researchers edited stem cells from newborn mice to control the release of ahormone stimulating insulin production. Once the cells were turned into skin grafts, they were given to mice suffering from diabetes.

The mice were not born with diabetes. Instead, researchers fed them high-fat diets to causeobesity. Acruel method, perhaps, thoughit is not uncommon to see this sort of thingin the medical sector. Obesity is still one of the main risk factors causing type 2 diabetes in humans. People with a high insulin resistance are particularly prone to developing thecondition. Diabeteswas induced in these mice usingsome modifications to create viable test criteria.

Once the mice received the artificial skin implants, their insulin resistance levels started to reverse. Additionally, they gained around half the weight as those not given the grafts. Thissuggests that people cantreat diabetes usingthese implants, although theywill not do much for anyone suffering from type 1 diabetes. Thosewho do suffer from that condition may soon have access to a cheap and efficient solution created from stem cells. The goal is to turn these stem cells into human skin over time.

There may be other clinical applicationsinvolving artificial skin implants we have yet to discover. Ever since doctors started treating burn patients with this technique, the quest to find other use cases has been in full effect. Thanks torecent breakthroughsin this field, one can now grow artificial skin in a lab. However, given the lack of human test subjects, finding other use cases has been pretty difficult. This is where the mice come into the picture, even though the results involving human subjects mightdiffer greatly.

This is not a cure for diabetes, but it is an approach to help people maintain their glucose levels. For now, it only works withtype 2 diabetes causedby obesity, but it is still an important breakthrough regardless. The bigger question is what other types of diseases may be treated through artificial skin implants.

More:
Scientists Use Artificial Skin Implants to Treat Type 2 Diabetes The ... - The Merkle

Recommendation and review posted by simmons

Skin grafts could replace the need for insulin injections in diabetics – Yahoo News

Dolgachov/123RF

CRISPR gene-editing therapy administered through skin grafts could help treat Type-2 diabetes and obesity, according to cutting-edge work carried out by researchers at the University of Chicago Medical Center.

Genetically modifying glucagon-like peptide 1 (GLP1), a hormone which stimulates the pancreas to secrete insulin, the researchers found that they were able to both decrease appetite and regulate blood sugar levels in mice. The work suggests that treatments such as insulin shots for diabetics could one day be replaced by simple skin grafts. This would be a significant advance since the procedure is safe, minimally invasive, inexpensive, and easy to monitor as well as not requiring patients toadminister their own ongoing treatment.

Skin transplant is easy to make with cultured skin stem cells, and has been used clinically for treatment of burn wound for decades, Xiaoyang Wu, an assistant professor at the University of Chicago, told Digital Trends. In this study, we took advantage of this well-established platform and showed that skin transplant with engineered skin stem cells can be used to deliver therapeutic proteins for treatment of obesity and diabetes. In animal models, we [have shown] this technology can reduce body weight gain and inhibit Type-2 diabetes development.

In the study, two groups of mice one with the skin grafts and another without were fed a high-fat diet. Those which had undergone the gene therapy gained only half the weight of those which had not, and developed less resistance to insulin. (Resistance to insulin can be a symptom that commonly precedes Type-2 diabetes.)

Our proof-of-concept work demonstrated the possibility for using engineered skin graft for treatment of many non-skin diseases, Wu said. Clinical translation of our findings will be relatively easy as skin transplantation in human patients have been well established and clinically used for many years. It is also a very versatile platform. The engineered skin grafts can be used to release many different therapeutic molecules, and the technique can be used for treatment of many other diseases, such as genetic disorders, including urea cycle disorders and hemophilia.

A paper describing the work was recently published in the journal Cell Stem Cell. Between this and some of the other innovative diabetes-related projects,hopefully we are not too far from finding a more permanent way to improve life for the more than the 30.3 millionU.S. adults who suffer from diabetes.

Read more from the original source:
Skin grafts could replace the need for insulin injections in diabetics - Yahoo News

Recommendation and review posted by sam

18 Beauty Buys to Pick Up on Your Next Whole Foods Run – Brit + Co


Brit + Co
18 Beauty Buys to Pick Up on Your Next Whole Foods Run
Brit + Co
We're all about finding beauty in unexpected places. That's why our latest obsession also happens to be our go-to for groceries. Whole Foods is known for their tough quality standards for food, but it turns out they're just as thorough when it comes to ...

See original here:
18 Beauty Buys to Pick Up on Your Next Whole Foods Run - Brit + Co

Recommendation and review posted by simmons

Early gene-editing holds promise for preventing inherited diseases – The Jerusalem Post

The secret to healing what ails you lies within your own DNA.(photo credit:DREAMSTIME)

Scientists have, for the first time, corrected a disease-causing mutation in early-stage human embryos using gene editing.

The technique, which uses the CRISPR- Cas9 system, corrected the mutation for a heart condition at the earliest stage of embryonic development so that the defect would not be passed on to future generations.

It could pave the way for improved in vitro fertilization outcomes as well as eventual cures for some thousands of diseases caused by mutations in single genes.

The breakthrough and accomplishment by American and Korean scientists, was recently explained in the journal Nature. Its a collaboration between the Salk Institute, Oregon Health and Science University and South Koreas Institute for Basic Science.

Thanks to advances in stem cell technologies and gene editing, we are finally starting to address disease-causing mutations that impact potentially millions of people, said Prof. Juan Carlos Izpisua Belmonte of Salks gene expression lab and a corresponding author of the paper. Gene editing is still in its infancy, so even though this preliminary effort was found to be safe and effective, it is crucial that we continue to proceed with the utmost caution, paying the highest attention to ethical considerations.

Though gene-editing tools have the power to potentially cure a number of diseases, scientists have proceeded cautiously partly to avoid introducing unintended mutations into the germ line (cells that become eggs or sperm).

Izpisua Belmonte is uniquely qualified to speak on the ethics of genome editing because, as a member of the Committee on Human Gene Editing at the US National Academies of Sciences, Engineering and Medicine, he helped author the 2016 roadmap Human Genome Editing: Science, Ethics and Governance.

Hypertrophic cardiomyopathy is the most common cause of sudden death in otherwise healthy young athletes, and affects approximately one in 500 people. It is caused by a dominant mutation in the MYBPC3 gene, but often goes undetected until it is too late. Since people with a mutant copy of the MYBPC3 gene have a 50% chance of passing it on to their own children, being able to correct the mutation in embryos would prevent the disease not only in affected children but also in their descendants.

The researchers generated induced pluripotent stem cells from a skin biopsy donated by a male with Hypertrophic cardiomyopathy and developed a gene-editing strategy based on CRISPR-Cas9 that would specifically target the mutated copy of the MYBPC3 gene for repair. The targeted mutated MYBPC3 gene was cut by the Cas9 enzyme, allowing the donors cells own DNA -repair mechanisms to fix the mutation during the next round of cell division by using either a synthetic DNA sequence or the non-mutated copy of MYBPC3 gene as a template.

Using IVF techniques, the researchers injected the best-performing gene-editing components into healthy donor eggs that are newly fertilized with donors sperm. All the cells in the early embryos are then analyzed at single-cell resolution to see how effectively the mutation was repaired.

They were surprised by the safety and efficiency of the method. Not only were a high percentage of embryonic cells get fixed, but also gene correction didnt induce any detectable off-target mutations and genome instability major concerns for gene editing.

The researchers also developed an effective strategy to ensure the repair occurred consistently in all the cells of the embryo, as incomplete repairs can lead to some cells continuing to carry the mutation.

Even though the success rate in patient cells cultured in a dish was low, we saw that the gene correction seems to be very robust in embryos of which one copy of the MYBPC3 gene is mutated, said Jun Wu, a Salk staff scientist and one of the authors.

This was in part because, after CRISPR- Cas9 mediated enzymatic cutting of the mutated gene copy, the embryo initiated its own repairs. Instead of using the provided synthetic DNA template, the team surprisingly found that the embryo preferentially used the available healthy copy of the gene to repair the mutated part.

Our technology successfully repairs the disease-causing gene mutation by taking advantage of a DNA repair response unique to early embryos, said Wu.

The authors emphasized that although promising, these are very preliminary results and more research will need to be done to ensure no unintended effects occur.

Our results demonstrate the great potential of embryonic gene editing, but we must continue to realistically assess the risks as well as the benefits, they added.

Share on facebook

Continue reading here:
Early gene-editing holds promise for preventing inherited diseases - The Jerusalem Post

Recommendation and review posted by sam

BGU researchers find genetic defect that causes male infertility – The Jerusalem Post

fertility feat 1 88 298.(photo credit:Illustrative photo)

A previously unknown genetic mutation that causes male infertility has been discovered by researchers from the faculty of health sciences at Ben-Gurion University of the Negev and the fertility and in-vitro fertilization unit at Soroka University Medical Center in Beersheba.

Five percent of men suffer from infertility. About a fifth of them have a lack of sperm production, azoospermia, though the reasons are still a mystery.

The study was made with the participation of five men from a single family treated by a team from Sorokas in vitro fertilization unit, led by Prof. Eitan Lunenfeld, chairman of the obstetrics and gynecology department. The men suffered from lack of sperm in their ejaculate and spermatogenic arrest in their testes, but with no obvious cause.

Profs. Ruti Parvari and Mahmoud Huleihel from the Shraga Segal Department of Microbiology and Immunology and the Fertility Research Center discovered a mutation in a gene that is supposed to protect the full DNA sequence in sperm.

The mutation inactivates the function of the gene, thereby arresting the production of sperm. First author on the article was Maram Arafat from Parvaris research group.

The results link damage to this gene with infertility for the first time. As a result of this study, specific scans in the future will be available to test for mutations in this gene, which are important for prognostic and treatment of the couples, the researchers wrote in the Journal of Medical Genetics

Share on facebook

Read the original here:
BGU researchers find genetic defect that causes male infertility - The Jerusalem Post

Recommendation and review posted by Bethany Smith

Gene editing for ‘designer babies’? Highly unlikely, scientists say. – Pittsburgh Post-Gazette


Pittsburgh Post-Gazette
Gene editing for 'designer babies'? Highly unlikely, scientists say.
Pittsburgh Post-Gazette
After researchers snipped the harmful mutation from the male gene, it copied the healthy sequence from that spot on the female gene. That was a surprise to the scientists, who had inserted a ... Allowing any form of human germline modification leaves ...

and more »

See original here:
Gene editing for 'designer babies'? Highly unlikely, scientists say. - Pittsburgh Post-Gazette

Recommendation and review posted by simmons

Breakthrough: Doctors can now ‘edit’ genes in human embryos – Health24

In a first-ever experiment, geneticists have successfully modified a human embryo to remove a mutation that causes a life-threatening heart condition.

This is the first study to demonstrate that a gene-editing technique can be used in human embryos to convert mutant genes back to their normal version, the researchers said.

This new procedure tackled a genetic mutation in human embryos that causes hypertrophic cardiomyopathy, an inherited condition in which the heart muscle becomes abnormally thick.

The mutation was successfully repaired in 72% of 18 embryos that were created in a lab using sperm from a male donor who carries the hereditary heart condition, said team member Dr Paula Amato. She is an adjunct associate professor of obstetrics and gynaecology at Oregon Health & Science University (OHSU) in Portland.

Unlike other parts of the world in which cardiomyopathy is rare, heart muscle disease is endemic in Africa.

Impact on future generations

The procedure also might work in other genetic diseases caused when a person has one good copy and one mutated copy of a gene, Amato said. These include cystic fibrosis and cancers caused by mutated BRCA genes.

"This embryo gene correction method, if proven safe, can potentially be used to prevent transmission of genetic disease to future generations," Amato said.

But while the procedure is considered to be the first of its kind, human trials are not currently allowed in the United States.

A serious heart condition

Hereditary hypertrophic cardiomyopathy occurs in about one out of every 500 adults, and is passed along when a person winds up with one good copy and one mutated copy of a gene called MYBPC3, the researchers said.

There's a 50% chance that the children of a parent with the disease will inherit the genetic mutation for the disease, according to a Mayo Clinic estimate.

People with hypertrophic cardiomyopathy are at increased risk of heart failure and sudden heart death. The condition is the most common cause of sudden death in otherwise healthy young athletes, researchers said in background notes.

How the 'editing' is done

To repair the problem, the research team "broke" the mutated version of the MYPBC3 gene inside human embryos, using technology that allows scientists to snip a specific target sequence on a mutant gene.

Scientists discovered that when this occurs, a DNA repair process employed within human embryos activates to fix the broken gene, using the normal copy of the gene as a template.

The result: an embryo with two healthy copies of the gene that, if implanted in a woman and allowed to gestate, should result in a baby free from risk of hereditary cardiomyopathy. Further, any children descended from that baby should also be free from this genetic risk.

The researchers found that when they performed this procedure, all the cells in corrected embryos wound up containing two normal copies of the gene, Amato said. The new report was published in the journalNature.

The next step

Researchers will next focus on testing the safety and improving the efficiency of the CRISPR-Cas9 process, possibly by using other genetic tools in combination with it, Mitalipov said. After that, they could proceed to human trials, in which the corrected embryos would be implanted with the goal of establishing pregnancy.

In the United States, the US Food and Drug Administration is prohibited from considering clinical trials related to germline genetic modification, Amato said. In addition, the US National Institutes of Health are not allowed to use federal funds to promote embryo research. It is possible that human trials could occur in another country with laws allowing such procedures, Mitalipov said.

In the area of stem cell research, South Africa allows the derivation of human embryonic stem cells from excess In vitro fertilization (IVF) embryos, and also allows for the creation of human embryos for research.

Read more:
Breakthrough: Doctors can now 'edit' genes in human embryos - Health24

Recommendation and review posted by simmons

Human embryos ‘edited’ from potentially fatal gene mutation – Jordan Times

Using a powerful gene-editing technique, scientists have rid human embryos of a mutation that causes an inherited form of heart disease often deadly to healthy young athletes and adults in their prime.

The experiment marks the first time that scientists have altered the human genome to ensure a disease-causing mutation would disappear not only from the DNA of the subject on which its performed, but from the genes of his or her progeny as well.

The controversial procedure, known as germ-line editing, was conducted at Oregon Health & Science University using human embryos expressly created for the purpose. It was reported in the journal Nature.

The new research comes less than six months after the National Academies of Science, Engineering and Medicine recommended that scientists limit their trials of human germ-line editing to diseases that could not be treated with reasonable alternatives at least for now.

In a bid to make the experiment relevant to real-life dilemmas faced by parents who carry genes for inherited diseases, the researchers focused their editing efforts on a mutation that causes inherited hypertrophic cardiomyopathy.

In this genetic condition, a parent who carries one normal and one faulty copy of a the MYBPC3 gene has a 50-50 chance of passing that mutation on to his or her offspring. If the child inherits the mutation, his or her heart muscle is likely to grow prematurely weak and stiff, causing heart failure and often early death.

In diseases where one parent carries such an autosomal dominant mutation, a couple will often seek the assistance of fertility doctors to minimise the risk of passing such a mutation on to a child. A womans egg production is medically stimulated, and eggs and sperm meet in a lab a process called in vitro fertilisation. Then embryologists inspect the resulting embryos, cull the ones that have inherited an unwanted mutation, and transfer only unaffected embryos into a womans uterus to be carried to term.

In the new research, researchers set out to test whether germ-line gene editing could make the process of choosing healthy embryos more effective and efficient by creating more of them.

In the end, their experiment showed it could. The targeted correction of a disease-causing gene carried by a single parent can potentially rescue a substantial portion of mutant human embryos, thus increasing the number of embryos available for transfer, the authors wrote in Nature. Co-author Dr Paula Amato, an Oregon Health & Science University (OHSU) professor of obstetrics and gynaecology, said the technique could potentially decrease the number of cycles needed for people trying to have children free of genetic disease if its found safe for use in fertility clinics.

Along the way, though, many of the researchers findings were scientifically surprising. Long-feared effects of germ-line editing, including collateral damage to off-target genetic sequences, scarcely materialised. And mosaicism, a phenomenon in which edited DNA appears in some but not all cells, was found to be minimal.

The studys lead author, OHSU biologist Shoukhrat Mitalipov, called these exciting and surprising moments. But he cautioned that there is room to improve the techniques demonstrated to produce mutation-free embryos. As for conducting human clinical trials of the germ-line correction, he said those would have to wait until results showed a near-perfect level of efficiency and accuracy, and could be limited by state and federal regulations.

Eventually, Mitalipov said, such germ-line gene editing might also make it easier for parents who carry other gene mutations that follow a similar pattern of inheritance including some that cause breast and ovarian cancers, cystic fibrosis and muscular dystrophy to have healthy children who would not pass those genes to their own offspring.

There is still a long road ahead, predicted Mitalipov, who heads the Centre for Embryonic Cell and Gene Therapy at the Portland university.

The research drew a mix of praise and concern from experts in genetic medicine.

Dr Richard O. Hynes, who co-chaired the National Academies report issued in February, called the new study very good science that advances understanding of genetic repair on many fronts. Hynes, who was not involved with the latest research effort, said he was pleasantly surprised by researchers clever modifications and their outcomes.

Its likely to become feasible, technically not tomorrow, not next year, but in some foreseeable time. Less than a decade, Id say, said Haynes, a biologist and cancer researcher at MIT and the Howard Hughes Medical Institute.

University of California, Berkeley molecular and cell biologist Jennifer Doudna, one of pioneers of the CRISPR-Cas9 gene-editing technique, acknowledged the new research highlights a prospective use of gene editing for one inherited disease and offers some insights into the process.

But Doudna questioned how broadly the experiments promising results would apply to other inherited diseases. She said she does not believe the use of germ-line editing as a means to improve efficiency at infertility clinics meets the criteria laid out by the National Academies of Science, which urged that the techniques only be explored as treatment for diseases with no reasonable alternative.

Already, 50 per cent of embryos would be normal, said Doudna. Why not just implant those?

Doudna said she worried that the new findings will encourage people to proceed down this road before the scientific and ethical implications of germ-line editing have been fully considered.

A large group of experts concluded that clinical use should not proceed until and unless theres broad societal consensus, and that just hasnt happened, Doudna said. This study underscores the urgency of having those debates. Because its coming.

Read the original post:
Human embryos 'edited' from potentially fatal gene mutation - Jordan Times

Recommendation and review posted by Bethany Smith

First human embryo editing experiment in US ‘corrects’ gene for heart condition – Washington Post

Scientists have successfully edited the DNA of human embryos to erase a heritable heart condition that isknown for causingsudden death in young competitive athletes, cracking openthe doors toa controversial new era in medicine.

This is the first time gene editing on human embryos has been conducted in theUnited States. Researcherssaid in interviews this weekthat theyconsider their work very basic. The embryos were allowed to grow for only a few days, and there was never any intention to implant them to create a pregnancy. But they also acknowledged that they will continue to move forward with the science, with theultimate goal of being able to correct disease-causing genes in embryos that will develop into babies.

News of the remarkable experiment began to circulate last week, but details became public Wednesday with a paper in the journal Nature.

The experiment is the latest example of how the laboratory tool known as CRISPR (orClustered Regularly Interspaced Short Palindromic Repeats), a type of molecular scissors, is pushing the boundaries of our ability to manipulate life, and it has been receivedwith both excitement and horror.

The most recent work is particularly sensitive because it involves changes to the germ line that is, genes that could be passed on to future generations. The United States forbids the use of federal funds for embryo research, and theFood and Drug Administration is prohibited from considering any clinical trials involving genetic modifications that can be inherited. A report from the National Academies of Sciences, Engineering and Medicine in February urged caution in applying CRISPR to human germ-line editingbut laid out conditions by whichresearch should continue. The new study abides by those recommendations.

This animation depicts the CRISPR-Cas9 method for genome editing a powerful new technology with many applications in biomedical research, including the potential to treat human genetic disease or provide cosmetic enhancements. (Feng Zhang/McGovern Institute for Brain Research/MIT)

Shoukhrat Mitalipov, one of the lead authors of the paper and a researcher at Oregon Health & Science University, said that he is conscious ofthe need for a larger ethical and legal discussion about genetic modification of humans but that his team's work isjustified because it involves correcting genes rather than changing them.

Really we didnt edit anything. Neither did we modify anything, Mitalipov said. Our program is toward correcting mutant genes.

Alta Charo, a bioethicist at the University of Wisconsin at Madison who is co-chair of the National Academies committee that looked at gene editing,said that concerns about the work that have been circulating in recent days are overblown.

What this represents is a fascinating, important and rather impressive incremental step toward learning how to edit embryos safely and precisely, she said. However, no matter what anybody says, this is not the dawn of the era of the designer baby. She said that characteristics that some parents might desire, such as intelligence and athleticism, are influenced by multiple genes and that researchers don't understand all the components of how such characteristics areinherited, much less have the ability to redesign them.

The research involved eggs from 12 healthy female donors and sperm from a male volunteer who carries the MYBPC3 gene, which causes hypertrophic cardiomyopathy. HCM is a disease that causes an abnormal thickening of the heart muscle butcan cause no symptoms and remain undetected until it causes sudden cardiac death. There's no way to prevent or cure it, and it affects1 in 500 people worldwide.

Around the time the sperm was injected into the eggs, researchers snipped out the gene that causes the disease. The result was far more successful than the researchers expected: As the embryo's cells began to divide and multiply, a huge number appearedto be repairing themselves by using the normal, non-mutated copy of the gene from the women'sgenetic material. In all, they saw that about 72 percent were corrected, a very high number. Researchers also noticed that theredidn't seem to be any off-target changes in the DNA, which has been a major safety concern ofgene-editing research.

Mitalipov said he hoped the technique could one day be applied to a wide variety of genetic diseases and that one of the team'snext targets may be the BRCA gene mutation, which is associated with breast cancer.

The first published work involving human embryos, reported in 2015, was done in Chinaand targeted a gene that leads to theblood disorder beta thalassemia. But those embryos were abnormal and nonviable, and there were far fewer than the number used in the U.S. study.

Juan Carlos Izpisua Belmonte, a researcher at the Salk Institute who is also a co-author on the new study, saidthat there are many advantages to treating an embryo rather than a child or an adult. When dealing with an embryo in its earliest stages, only a few cells are involved, while in a more mature human being there aretrillions of cells in the body and potentially millions that must be corrected to eradicate traces of a disease.

Izpisua Belmonte said that even if the technology is perfected, it could deal with only a small subset of human diseases.

Idont want to be negative with our own discoveries, but it is important to inform the public of what this means, he said. In my opinion the percentage of people that would benefit from this at the current way the world is rather small. For the process to make a difference, the child would have to be born through in vitro fertilization or IVF and the parentswould have to know the child has the gene for a disease to get it changed. But the vast majority ofchildren are conceived the natural way, and this correction technology would not work in utero.

For years, some policymakers, historians and scientists have been calling for a voluntary moratorium on the modification of the DNA of human reproductive cells. The most prominent expression of concern came in the form of a 2015 letter signed by CRISPR co-inventor Jennifer Doudna, Nobel Laureate David Baltimore and 16 other prominent scientists. They warned that eliminating a genetic disease could have unintended consequences on human genetics, society and even the environment far into the future.

On Wednesday,Marcy Darnovsky, executive director of the Center for Genetics and Society, warned that the O.H.S.U. research would result in fertility clinics offering genetic upgrades to those able to afford them.

Once those commercial dynamics kick in, we could all too easily find ourselves in a world where some peoples children are considered biologically superior to the rest of us, she said in a statement. We need to ask ourselves whether we want to add that new kind of excuse for extreme social disparities to the ones we already tolerate.

Researchers who worked on the heart-condition experiment appear to have differing views on where their work is headed.

Paula Amato, a reproductiveendocrinologist with O.H.S.U., was excited about the idea of being able to editout diseases before birth. She said that while pre-implantation genetic screening of embryos is now available, it isn't perfect.She talked about how one of her patients went through three cycles of in vitro fertilizationbut all theeggs that were harvested hadthegene mutation that causes diseases.

With gene correction technology, Amatosaid, we could have rescued some of those embryos.

ButIzpisua Belmonte said he is focusing on using thefindings from this study to further research into gene modifications during a pregnancy or after birth into adulthood.

Ifeel that the practical thing to do is deal with the diseases people have, not with the disease they may have, he said.

Mitalipov said he hopes regulators will provide more guidance on what should or should not be allowed.

Otherwise, he said, this technology will be shifted to unregulated areas, which shouldnt be happening.

This story has been updated.

Read more:

A new CRISPR breakthrough could lead to simpler, cheaper disease diagnosis

Scientists debate the ethics of CRISPR

Ethicists urge caution in applying CRISPR to humans

Jennifer Doudna ponders 'what it means to be human' on the frontier of gene editing

Excerpt from:
First human embryo editing experiment in US 'corrects' gene for heart condition - Washington Post

Recommendation and review posted by simmons

Cycling and gender: how and why male and female cyclists need to train differently – Cycling Weekly

Physiological differences mean different training programmes depending on your sex

The biggest single difference in sporting performance separating one cyclist from another is gender. Since 1983, when the gender gap stabilised in Olympic sports, there has been a consistent average difference across all sports of around 10 per cent.

In track cycling, Dutch researchers found an average speed discrepancy of 12.6 per cent; the figure from similar German research was 11 per cent. On the roads, world and US masters records show the difference in the 25-mile TT is around 10 per cent.

The most obvious place to search for an explanation of this difference is in our physiology. However, very little sports science research is undertaken on women. This is partly because hormonal fluctuations mean you need a greater number of female subjects to obtain reliable results. We have a large gap in our collective understanding of how sex-related characteristics affect performance.

Drawing comparisons is also difficult; among women athletes, rarely are we comparing like with like. Body size is just one important difference with huge variation, and other physiological variables must be scaled accordingly. This presents challenges to science.

Jamie Pringle, a physiologist who has coached many world and Olympic champions, says: The most consistent observation about the difference is that women have lower total mass of haemoglobin in their blood, compared to men, and less blood in total. This means less capacity to transport oxygen in the blood, which, when combined with the hearts ability to pump that blood, and the muscles capacity to extract the oxygen from it, is a key determinant of aerobic fitness and endurance.

>>> 11 of the best fitness upgrades you should try

According to Pringle, a well-trained female has about 10 to 12 per cent less haemoglobin for each kilogram of body mass compared to a male athlete. To test the impact of this difference, researchers had 10 male cyclists donate approximately one litre of blood so that their haemoglobin levels matched those of the studys 10 female participants.

Three days later, the riders undertook a VO2 max test and a performance trial: the mens VO2 max values had fallen by seven per cent and their endurance capability was cut by around five per cent, indicating that haemoglobin accounts for at least half of the performance difference between the sexes.

Testosterone level is another important point of difference. Research published in the latest edition of the British Journal of Sports Medicine found that female athletes with higher levels of testosterone had a competitive advantage of up to 4.5 per cent over rivals with typical levels. Other differentiators include the amount of oxygen used per watt of power generated, and fat-burning capacity.

The menstrual cycle can have a huge impact on a female riders performance (Credit: Jesse Wild)

Dr Adam Simon, the chief medical officer at Push Doctor, says: Men tend to be more muscular and have heavier bones, whereas women naturally have more body fat.

The body fat issue is important because, to climb well, it is advantageous to have low body fat. For a female athlete, having very low body fat risks both their bone and reproductive health.

In assessing how these sex-related differences affect trainability and adaptation to exercise, science has much more work to do.

Human performance is far too complex to be attributable to isolated genes, says Pringle. It will be a while until this physiological photograph develops.

Nonetheless, some studies on nutrition have found that gender has an impact on optimal hydration; and men have been found to respond better then women to carb-loading.

>>> Do cyclists really need to carb-load before a big ride?

Developments in genomics are likely to uncover many more differences between the sexes. In a recent study comparing the physical traits of mice, at the Wellcome Trust Sanger Institute in Cambridge, researchers found that sex affected nearly 60 per cent of quantitative traits such as bone mass and 10 per cent of qualitative traits such as head shape.

Sex was also seen to influence the switching on and off of certain genes, a finding that has implications for disease treatment and possibly, one day, individualised training.

Studying the ageing process also helps explain the impact of physiological differences between the sexes. Before puberty, girls and boys show similar red blood cell profiles; the differences emerge only after menstruation begins. Girls body fat levels increase while boys gain muscle mass and their testosterone levels increase. Importantly for cyclists, males end up with higher lean leg volume.

At the older end of the scale, a US study found womens performances in the 25-mile TT declined faster as they aged; the drop-off steepened from 9.5 per cent at 40 to 16.6 per cent at 50.

These differences could be down to the menopause, which, explains Simon, causes lots of symptoms that are unhelpful for a womans cycling performance. The arrival of hot flushes means that blood has a tendency to head for the surface of the skin rather than the muscles where its needed. Hormonal changes mean that building and maintaining muscles becomes harder and, to complete the double whammy, it becomes harder to stay lean.

The key difference pre-menopause is menstruation. Georgia Bruinvels, a PhD researcher at UCL, found that 41.7 per cent of female athletes felt their menstrual cycle affected their performance. The effects include increased injury risk from hormonal changes, having to deal with pain and cramps, and of course monthly loss of blood, potentially resulting in iron deficiency.

>>> How to set your saddle height: calculate the perfect position

The physiological differences, largely limiting power rather than endurance, suggest the gender performance gap should reduce as the distances increase. Male traits more fast-twitch fibres, more haemoglobin and therefore higher V02 max are less advantageous in ultra-endurance events. In fact, certain female traits become advantageous.

In cycling, it pays to be aerodynamic, says Pringle. A typically smaller-framed female athlete is more aerodynamic and lighter in the hills.

Ultra-distance cyclist Jasmijn Muller agrees: Whereas over shorter distances males larger muscles may help with sprinting efforts, they also fatigue more quickly. Women can keep going for longer on less fuel, as they have proportionally more fat, which burns more slowly than carbs.

Over longer distances, mental strength and competitiveness can prove decisive, and Muller believes women have the edge in this regard too. The longer the race, the more mental a game it becomes. Women are built for labour, which is after all a very painful endurance feat. A high tolerance to pain, and a strong desire to prove that we can perform as well as men in ultra races, can get you a long way.

Are there really psychological differences between men and women? Sports psychology rarely finds major differences in terms of personality traits or mental skills, but interesting findings have been made relating to confidence. Broadly, female athletes have been shown to display higher levels of anxiety.

Of course, its hard to determine whether this higher anxiety is down to genetics or environment (including social factors), or a combination of the two. It could be that attitudes around cycling e.g. the presumption that men are naturally more competitive have a persistent, widespread effect. Social elements are clearly important, as they can affect confidence and anxiety and even, for women, whether they choose to ride bikes in the first place.

Watch: Can cycling improve your sex life?

Far fewer women than men race bikes: only 18 per cent of British Cycling licence holders are female. Some of the average difference in performance inevitably comes down to participation levels: greater numbers mean raised competitiveness the performance bar is pushed higher. There have been standalone exceptional female cyclists, such as Beryl Burton, but could such women have performed even better in stacked fields with close rivals snapping at their heels?

Muller says she would love to see more women challenging her. It creates a great atmosphere, and competition spurs you on to go faster and really be your best. I love racing in long-distance time trials where I know some of my key female rivals will be competing. In 2015, Jill Wilkinson and I battled it out over 12 hours, with me taking the win by a mere 192 metres.

The UK government is currently trying to increase female participation across all sports. A recent survey for Womens Sports Week found that while 83 per cent of sports now pay equal prize money, cycling is in the minority that does not. Coryn Rivera received 1,100 for winning the womens Tour of Flanders, whereas Philippe Gilbert netted 20,000 for winning the mens version.

When wages and sponsorship are added into the mix, the disparity widens. Why would parents encourage their daughter into a sport that values her race-winning talent, skills and time as worth only one 20th of a mans?

The second-class culture isnt just about money. It is about wider support. The way cycling is set up, from UCI level downwards, means that female athletes receive less technical help, have to make do with less advanced equipment, and often miss out on physiological or psychological support.

>>> How elite riders combine high level racing with full-time jobs

Most elite female athletes unless they are on the GB programme have to work full-time and squeeze in their training on top.

Even the timing of events means that the big crowds or TV coverage are reserved for the mens races, which creates a very different race environment. Only a few weeks ago at the Irish National Road Race Championships, the female peloton was pulled over and made to wait for the mens race to pass.

Add into this dubious mix a cycling culture that still features podium girls, objectifying marketing tactics, a pink it and shrink it attitude to female kit, and high-profile claims of sexism (revealed in recent reports and rider autobiographies) is it any wonder cycling is failing to attract women?

So, on average, male riders are stronger and more powerful. They have more blood carrying more oxygen, less fat, and more fast-twitch fibres. And they can train unrestricted by menstrual cycles and attendant fluctuating hormone levels.

As distances lengthen, these physiological differences become less important, yet there remains a persistent gender gap. There are problems with the culture of the sport and low participation levels among women.

To reduce the performance gap, we need to move away from thinking of female athletes as little men and instead design training that optimises their physiology. At the same time, we need to take a long, hard look at the culture in cycling to ensure we treat cyclists equally, whatever their gender.

Male and female athletes, because of the differences in their physiology, sometimes need to train differently. Georgia Bruinvels, a research scientist at analytics specialist Orreco, and Level 3 coach Holly Seear of Spring Cycling Coaching, explain.

Men develop more fast-twitch fibres than women. Women dont naturally use their posterior chain, activate their core and glutes as much as men. Female athletes are more quad-dominant and develop muscle more slowly.

Female athletes should therefore do more core and glute activation and more specific acceleration work. Males can pick certain times of the year for strength training, while allowing their legs to feel fresher during race season.

Men benefit from higher levels of testosterone, which help to build muscle and bone mass. Women need many hormones working in unison for menstrual cycles. And everyone relies on the healthy levels of metabolic hormones such as adrenalin and insulin.

Female athletes need to spot the patterns because at different times of the month different proportions of glycogen and fats are needed to fuel training, sweat responses, core temperature and blood plasma volume and can even affect emotional response. It is therefore important for women to time training sessions accordingly, as well as paying particular attention to diet.

Male athletes need to be aware that testosterone levels can fall as they age, which can have an impact on their cycling through loss of muscle mass, fatigue, increased body fat and decreased bone mass. A blood test can check your levels.

The menstrual cycle increases the likelihood of cramping at certain times of the month. Female athletes should follow a four-week training cycle with three weeks hard training followed by a recovery week.

Male athletes can have more flexibility about how often they take easier weeks for recovery to fit in with their racing plans.

Again, the menstrual cycle can raise injury risks for females, who should, during ovulation, enhance their warm-up, be cautious with short, sharp efforts, and maximise recovery by fuelling correctly and smartly.

Male athletes have been found to be more prone than females to ignoring niggles, which can turn into full-on injuries.

Here is the original post:
Cycling and gender: how and why male and female cyclists need to train differently - Cycling Weekly

Recommendation and review posted by simmons


Archives