Page 514«..1020..513514515516..520530..»

Trinity Researchers Lead Analysis of Portugal and Spain’s Genetic History – The University Times

Grace D'ArcyAssistant News Editor

A landmark study by Trinity researchers has revealed a little more of the history of the Iberian people, giving more clarity to the impact migration had on the genetic makeup and culture of early Portuguese settlers.

This is the first time researchers have studied the impact of these migrations on this specific area of Europe and the the work by the two Trinity staff, in collaboration with colleagues in Portugal, enables scientists to examine the threads of European history and explain variations and similarities between geographic areas today.

Previous genome studies have found that it was often technological innovations in pre-history that were associated with profound population change. But this new research from Trinity sheds light on how these advancements influenced changes in the population at the edge of the Atlantic, revealing the key role of migration.

The genomes of individuals who lived on the Iberian Peninsula in the Bronze Age had minor genetic input from Steppe invaders, suggesting that these migrations played a smaller role in the genetic makeup and culture of Iberian people, compared to other parts of Europe. This likely had implications for the spread of culture, language and technology, with the relative lack of invasion possibly explaining why a pre-European language Euskera still exists in Iberia today.

Trinitys Prof Daniel Bradley and Prof Rui Martiniano worked with Ana Maria Silva of the University of Coimbra, Portugal, in developing the research. In a press statement, Bradley, the Professor of Population Genetics at Trinity, said: Unlike further north, a mix of earlier tongues and Indo-European languages persist until the dawn of Iberian history, a pattern, he said, that resonates with the real but limited influx of migrants around the Bronze Age.

Between the 4,200-3,500 BC and the Middle Bronze Age, central and northern Europe received a massive influx of people from the Steppe regions of Eastern Europe and Asia. Archaeological digs in Iberia have uncovered changes in culture and funeral rituals during this time, but no one had looked at the genetic impact of these migrations in this part of Europe before.

The researchers sequenced the genomes of 14 individuals who lived in Portugal during the Neolithic and Bronze Ages and compared them to other ancient and modern genomes. In contrast with other parts of Europe, they detected only subtle genetic changes between the Portuguese Neolithic and Bronze Age samples resulting from small-scale migration. However, these changes are more pronounced on the paternal lineage, which indicates a strong bias towards male migration in ancient times.

In a press statement, Martiniano, said: It was surprising to observe such a striking Y chromosome discontinuity between the Neolithic and the Bronze Age, such as would be consistent with a predominantly male-mediated genetic influx.

The researchers also estimated height from the samples, based on relevant DNA sequences, and found that European hunter-gatherers are significantly taller than their early Neolithic farming counterparts. Genetic input from Neolithic migrants decreased the height of Europeans, which subsequently increased steadily through later generations, due to increased interaction between populations.

Originally posted here:
Trinity Researchers Lead Analysis of Portugal and Spain's Genetic History - The University Times

Recommendation and review posted by simmons

History News of the Week: The Biblical Canaanites’ Modern Descendants – New Historian

The biggest history news stories of the week, including two pioneering genome studies that have shed fascinating new light on humanitys ancient past and its echoes in the present.

Present day Lebanese are descendants of Biblical Canaanites

A new genome study of ancient remains from the Near East suggests that present day Lebanese people are direct descendants of the Biblical Canaanites.

The research, which has been published in the American Journal of Human Genetics, sequenced the entire genomes of 4,000 year-old Canaanites who inhabited the region during the Bronze Age, and compared them to other ancient and present day populations.

Despite the Canaanites creating the first alphabet and establishing colonies throughout the Mediterranean, historians and archaeologists only have a limited knowledge of them. They are mentioned several times in the Bible, as well as in ancient Greek and Phoenician texts, but experts know little about their genetic identity, who their ancestors were, and if they have any descendants today.

The study by the researchers from the Wellcome Trust Sanger Institute determined that more than 90% of present Lebanese ancestry is likely to be from the Canaanites, with a small proportion coming from a different Eurasian population. The researchers estimate that new Eurasian people mixed with the Canaanite population about 2,200 to 3,800 years ago at a time when there were many conquests of the region from outside.

Details about the Canaanites own ancestry have also been revealed. The study claims that they were a mixture of local people who settled in farming villages during the Neolithic period and eastern migrants who arrived in the area around 5,000 years ago.

For the first time we have genetic evidence for substantial continuity in the region, from the Bronze Age Canaanite population through to the present day. Dr Claude Doumet-Serhal, co-author of the study and Director of the Sidon excavation site in Lebanon, said.

These results agree with the continuity seen by archaeologists. Collaborations between archaeologists and geneticists greatly enrich both fields of study and can answer questions about ancestry in ways that experts in neither field can answer alone.

Meanwhile, Dr. Chris Tyler-Smith, lead author from the Wellcome Trust Sanger Institute, said: Genetic studies using ancient DNA can expand our understanding of history, and answer questions about the likely origins and descendants of enigmatic populations like the Canaanites, who left few written records themselves.

Now we would like to investigate the earlier and later genetic history of the Near East, and how it relates to the surrounding regions.

Bronze Age Iberia spared the brunt of Steppe invaders

New DNA analysis of people who lived in the Iberian Peninsula during the Bronze Age has revealed that they received only minor genetic input from Steppe invaders, suggesting the Steppe migrations played less of a role in the cultural and genetic makeup of Iberian people than they did in populations elsewhere in Europe.

Between the Middle Neolithic (4200-3500 BCE) and the Middle Bronze Age (1740-1430 BCE), Central, Northwestern and Northern Europe received a massive influx of people from the Steppe regions of Eastern Europe and Asia. Archaeological digs have gained insights into some of the impacts of these influxes on Iberia, in the form of changing cultural practices and funeral rituals, but the genetic effect has remained hitherto unexamined.

The genomes of fourteen people who lived in Portugal in the Neolithic and Bronze Age were sequenced for the study, which has been published in the journal PLOS Genetics. These genomes were then compared with other ancient and modern genetic data, revealing only subtle changes between the Portuguese Neolithic and Bronze Age DNA, suggesting a minor genetic influence from the Steppe. Surprisingly, the changes were significantly more pronounced in paternal lineage.

It was surprising to observe such a striking Y chromosome discontinuity between the Neolithic and the Bronze Age, such as would be consistent with a predominantly male-mediated genetic influx says first author Rui Martiniano. Height was also estimated from the samples, based on relevant DNA sequences, revealing that genetic input from Neolithic migrants decreased the height of Europeans, which subsequently increased steadily through later generations.

By showing that migration into the Iberian Peninsula occurred on a much smaller scale than elsewhere in Europe, the study raises questions about the impact this had on language, culture and technology. For example, the fact that the Basque region of Spain speaks a pre-Indo-European language could be explained by these findings. The discovery also supports a theory which says Indo-European languages spread through Europe from the Steppe heartland.

The study was carried out by Daniel Bradley and Rui Martiniano of Trinity College Dublin, in Ireland, and Ana Maria Silva of University of Coimbra, Portugal.

New project aims to highlight importance of The Indian Army in the First World War

In the UK, The Soldiers of Oxfordshire (SOFO) Museum and Oxford Universitys History Faculty have received a 12,000 grant from the Arts & Humanities Research Council Voices of War & Peace WWI Engagement Centre, for their project titled: The Indian Army in the First World War: An Oxfordshire & Buckinghamshire Perspective.

The project aims to shed new light on the British Indian Armys role in the war on the Eastern Front in Iraq through an outreach programme and touring exhibition. Sikhs, Muslims and Hindus of all ages in the local community are being called upon to engage with researchers by sharing stories, experiences and memorabilia. The touring exhibition will then showcase the findings in November.

Photographs that have never been displayed before will explore the experiences of British and Indian soldiers in the conflict, as well as the Iraqi prisoners.

Featured image: Archaeological remains of individual MC337 excavated from the site of Hipogeu de Monte Canelas I, Portugal, and analysed by the archaeologist Rui Parreira and the anthropologist Ana Maria Silva. Courtesy of Rui Parreira

Link:
History News of the Week: The Biblical Canaanites' Modern Descendants - New Historian

Recommendation and review posted by sam

Falling sperm counts are linked to endocrine-disrupting chemicals – MinnPost

A startling new review of sperm production finds that men throughout most of the industrialized world have seen, in aggregate, a 52 percent decline in sperm count over the last generation and a half with exposure to endocrine-disrupting environmental pollution the probable cause.

A sweeping meta-analysis of data from nearly 200 individual studies, the research does not directly attribute the decline to any particular cause, and it notes that many factors are capable of driving down sperm production, especially in the short term.

However, it lists environmental pollution particularly so-called endocrine disruptors, which can act like estrogen in males as the most prominent explanation for this widespread, 38-year-long decline, which one expert is calling a death spiral of infertility in men.

The team, led by Hagai Levine of Hadassah-Hebrew University in Jerusalem, reviewed more than 2,500 articles reporting primary data on sperm counts in men around the world. After excluding research on men selected for study because they were known to have fertility problems, or factors specifically associated with lower sperm production, they assembled for meta-analysis a set of 185 studies of nearly 43,000 men who gave samples between 1973 and 2011.

From these results, they calculate that sperm counts declined by 50 to 60 percent among men in North America, Europe, Australia and New Zealand. Men in South America, Africa and Asia did not show comparable declines, but the authors explain that data for these regions was not comparable in quantity or quality, especially before 1985.

In addition to the obvious problem of reduced fertility, their paper notes that lowered sperm counts are associated with a variety of medical conditions, pointing to a likelihood of diminished health and a shorter lifespan.

As for the probable causes of such a steep decline, the authors say

While the current study is not designed to provide direct information on the causes of the observed declines, sperm count has been plausibly associated with multiple environmental and lifestyle inuences, both prenatally and in adult life. In particular, endocrine disruption from chemical exposures or maternal smoking during critical windows of male reproductive development may play a role in prenatal life, while lifestyle changes and exposure to pesticides may play a role in adult life. Thus, a decline in sperm count might be considered as a canary in the coal mine for male health across the lifespan. Our report of a continuing and robust decline should, therefore, trigger research into its causes, aiming for prevention.

The sheer scope of the data gathered for analysis here would seem to address neatly the objections of some skeptics of sperm-count decline including, for one recent example, the cancer epidemiologist Geoffrey Kabat, writing in Forbes a few months ago that sperm-count studies are too small or narrow to reliably factor out the normal variability that occurs from place to place and time to time, in response to all kinds of environmental influences and individual behaviors.

Published on Tuesday in the journal Human Reproduction Update, the study follows by one week another study which apparently and amazingly is the first to test for cumulative endocrine-disruption effects from chemical exposure across successive generations.

The study looked at sperm production and abnormalities of the reproductive tracts in male mice. Its chilling conclusion: The impacts are worse in the second generation than the first, and worse still in the next, with some third-generation mice producing no sperm at all.

Though potentially more significant, in my view, this paper has gotten far less attention than the Levine research; I first saw it referenced in Environmental Health News in a piece by Pete Myers, a Ph.D. biologist who co-wrote the early and influential book on endocrine disruption, Our Stolen Future, published in 1996.

Myers is the founder and chief scientist at EHN, a daily online publication that does original reporting on environmental health science while aggregating, annotating and critiquing reporting done elsewhere. In his view, the two studies taken together mean you should be worried and your kids should be terrified.

The intergenerational study was published last Thursday in the journal PLOS Genetics, and looked at abnormalities in the reproductive tracts of male mice and two generations of their male offspring. It aimed to answer what lead researcher Tegan Horan, a doctoral student at Washington State University told Myers she saw as a simple question with real-world relevance that had simply never been addressed."

Here is Myers terse summary of the research context:

Since World War II, successive generations of people have been exposed to a growing number and quantity of environmental estrogens chemicals that behave like the human hormone estrogen. Thousands of papers published in the scientific literature (reviewed here) tie these to a wide array of adverse consequences, including infertility and sperm count decline.

This phenomenon exposure of multiple generations of mammals to endocrine disrupting compounds had never been studied experimentally, even though that's how humans have experienced EDC exposures for at least the last 70 years. That's almost three generations of human males.

More than a dozen papers have now been published on "trans-generational epigenetic inheritance," where exposure in a great-grandmother causes adverse effects in great-grandson without further exposures and without changes in DNA sequence. But crucially these experiments typically only expose one generation the first rather induce ongoing exposures across generations, which is the reality of human experience.

Reaction to the Levine study has been positive, both on the quality of its findings and their importance, with many in the scientific community endorsing its tentative attribution of the problem to environmental exposure.

Allen Pacey, an andrologist at Britains Sheffield University, told the BBC that "I've never been particularly convinced by the many studies published so far claiming that human sperm counts have declined in the recent past. However, the study today by Dr Levine and his colleagues deals head-on with many of the deficiencies of previous studies."

Frederick vom Saal, Curators Distinguished Professor Emeritus of Biological Sciences at the University of Missouri, told Myers that "the study is a wakeup that we are in a death spiral of infertility in men."

And Enrique Schisterman of the National Institutes of Health, where he serves as chief of the epidemiology branch at the National Institute of Child Health and Human Development, told Time magazine that Levines work represented a significant advance and pointed to a serious problem.

I think there is a consensus in the scientific community that if the results are real, it has to be an environmental factor. Genetics would not explain such a rapid decline.

* * *

Both papers can be read and downloaded without charge; the Levine paper on sperm counts is here and the Horan paper on reproductive abnormalities in successive generations is here.

Read more from the original source:
Falling sperm counts are linked to endocrine-disrupting chemicals - MinnPost

Recommendation and review posted by Bethany Smith

Should genetic engineering be used as a tool for conservation? – chinadialogue

Illustration by Luisa Rivere/Yale E360

The worldwide effort to return islands to their original wildlife, by eradicating rats, pigs, and other invasive species, has been one of the great environmental success stories of our time.Rewilding has succeeded on hundreds of islands, with beleaguered species surging back from imminent extinction, and dwindling bird colonies suddenly blossoming across old nesting grounds.

But these restoration campaigns are often massively expensive and emotionally fraught, with conservationists fearful of accidentally poisoning native wildlife, and animal rights activists having at times fiercely opposed the whole idea. So what if it were possible to rid islands of invasive species without killing a single animal? And at a fraction of the cost of current methods?

Thats the tantalising but also worrisome promise of synthetic biology, aBrave New Worldsort of technology that applies engineering principles to species and to biological systems. Its genetic engineering, but made easier and more precise by the new gene editing technology called CRISPR, which ecologists could use to splice in a DNA sequence designed to handicap an invasive species, or to help a native species adapt to a changing climate. Gene drive, another new tool, could then spread an introduced trait through a population far more rapidly than conventional Mendelian genetics would predict.

Want more stories like this in your inbox? Subscribe tochinadialogue's weekly newsletter to get our latest articles.

Synthetic biology, also called synbio, is already a multi-billion dollar market, for manufacturing processes in pharmaceuticals, chemicals, biofuels, and agriculture. But many conservationists consider the prospect of using synbio methods as a tool for protecting the natural world deeply alarming. Jane Goodall, David Suzuki, and others havesigned a letterwarning that use of gene drives gives technicians the ability to intervene in evolution, to engineer the fate of an entire species, to dramatically modify ecosystems, and to unleash large-scale environmental changes, in ways never thought possible before.The signers of the letter argue that such a powerful and potentially dangerous technology should not be promoted as a conservation tool.

Environmentalists and synthetic biology engineers need to overcome what now amounts to mutual ignorance, a conservationist says.

On the other hand, a team of conservationbiologists writing early this yearin the journalTrends in Ecology and Evolutionran off a list of promising applications for synbio in the natural world, in addition to island rewilding:

Transplanting genes for resistance to white nose syndrome into bats, and for chytrid fungus into frogs and other amphibians.

Giving corals that are vulnerable to bleaching carefully selected genes from nearby corals that are more tolerant of heat and acidity.

Using artificial microbiomes to restore soils damaged by mining or pollution.

Eliminating populations of feral cats and dogs without euthanasia or surgical neutering, by producing generations that are genetically programmed to be sterile, or skewed to be overwhelmingly male.

And eradicating mosquitoes without pesticides, particularly in Hawaii, where they are highly destructive newcomers.

Kent Redford, a conservation consultant and co-author of that article, argues that conservationists and synbio engineers alike need to overcome what now amounts to mutual ignorance. Conservationists tend to have limited and often outdated knowledge of genetics and molecular biology, he says.Ina 2014 articleinOryx, he quoted one conservationist flatly declaring, Those were the courses we flunked. Stanford Universitys Drew Endy, one of the founders of synbio, volunteers in turn that 18 months ago he had never heard of the IUCN the International Union for Conservation of Nature or its Red List of endangered species.In engineering school, the ignorance gap is terrific, he adds.But its symmetric ignorance.

At a major synbio conference he organised last month in Singapore, Endy invited Redford and eight other conservationists to lead a session on biodiversity, with the aim, he says, of getting engineers building the bioeconomy to think about the natural world ahead of time My hope is that people are no longer merely nave in terms of their industrial disposition.

Likewise, Redford and the co-authors of the article inTrends in Ecology and Evolution, assert that it would be a disservice to the goal of protecting biodiversity if conservationists do not participate in applying the best science and thinkers to these issues. They argue that it is necessary to adapt the culture of conservation biologists to a rapidly-changing reality including the effects of climate change and emerging diseases.Twenty-first century conservation philosophy, the co-authors conclude, should embrace concepts of synthetic biology, and both seek and guide appropriate synthetic solutions to aid biodiversity.

Through gene drive technology, mice, rats or other invasive species can theoretically be eliminated from an island without killing anything.

The debate over synthetic biodiversity conservation, as theTrends in Ecology and Evolutionauthors term it, had its origins in a2003 paperby Austin Burt, an evolutionary geneticist at Imperial College London.He proposed a dramatically new tool for genetic engineering, based on certain naturally occurring selfish genetic elements, which manage to propagate themselves in as much as 99 percent of the next generation, rather than the usual 50 percent. Burt thought that it might be possible to use these super-Mendelian genes as a Trojan horse, to rapidly distribute altered DNA, and thus to genetically engineer natural populations. It was impractical at the time.Butdevelopmentof CRISPR technology soon brought the idea close to reality, and researchers have since demonstrated the effectiveness of gene drive, as the technique became known, in laboratory experiments on malaria mosquitoes, fruit flies, yeast, and human embryos.

Burt proposed one particularly ominous-sounding application for this new technology: It might be possible under certain conditions, he thought, that a genetic load sufficient to eradicate a population can be imposed in fewer than 20 generations. And this is, in fact, likely to be the first practical application of synthetic biodiversity conservation in the field. Eradicating invasive populationsis of coursethe inevitable first step in island rewilding projects.

The proposed eradication technique is to use the gene drive to deliver DNA that determines the gender of offspring.Because the gene drive propagates itself so thoroughly through subsequent generations, it can quickly cause a population to become almost all male and soon collapse.The result, at least in theory, is the elimination of mice, rats, or other invasive species from an island without anyone having killed anything.

Research to test the practicality of the method including moral, ethical, and legal considerations is already under way through a research consortium ofnonprofitgroups, universities, and government agencies in Australia, New Zealand, and the United States.At North Carolina State University, for instance, researchers have begun working with a laboratory population of invasive mice taken from a coastal island.They need to determine how well a wild population will accept mice that have been altered in the laboratory.

The success of this idea depends heavily,according togene drive researcher Megan Serr, on the genetically modified male mice being studs with the island lady mice Will she want a hybrid male that is part wild, part lab? Beyond that, the research programme needs to figure out how many modified mice to introduce to eradicate an invasive population in a habitat of a particular size. Other significant practical challenges will also undoubtedly arise.For instance,a study early this yearin the journalGeneticsconcluded that resistance to CRISPR-modified gene drives should evolve almost inevitably in most natural populations.

Political and environmental resistance is also likely to develop.In an email, MIT evolutionary biologist Kevin Esvelt asserted that CRISPR-based gene drives are not suited for conservation due to the very high risk of spreading beyond the target species orenvironment. Even a gene drive systemintroduced toquickly eradicate an introduced population from an island, he added, still is likely to have over a year to escape or be deliberately transported off-island. If it is capable of spreading elsewhere, that is a major problem.

Even a highly contained field trial on a remote island is probably a decade or so away, said Heath Packard, of Island Conservation, a nonprofit that has been involved in numerous island rewilding projects and is now part of the research consortium.We are committed to a precautionary step-wise approach, with plenty of off-ramps, if it turns out to be too risky or not ethical.But his group notes that 80% of known extinctions over the past 500 or so years have occurred on islands, whicharealso home to 40% of species now considered at risk of extinction. That makes it important at least to begin to study the potential of synthetic biodiversity conservation.

Even if conservationists ultimately balk at these new technologies, business interests are already bringing synbio into the field for commercial purposes.For instance, a Pennsylvania State University researcher recently figured out how to use CRISPR gene editing to turn off genes that cause supermarket mushrooms to turn brown.The USDepartment of Agriculturelast year ruledthat these mushrooms would not be subject to regulation as a genetically modified organism because they contain no genes introduced from other species.

With those kinds of changes taking place all around them, conservationists absolutely must engage with the synthetic biology community, says Redford, and if we dont do so it will be at our peril. Synbio, he says, presents conservationists with a huge range of questions that no one is paying attention to yet.

This article originally appeared on Yale Environment 360 and is republished here with permission.

See the original post:
Should genetic engineering be used as a tool for conservation? - chinadialogue

Recommendation and review posted by simmons

Scientists Use CRISPR to Edit Human Embryos – Live Science

A group of scientists in Oregon has successfully modified the genes of embryos using CRISPR, a cut-and-paste gene-editing tool.

The experiments, which have not yet been subject to peer review, were conducted by biologist Shoukhrat Mitalipov and colleagues at Oregon Health & Science University in Portland, MIT Technology Review reported. Mitalipov conducted the experiments on dozens of single-celled embryos, which were discarded before they could progress very far in development, according to Technology Review. This is the first time that scientists in the United States have used this approach to edit the genes of embryos.

The CRISPR/Cas9 gene-editing system is a simple "cut and replace" method for editing precise spots on the genome. CRISPRS are long stretches of DNA that are recognized by molecular "scissors" called Cas9; by inserting CRISPR DNA near target DNA, scientists can theoretically tell Cas9 to cut anywhere in the genome. Scientists can then swap a replacement gene sequence in the place of the snipped sequence. The replacement sequence then gets automatically incorporated into the genome by natural DNA repair mechanisms.

In 2015, a group in China used CRISPR to edit several human embryos that had severe defects, though none were allowed to gestate very long before being discarded. If rumors are to be believed, the new results are more promising than those earlier efforts, according to Technology Review. The Chinese technique led to genetic changes in some, but not all of the cells in the embryos, and CRISPR sometimes snipped out the wrong place in the DNA. According to Technology Review, the new technique was used in dozens of embryos that were created for in vitro fertilization (IVF), using the sperm of men who had severe genetic defects.

In general, editing the germ line meaning sperm, eggs or embryos has been controversial, because it means permanently changing the DNA that is passed on from one generation to the next. Some scientists have called for a ban on germ-line editing, saying the approach is incredibly risky and ethically dubious.

However, a National Academy of Sciences report published earlier this year suggested that embryo editing could be ethical in the case of severe genetic diseases.

Originally published on Live Science.

Link:
Scientists Use CRISPR to Edit Human Embryos - Live Science

Recommendation and review posted by Bethany Smith

Human embryos reportedly edited for first time in the US using CRISPR – The Verge

For the first time, scientists in the US have successfully edited the DNA of viable human embryos using the powerful gene-editing tool CRISPR, according to a report by MIT Technology Review. Gaining the ability to edit human DNA is the first step toward one day allowing scientists to prevent babies from being born with incurable diseases or disabilities. But further success with this kind of research is likely to raise the heated discussion on the ethical implications of genetically altering human embryos.

The research which has yet to be published was led by Shoukhrat Mitalipov of Oregon Health and Science University. It involved editing a large number of viable embryos and effectively correcting disease-causing genes, according to MIT Technology Review. (Its unclear exactly how many embryos were edited, or which genes.) The embryos were developed for only a few days and were not implanted. Without implantation, embryos cannot develop into babies.

Human embryos have been edited with CRISPR before, only in China. In the US, this kind of research is much more controversial: theres even a ban on using National Institutes of Health funding for research using gene-editing technologies in human embryos. In February, however, a committee created by the National Academy of Sciences and the National Academy of Medicine endorsed the use of genetic engineering on human embryos when there isnt a reasonable alternative available, and only to eliminate serious diseases.

There are many concerns around genetically engineering humans. CRISPR is a very precise gene-editing tool, but it can sometimes lead to editing errors. So some fear that small mistakes could lead to permanent problems in the human gene pool. There are also ethical concerns: bioethicists fear that gene-editing will lead to a world where parents will be able to customize their own designer baby, complete with specific traits.

These super-baby concerns could be worked out easily, says Arthur Caplan, a bioethicist at New York University. If you dont want eugenics, you just draw a line and stop there, Caplan tells The Verge. Scientists and bioethicists should agree on rules on what should and should not be done, and then make sure that editors of scientific journals enforce them. Research into how to create designer babies should not be published. Or you could have the National Academy of Sciences work with industry and Congress to lay out a review committee and permit funding.

If America were to take the lead both in terms of working with journals, working with private foundations, with patient groups, and working with state and federal government, I think youd get collaboration from the rest of the world, Caplan says.

Engineered humans are still far away into the future. But Mitalipovs research is getting us closer: he and his team were able to edit the embryos precisely, with very few editing errors, according to STAT. They also avoided another problem: in experiments in China, the desired DNA changes were picked up only by some cells, not all the cells of an embryo an effect called mosaicism. That makes gene-editing unsafe. But Mitalipov was able to significantly reduce mosaicism, according to MIT Technology Review.

Some in the field questioned just how groundbreaking the research is. Hank Greely, a law professor and bioethicist at Stanford University, tweeted that the real breakthrough will be when someone actually implants the human embryos, so they can develop into human beings.

Regardless, the research shows just how far gene editing has come and makes the prospect of engineered, disease-free humans more science fact than science fiction.

Go here to see the original:
Human embryos reportedly edited for first time in the US using CRISPR - The Verge

Recommendation and review posted by Bethany Smith

Ding, ding, ding! CRISPR patent fight enters next round | Science … – Science Magazine

An artists conception of the DNA-cutting enzyme Cas9.

By Jon CohenJul. 26, 2017 , 9:00 AM

The University of California (UC) has fired another legal salvo in the prolonged patent battle over CRISPR, the revolutionary gene-editing technology that has spawned a billion-dollar industry.

UC leads a group of litigants who contend that the U.S. Patent Trial and Appeal Board (PTAB) wrongly sided with the Broad Institute in Cambridge, Massachusetts, and two partnersHarvard University and the Massachusetts Institute of Technology in Cambridgein February when it ruled that the Broad group invented the use of CRISPR in eukaryotic cells. After that ruling, UC moved the battleground to the U.S. Court of Appeals for the Federal Circuit. In a 25 July brief to the Federal Circuit, the UC group contends that PTAB ignored key evidence and made multiple errors.

The UC litigants indisputably first showed in 2012 that CRISPR could work in DNA of simpler organisms, and soon after filed a patent application on the gene-editing technique. They claim the Broad group learned from that disclosed invention and applied CRISPR to eukaryotic cells. The essential legal question is whether the Broads patent application is a novel, patentable invention, or whether it was obvious in the sense that anyone skilled in the artin other words, any trained molecular biologistwould have a reasonable expectation of success of using the CRISPR system to edit genes in eukaryotic cells.

The UC group contends PTAB ignored key decisions on these general questions made by the U.S. Supreme Court and the Federal Circuit. It reiterated its long-held claim that applying CRISPR to eukaryotic cells was so obvious that six different labs did it in the same time frame, which it complains the PTAB essentially dismissed as irrelevant. And its brief notes that patent examiners rejected similar eukaryotic cell CRISPR patent applications from Sigma-Aldrich and ToolGenfiled before the Broads patent applicationbecause it made claims that were non-novel or obvious in light of UCs disclosed work.

Jacob Sherkow,an intellectual property attorney at the New York Law School in New York City who has closely followed each round in the fierce battle, says the UC groups brief at times overplays these mistakes relative to the PTAB's analysis. He notes that the PTABs decision was thorough and the standards to overturn its decisions are high. While there were some interesting chestnuts in its briefsuch as UC pointing out that the PTAB virtually ignored some important patents pending at the time [the Broad] patent was filedI don't think that's going to be enough to win the day [for] UC, he says.

In a statement, the Broad Institutesuggested the UC will not prevail in its challenge:

Notably, the [UC]brief hinges on its argument that, although [UC]s work simply involved characterizing a purified enzyme in a test tube, it rendered obvious that genome editing could be made to work in living mammalian cells.

This is inaccurate, as the PTAB noted repeatedly in its decision.

Updated, 7/26/2017, 12:33 p.m.: Statement from the Broad Institute added.

View original post here:
Ding, ding, ding! CRISPR patent fight enters next round | Science ... - Science Magazine

Recommendation and review posted by Bethany Smith

CRISPR gene editing tool: Are we ready to play God? – USA TODAY

Mike Feibus/ Special for USA Today Published 9:00 a.m. ET July 24, 2017

Humans had better be ready to play God. Because weve now got the tools to do just that.

Credit the recent discovery of CRISPR-Cas9, a powerful gene-editing tool that gives scientists the ability to make precise edits of single strands of DNA. Other so-called molecular scissors had already been developed, but they were very costly and time-consuming to implement. The emergence of CRISPR has put genomics exploration into overdrive with quick, precise and cheap tools, sending science on a fast track to new discoveries.

CRISPR could be used to erase and replace mutations that make some susceptible to a wide range of conditions, from AIDS to the Zika virus. Healthier, more resilient farm animals, pets, fruits and vegetables are also in the hopper.

Billions of dollars are being poured into CRISPR research, precisely because the possibilities are seemingly endless. Start-ups have sprouted around CRISPR pioneers, including CRISPR Therapeutics, Editas Medicine, eGenesis, Intellia Therapeutics and Synthego. Last year, three of them went public, each IPO resulting in valuations in excess of $500 million.

Earlier this month, Harvard University researchers revealed that they actually used CRISPR to etch a motion GIF of a galloping horse into the DNA of living bacteria. Not exactly a cure for cancer, to be sure. Though it does raise some intriguing possibilities for using DNA to store non-genetic data, like a built-in human flash drive. As well, the demonstration does serve as a good illustration for just how much editing prowess CRISPR affords.

Laboratory fun aside, keeping a lid on CRISPR will be paramount, as it is just as potent a tool for evil as it is for good. CRISPR could potentially pave the way for bad actors on the world stage to develop, say, chemical weapons alongside super-soldiers resistant to them.

Such doomsday scenarios keep some scientists up at night, in much the same way that Albert Einstein fretted over the shape of our future in a nuclear world and former Intel CEO Andy Grove feared for our privacy and security in the early days of the Internet boom.

Indeed, with the global WannaCry ransomware attack and North Koreas ever-present march to intercontinental nuclear attack capability as a backdrop, effectively locking down CRISPR technology to prevent catastrophe could become as crucial to our own survival as the cures it spawns.

And we havent even touched on the ever-present fear of the unintended consequences of going where no man has gone before. What if, say, the Harvard researchers inadvertently created a deadly, drug-resistant, mother-of-all mutant bacteria with their artistic demonstration? That issue came to the fore in late May not with horses, but with mice.

Two blind mice, in fact. In 2015, researchers successfully restored the mices sight using CRISPR to repair a gene mutation that causes blindness. In a follow-up study, disclosed May 30in a letter to the editor of a health journal, researchers found hundreds of unintended mutations throughout the mices genome. The researchers noted that the mice did not exhibit any ill effects as a result.

The news spooked investors, who sent shares of the publicly-traded CRISPR stocks downward. As well, it also spurred some observers to wonder aloud whether we are ready to handle our newfound godlike powers.

The news didnt concern many scientists, however. Most of them understand the process of discovery is rarely a straight line. And bumps in the road like the errant mutations found in the follow-up study are all part of the journey. Some even assert that many of the mutations wouldnt occur today, because the circa-2015 CRISPR tools the researchers used are as outmoded as VCRs. They feel confident that, by the time you head to the doctor for some gene-editing to wipe away your ailments, theyll have it all ironed out.

Lets hope so. Because if not, Galloping Horse Syndrome would be the least of our problems.

Mike Feibus is principal analyst at FeibusTech, a Scottsdale, Ariz., market strategy and analysis firm focusing on mobile ecosystems and client technologies. Reach him atmikef@feibustech.com. Follow him on Twitter @MikeFeibus.

Read or Share this story: https://usat.ly/2uZZ46U

Excerpt from:
CRISPR gene editing tool: Are we ready to play God? - USA TODAY

Recommendation and review posted by Bethany Smith

CRISPR Prevents Beginning Stage of Vision Loss – Genetic Engineering & Biotechnology News

Those who keep track of current science news, scientists and nonscientists alike, have probably found themselves asking aloud very often is there anything CRISPR cant do? So far, it would seem the answer to that question is "no" as a team of investigators from Schepens Eye Research Institute of Massachusetts Eye and Ear have found a new area for CRISPR interventionangiogenesis of the retina. The scientists were able to prevent the development of angiogenesis in mice, which often causes vision loss and blindness and is a feature of several degenerative eye conditions, including proliferative diabetic retinopathy (PDR), wet age-related macular degeneration (AMD), and retinopathy of prematurity (ROP).

Findings from the new studypublished recently in Nature Communications in an article entitled Genome Editing Abrogates Angiogenesis In Vivocould potentially lead to the development of new therapies for eye conditions marked by pathological intraocular angiogenesis.

"We know that vascular endothelial growth factor receptor 2 (VEGFR2) plays an essential role in angiogenesis," explained senior study investigator Hetian Lei, Ph.D., assistant professor of ophthalmology at Harvard Medical School and assistant scientist at Schepens Eye Research Institute of Massachusetts Eye and Ear. "The CRISPR/Cas9 system can be utilized to edit the VEGFR2 gene, preventing intraocular pathological angiogenesis."

Even with the success of several VEGF-inhibiting agents in reducing neovascular growth and lessening vascular leakage in retinal diseases such as PDR and AMD, several therapeutic challenges remainnamely a need for sustained treatment and a modality to treat the sizeable number of patients who do not respond to anti-VEGF therapies.

Clinically, many vision disorders present when blood vessels within the retina begin to grow new, abnormal blood vessels on the surface of the retina. As the damage progresses, these vessels can leak, rupture, or cause retinal detachment, leading to impaired vision. In the current study, the investigators decided to use the CRISPR/Cas9 system to target the VEGFR2 gene in mice, with the hope of preventing the start of angiogenesis.

...we report that a system of adeno-associated virus (AAV)-mediated clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease (Cas)9 from Streptococcus pyogenes (SpCas9) is used to deplete VEGFR2 in vascular endothelial cells (ECs), whereby the expression of SpCas9 is driven by an endothelial-specific promoter of intercellular adhesion molecule 2, the authors wrote. We further show that recombinant AAV serotype 1 (rAAV1) transduces ECs of pathologic vessels, and that editing of genomic VEGFR2 locus using rAAV1-mediated CRISPR/Cas9 abrogates angiogenesis in the mouse models of oxygen-induced retinopathy and laser-induced choroid neovascularization.

Amazingly, the research team was able to prevent retinal angiogenesis in the preclinical models using only a single injection of the AAV/CRISPR therapy. The investigators were excited by their findings and are optimistic that their study will lead to future strategies using genome-editing tools to vision loss disorders.

"As this genomic editing gains traction in virtually all medical fields, we are cautiously optimistic that this powerful tool may present a novel therapy to prevent vision loss in eye disease marked by intraocular pathological angiogenesis," Dr. Lei concluded. "While further study is needed to determine safety and efficacy of this approach, our work shows that the CRISPR/Cas9 system is a precise and efficient tool with the potential to treat angiogenesis-associated diseases."

Read the original:
CRISPR Prevents Beginning Stage of Vision Loss - Genetic Engineering & Biotechnology News

Recommendation and review posted by Bethany Smith

These Kids Are Learning CRISPR At Summer Camp – Motherboard

I walked into Camp East Woods in Oyster Bay, Long Island, about twenty minutes before class started. Dozens of kids, from four years old to sophomores in high school, were trying to figure out where their friends were, checking different rooms to see who had arrived. It smelled like sunscreen and sweat.

I was there for the Serious Science program, where kids of all ages get to explore everything from biochemistry to engineering. The syllabus included CRISPR, the powerful gene editing technology that allows you to cut out and change specific sections of DNA. Researchers are using it to battle things like HIV, blindness, and malaria, just to name a few.

CRISPR is all the rage in the scientific community, and I was curious how Jane Powel, who leads the program, planned to teach this crucial subject to young kids. When new science makes its way into mainstream conversations, especially powerful science like CRISPR, those discussions can suffer when there's a significant gap in knowledge between researchers and the public. Without everyone at the table, conversations can become tainted with confusion, fear, and impulsive decisions. And that education has to start pretty early.

At the classroom that day, I expected such a complicated experiment and nuanced topic would require a very structured day, a really clear plan, and lots of guidance. I was wrong.

Students discussing the CRISPR experiment with Powel. Image: Michael Fairchild

Once class started, Powel quickly dove into a discussion of CRISPR, introducing it with a frequently used metaphor that compares it to the process of deleting and replacing a mistake that you've typed on the computer. There were a couple dozen or so kids in the room, all listening closely, and they jumped to answer any questions Powel posed to them.

While they named different things that you might want to cut from a genomelike genes that lead to higher risks of cancer or those that cause muscular dystrophyPowel asked the students if there were any potential issues with CRISPR that scientists might want to consider alongside all of the good that might come of it. A nine-year-old named Evan immediately raised his hand to point out that it's possible other parts of DNA could be damaged aside from the region you're trying to fix.

"Sometimes it sounds like a great idea to cut and paste and edit DNA, and other times it sounds like it might have a bad consequence that we weren't even thinking of," Powel agreed.

After the discussion, the classroom broke into groups and the students went off to do their activities. Some wanted to fly drones, helicopters, hovercrafts, and remote control airplanes. Others were going to drive an electric car that a student's uncle had built and lent to the camp. Another group went to pick flowers, dissect them, and look at their parts under a microscope.

I sat down with the group getting ready to perform the CRISPR experiment, which would involve them transforming a harmless bacteria's DNA to make it resistant to an antibiotic. Five girls were at the table. There was Despina, a soft-spoken sophomore in high school who got interested in genetics from a biology class in school. And three 11-year-oldsAvery, Cristabella, and Darshini. Nine-year-old Brinley was the youngest of the group.

A student mixes agar to be poured into plates. Image: Mallory Locklear

In the day's experiment, the campers would grow cultures of E. coli, bacteria that are usually susceptible to the antibiotic Streptomycin. And the following day, they would take that fresh bacteria and treat it with chemicals that would allow the CRISPR/Cas9 complex to enter the bacterial cells, and then cut out and replace the part of the E. coli DNA that binds to Streptomycin. If successful, the E.coli should then be able to grow on plates treated with the antibiotic instead of being killed, something it normally can't do.

As the students got into the nitty gritty of the day's work, Powel broached the ethics conversation again. "Everybody's excited about this, but people are worried about it too," she said, "Because just as Evan said, sometimes you can think you're doing a good thing and you're really not. Or there are some people who want to do bad things."

Some of the concerns with CRISPR tap into questions surrounding consent, reach, and unintended effects. For example, knocking malaria out of an entire mosquito population sounds like a net positive, but could also make those insects more susceptible to carrying other disease. Additionally, making changes to DNA with CRISPR impacts not only the organism or person, but its progeny as well.

That also brings up the issue of consent. Sure, someone may not have any issues with having their own disease-causing genes snipped out while they were in the womb, but going beyond that and making changes that aren't survival-related, what about the choices of the individual and their descendants?

Plates of bacteria. Image: Mallory Locklear

"Now you have this very powerful tool, so that's why it's so important that you guys learn about this and use it for good," Powel said. "And know what's going on when you hear news and be able to think critically."

Educators across the country are starting to incorporate CRISPR, and these lessons in genetic literacy, into their teachings. Michael Hirsch, who teaches science to 6th to 8th graders at the Acera School in Massachusetts, introduced CRISPR into his curriculum this past year. He also brought up its ethical aspects with his students.

"No one in the class seemed to have any objections to removing potentially hazardous and dangerous diseases from the genome," he said, "But it ran the gamut from, we shouldn't decide [whether parents will conceive a] boy or girl, to we can't decide [a baby's] hair color. Then again, some were like, well, I do want my baby to be born with a certain hair color so"

It seems to help that both Hirsch and Powel have unconventional teaching methods. "I've always wanted to cater my classroom science experience, and give students the same sort of struggles and highs and lows in doing research as I experienced in the lab," says Hirsch, who studied molecular biology in college and worked in the biotech industry before becoming a teacher.

When he teaches, he sets students up as they would be if they were scientists in a lab. "There's some sort of problem and there has to be either mystery in how you get to the solution or mystery in the starting materials and what you end up with. It can't all be cookbook," he says, "Give them as little information as possible to keep them going."

A student's CRISPR notes at the camp. Image: Mallory Locklear

Back on Long Island, the CRISPR group was joined by two boys discussing how getting negatively charged DNA through the bacteria's negatively charged cell wall is a problem they would have to surmount in order to transform their bacteria's DNA. One of the boys, John Michael, jumped up and grabbed two magnets from a drawer to give a visual.

As they talked about what helps solve this particular problema buffer with three chemicals that will neutralize the negative DNA charge and make the bacteria's cell wall permeablethey began setting up their bacterial cultures and then expertly streaked their sample across a number of plates they'd put together earlier in the day. Their culture would have to sit overnight before they could do the next steps.

Throughout the day, some students showed hesitation when working through some of the steps, always short-lived. They mixed and poured agar, labeled plates, and pipetted reagents with very little help from Powel.

Teaching CRISPR to kids is about bringing science to the public and bringing the public into discussions about how to implement it. It's hard to have meaningful conversations about CRISPR or the ethics of using it if people don't understand what it is. So, the only way to implement safeguards or boundaries that aren't driven by misunderstanding or fear is to make CRISPR accessible to everyonescientists, non-scientists, even kids.

At the very beginning of class, one student summed up something Powel has been instilling in her students all summer and what scientific understanding and education is so often about, "It's about seeing things in a new way."

Get six of our favorite Motherboard stories every day by signing up for our newsletter.

Go here to read the rest:
These Kids Are Learning CRISPR At Summer Camp - Motherboard

Recommendation and review posted by Bethany Smith

Scientists Have Used CRISPR to Edit a Human Embryo in The US For The First Time – ScienceAlert

Researchers in Portland, Oregon have, for the first time, edited a human embryo in the US.

This work adds to the promise of CRISPR, and it stands as an important step toward the birth of the first genetically modified humans.

By now, most of us know what CRISPR gene editing is. At the very least, we have heard of this revolutionary technology that allows us to alter DNA - the source code of life itself.

One day, CRISPR could allow us to delete genes in order to eradicate genetic diseases, add in new genes in order to vastly improve various biological functions, or even genetically modify human embryos in order to create an entirely new class of humans of super humans.

But first, we have a lot of research to do.

And that brings us to today. Reports from MIT were just released which assert that the very first attempt at creating genetically modified human embryos in the United States has been carried out by a team of researchers in Portland, Oregon.

"So far as I know this will be the first study reported in the US," Jun Wu, who played a role in the project and is a collaborator at the Salk Institute, said to MIT.

According to MIT, the work was led by Shoukhrat Mitalipov, who comes from the Oregon Health and Science University.

Although details are scarce at this point, sources familiar with the work assert that the research involved changing the DNA of one-cell embryos using CRISPR gene-editing.

Further, Mitalipov is believed to have broken records in two notable ways:

This is notable because, despite the fact that it has been around for several years now, CRISPR is still an incredibly new tool - one that could have unintended consequences.

As previous work published in the journal Nature Methods revealed, CRISPR-Cas9 could lead to unintended mutations in a genome.

However, the work was later reviewed by researchers at another institution and the findings were brought into question.

It remains to be seen whether the original study will be corrected or retracted, but this development highlights the importance of peer review in science.

In this regard, Mitalipov's work brings us further down the path to understanding exactly how CRISPR works in humans, and reveals that is it possible to avoid both mosaicism (changes that are taken up not by only some of the cells of an embryo, as opposed to all of them) and ;off-target' effects.

It is important to note that none of the embryos were allowed to develop for more than a few days, and that the team never had any intention of implanting them into a womb.

However, it seems that this is largely due to ongoing regulatory issues, as opposed to issues with the technology itself.

In the United States, all efforts to turn edited embryos into a baby - to bring the embryo to full term - have been blocked by Congress, which added language to the Department of Health and Human Services funding bill that forbids it from approving any such clinical trials.

Yet, the potential of the CRISPR-Cas9 system as a gene editing technology is undeniable.As previously mentioned, it has seen success in developing possible cancer treatments, in making animals disease-resistant, and it has even shown promise in replacing antibiotics altogether.

This new work adds to the promise of CRISPR, and stands as an important step toward the birth of the first genetically modified humans.

This article was originally published by Futurism. Read the original article.

Read the original:
Scientists Have Used CRISPR to Edit a Human Embryo in The US For The First Time - ScienceAlert

Recommendation and review posted by Bethany Smith

Glial cells botch wiring in childhood schizophrenia – Futurity: Research News

Malfunctioning glial cells that keep nerve cells from forming working communication networks may be the basis of the wiring problems in the brains of people with schizophrenia, new research suggests.

The inability of these cells to do their jobappears to be a primary contributor to the disease.

When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia into mice, the animals nerve cell networks did not mature properly and the mice exhibited the same antisocial and anxious behaviors seen in people with the disease.

The findings of this study argue that glial cell dysfunction may be the basis of childhood-onset schizophrenia, says neurologist Steve Goldman, co-director of the Center for Translational Neuromedicine at the University of Rochester Medical Center (URMC) and lead author of the study.

The inability of these cells to do their job, which is to help nerve cells build and maintain healthy and effective communication networks, appears to be a primary contributor to the disease.

Glia are an important family of support cells found in the brain and play a critical role in the development and maintenance of the brains complex interconnected network of neurons. Glia includes two major types: astrocytes and oligodendrocytes.

Astrocytes are the brains principal support cells, while oligodendrocytes are responsible for producing myelin, the fatty tissue that, like the insulation on electrical wires, wraps the axons that connect different nerve cells. The source of both these cells is another cell type called the glial progenitor cell (GPC).

Astrocytes perform several functions in the brain. During development, astrocytes colonize areas of the brain and establish domains in which these cells help direct and organize the network of connections between nerve cells.

Individual astrocytes also send out hundreds of long fibers that interact with synapsesthe junction where one neurons axon meets anothers dendrite. The astrocytes help facilitate the communication between neurons at the synapses by regulating the flow of glutamate and potassium, which enable neurons to fire when they are communicating with each other.

In the new study, the researchers obtained skin cells from individuals with childhood-onset schizophrenia and reprogrammed the cells to create induced pluripotent stem cells (iPSC) which, like embryonic stem cells, are capable of giving rise to any cell type found in the body. Next, the team manipulated the iPSCs to create human GPCs.

The human GPCs were then transplanted into the brains of neonatal mice. These cells out-competed the animals own native glia, resulting in mice with brains comprised of animal neurons and human GPCs, oligodendrocytes, and astrocytes.

The researchers observed that human glial cells derived from schizophrenic patients were highly dysfunctional. The development of oligodendrocytes was delayed and the cells did not create enough myelin-producing cells, meaning signal transmission between the neurons was impaired.

The development of astrocytes was similarly tardy so that the cells were not present when needed and were thus ineffective in guiding the formation of connections between neurons. The astrocytes also did not mature properly, resulting in misshapen cells that could not fully support the signaling functions of the neurons around them.

The astrocytes didnt fully mature and their fibers did not fill out their normal domains, meaning that while they provided control to some synapses, others had no coverage, says Martha Windrem, also with the Center for Translational Neuromedicine and first author of the study. As a result, the neural networks in the animals became desynchronized and uncoordinated.

The researchers also subjected the mice to a series of behavioral tests. They observed that the mice with human glial cells from individuals diagnosed with schizophrenia were more fearful, anxious, anti-social, and had a variety of cognitive deficits compared to mice transplanted with human glial cells obtained from healthy people.

The studys authors point out that the new research provides scientists with a foundation to explore new treatments for the disease. Because schizophrenia is a unique to humans, until now scientists have been limited in their ability to study the disease. The new animal model developed the by the researchers can be used to accelerate the process of testing drugs and other therapies in schizophrenia.

The study also identifies a number of glial gene expression flaws that appear to create chemical imbalances that disrupt communication between neurons. These abnormalities could represent targets for new therapies.

Additional coauthors of the study are from the University of Rochester, the University of Copenhagen, George Washington University, Johns Hopkins University, and Case Western University.

The study appears in the journal Cell. Funding from National Institute of Mental Health, the National Institute of Neurological Disorders and Stroke, the G. Harold and Leila Y. Mathers Charitable Foundation, the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation, and the Novo Nordisk and Lundbeck Foundations supported the research.

Source: University of Rochester

Follow this link:
Glial cells botch wiring in childhood schizophrenia - Futurity: Research News

Recommendation and review posted by Bethany Smith

Celebrity Skincare Guru Nurse Jamie on Why At-Home Beauty Tools Are the Future – W Magazine

Over the past twenty years, Jamie Sherrill has become one of the most in-demand skincare gurus in Hollywood. But you may not know her name--she goes by the moniker Nurse Jamie, which is also the name of her line of cult-favorite beauty tools and potions, as well as her Los Angeles spa, Nurse Jamie Beauty Park. Before you ask--yes, Sherrill is, in fact, a nurse, but she's also a certified aesthetician, which means she can offer her devoted clients, who range from Jessica Alba to Ruby Rose, a wide-range of services that promise flawless skincare through some very unique methods that can be done both at home and in the office. "At Nurse Jamie Beauty Park, our vision is simple to offer not only the best non-surgical beauty solutions available on the market, but also a customized combination of the most cutting-edge technical advances in anti-aging, skincare and beauty today," Sherrill explains. "High-tech tools, devices and home-based care are a big part of my regiment and I make everyone participate."

Here, Sherrill offers insight into the most in-demand celebrity beauty desires, and offers tips on improving your complexion at home.

You have a wide range of high profile clients, all unique with their own concerns and skincare regimens. What are the most common concerns you hear?Celebrities come in all shapes, sizes and ages, so everyone is going to have a different treatment plan. This year body sculpting is big from banning the bra strap fat to firming the tush, while laser hair removal, Botox, fillers and glowing skin are year round trends. Those requests never go out of style.

What types of treatments are most requested before a red carpet appearance?Some are genetically blessed and don't really do more than an oxygen facial and an electric facial"to be fully red carpet ready. But that said--we start to lose collagen production and skin elasticity starting at 25, so we will typically use a range of key technologies in lasers for skin texture and complexion.TheACELLeratorat home beauty tool is idealto help serums and product be absorbed for a lifting and tightening effect, and has a great anti-inflammatory property. You can use every day but specifically just before an event for a more open eye look or more defined cheek even if you just flew in!This works well for the face and body, so it helps with stretch marks and skin smoothing for waistline, hips and thighs. Trust me this is acelebsecret. If you don't believe me, do one side of your face for just one minute then look into a mirror.

But don't forget red carpet prep needs to happen every day, too. Eat well, sleep well on the right pillow, take off make-up at night and use good quality products with the best raw ingredients. Home care matters as much as in office does.

When your clients are on location for months at a time, what tips do you give them?Think maintain, not reclaim and always try to be preventative.Think of the rules of eating that are good for your body; most apply to your skin as well. It is the largest organ of the body so treat it like one.Be consistent with taking off makeup nightly and never with a washcloth. Use a hypoallergenic and antibacterial surface to cleanse your skin. Exfoliate regularly, manually or with a tool, but gently and consistently.

Invest in a beautytool to help increase absorption of products like my Instant Uplift or ACELLerator Ultra. Just like the machines we have in office, they increase absorption and efficacy of your products while helping to improve and maintain tone. Also, wear sunscreen.It seems basic, but all helps. At-home devices are the future of beauty -- you can have the best raw ingredients in the world, but as skin is the largest organ of the body its main function is to protect. The number one cause of aging is UV damage, the number two is smoking, and the third is sleeping on a traditional pillow.Use satin only and a shape that will help you train to sleep on your back, so that the most delicate areas around the eyes, cheeks and neck do not form permanent wrinkles.

It's the middle of summer. Other than sunscreen and hats, what other advice do you have for fending off skin discoloration?Use good quality products with the best raw ingredients. Old school skincare was to use aggressive products that caused chemical cell turnover reaction, which can make you more susceptible to sun damage. (Retin-A is so 1980s!) My opinion is to use retinol ingredients sparingly. Epidermal Growth Factor (EGF) - causes cell turnover and has significant effects on delaying the aging process - including preserving skins cells and skins overall vitality and radiance, without leaving you red, flaky, and shiny. I hate the shiny face -it kills meovertime I see I can spot theglare from across the room.The Nurse Jamie tools that you incorporate into your treatments seem to have a loyal following of their own. Like the Beauty Stamp, for example. How does that work?The Beauty Stamp may very well be the best investment anyone can make. A small pad features a cross section of micro needles in a grid that helps with micro exfoliation, opens channels for product delivery and efficacy and aids in the body process of collagen andelastinproduction. It is my triple threat. For day of events you need to focus on complexion and texture in a non-invasive way or only protocols with no downtime and no risk. Don't try something new with a high risk to low reward for the day of an event. Nothing worse than redness or inflammation when you are dressed to impress and need your face to match! How about the Accelerator Ultra?TheACELLeratorat home beauty tool is ideal for a daily regimentto help serums and product be absorb lifting and tightening effect and has a great anti-inflammatory property.You can use every day but specifically just before an event for a more open eye look or more defined cheek--even if you just flew in! This works well for face and body so it helps with stretch marks and skin smoothing for waistline, hips and thighs, too. Trust me, this is acelebsecret dont believe me? Do one side of your face for just one minute then look into a mirror.What is your top selling tool?UpLift Massaging Beauty Roller. It has a huge celebrity following.Are there any foods or vitamins that you recommend for vibrant skin?A B12 Energy Shot. Close to a decade ago I injected Paris Hilton and Nicole Richie with it right in their bums on national television forThe Simple Life,and in turn injectable vitamins became one of our most popular treatments...

What are the biggest skincare mistakes people make?Side sleeping and over exfoliating. We need to treat our skin like a silk fabric not a piece of leather. When youoverexfoliate(physically and chemically) and withtoo much frequency it destroys the protective barrier that your skin has - once it is removed or compromised you are you exposing your skin to environmental toxins, sun damage pre-mature aging, acne, etc. It's very common.

What is your personal daily skin routine?Taking off my make-up--I can't go to bed with my make-up on. Period. The UpLift Facial Massaging Beauty Roller, EGF Stem Cell Complex--I dont go anywhere without this cream. I would bathe in it if I could--and I use my ACELLerator for 10 minutes each night on both sides of my face while I sit in bed.I practice what I preach.That way I can give them my best face - and tell them it is what I do and mean it! Ive dedicated my life to skin and created my line for products that I felt that were missing in the marketplace. As a busy working mom of three toddlers Im proud to say that Im my own client.

Related: Are You Obsessed with Crystals, Too? How Crystals Went From New Age Curiosity to Mainstream Sensation

10 Celebrities Who've Quit Botox and Fillers Throughout the Years

Watch: History of the Best of Celebrity Fashion in the Hamptons

Go here to read the rest:
Celebrity Skincare Guru Nurse Jamie on Why At-Home Beauty Tools Are the Future - W Magazine

Recommendation and review posted by simmons

Hormone Replacement Therapy Market: Global Industry Analysis, Size, Share, Growth, Trends, and Forecasts 2016 … – Digital Journal

Zion Market Research, the market research group announced the analysis report titled 'Hormone Replacement Therapy Market: Global Industry Analysis, Size, Share, Growth, Trends, and Forecasts 20162024'

This press release was orginally distributed by SBWire

Sarasota, FL -- (SBWIRE) -- 07/27/2017 -- Global Hormone Replacement Therapy Market: Overview

The medical treatment where the patients receive hormones to substitute the naturally occurring hormones with the other hormones or to add naturally occurring hormones that are absent is known as hormone replacement therapy. In the females that are at the stage of menopause, hormone replacement therapy is used to restore female hormone levels, so that the body functions normally.

Request Free Sample Report @ https://www.zionmarketresearch.com/sample/hormone-replacement-therapy-market

Global Hormone Replacement Therapy Market: Segmentation

The global hormone replacement therapy is fragmented into therapy type, distribution channel, and application. On the basis of a therapy type, the global market is segregated into estrogen replacement therapy, thyroid hormone replacement, and growth hormone replacement. The thyroid hormone replacement segment is further sub-segmented into tablets, injections, and capsules. The growth hormone replacement segment is sub-categorized into somatostatin analogs and dopamine agonist. On the basis of the distribution channel, the market is categorized into e-commerce, retail pharmacies and drugstores, hospital pharmacies, compounding pharmacies, and others. On the basis of application, the market is divided into hypothyroidism, menopause, cancer, hypopituitarism, and others.

Global Hormone Replacement Therapy Market: Growth Factors

The key factors that are driving the hormone replacement therapy market are enlarged demand for the regenerative medicines which include reproductive-cycle boosting and anti-aging. The market is being positively impacted due to the increasing demand from other therapeutic areas which include thyroid hormone therapy and growth hormone therapy as the hormone replacement therapy is comparatively safe and efficient method and is cost effective. The other benefits that are associated with the hormone replacement therapy include minimum risk incidence of cardiovascular disease, osteoporosis, and vasomotor symptoms are also reduced thus expecting to fuel the growth of hormone replacement therapy market. The limitations of the hormone replacement therapy market include the side effects that are involved in this therapy such as fluid retention, indigestion, headache, and depression thus hindering the popularity of the therapeutic area.

Request Report TOC (Table of Contents) @ https://www.zionmarketresearch.com/toc/hormone-replacement-therapy-market

Global Hormone Replacement Therapy Market: Regional Analysis

Regional diversification of the hormone replacement therapy market is given as follows Asia Pacific, Latin America, the Middle East & Africa, Western Europe, Eastern Europe, and North America. The region that is dominating the hormone replacement therapy market is North America, which is due to the fact that the U.S has the largest market owing to the popularity of the therapy among the patients that are aged 35 years and above. The factors that are contributing to the market growth in this region are increasing disposable income, early aging, and the availability of compounded drugs. In the coming years, the hormone replacement therapy market will grow speedily in Asia Pacific region owing to the increasing awareness among the people. The emerging nations such as India, Japan, and China will contribute largely to the market growth.

Browse detail report @ https://www.zionmarketresearch.com/report/hormone-replacement-therapy-market

Global Hormone Replacement Therapy Market: Competitive Players

The key market players that are involved in the hormone replacement therapy market include Pfizer, BioSante Pharmaceuticals and Amgen, Noven Pharmaceuticals, Bayer AG, Merck & co., and QuatRx Pharmaceuticals.

Inquire more before buying this report @ https://www.zionmarketresearch.com/inquiry/hormone-replacement-therapy-market

About Zion Market ResearchZion Market Research is an obligated company. We create futuristically, cutting edge, informative reports ranging from industry reports, a company reports to country reports. We provide our clients not only with market statistics unveiled by avowed private publishers and public organizations but also with Vogue and newest industry reports along with pre-eminent and niche company profiles. Our database of market research reports comprises a wide variety of reports from Cardinal industries. Our database is been updated constantly in order to fulfill our clients with prompt and direct online access to our database. Keeping in mind the client's needs, we have included expert insights on global industries, products, and market trends in this database. Last but not the least, we make it our duty to ensure the success of clients connected to usafter allif you do well, a little of the light shines on us.

For more information on this press release visit: http://www.sbwire.com/press-releases/hormone-replacement-therapy/release-840079.htm

View post:
Hormone Replacement Therapy Market: Global Industry Analysis, Size, Share, Growth, Trends, and Forecasts 2016 ... - Digital Journal

Recommendation and review posted by Bethany Smith

Regenerating the Body With Stem Cells Hype or Hope? – Labiotech.eu (blog)

When the Japanese researcher Shinya Yamanaka managed to reprogram adult cells into an embryonic-like state to yield induced pluripotent stem cells (iPSCs), this was supposed to herald a revolution in regenerative medicine. But 10 years after their discovery, a therapeutic breakthrough is still outstanding.

The overall stem cell therapy field has failed today to show a very clear cut clinical benefit, told me Georges Rawadi, VP for Business Development at Celyad. The field now needs some significant success to attract attention.

Even though investors prefer placing their bets on the hot T cell therapies these days, some stem cell technologies such as iPSCs are starting to get traction as big industry players are exploring the territory. Last year, Bayer and Versant threw $225M into the pot to launch BlueRock Therapeutics, a regenerative medicine company that plans to develop iPSC-based therapies. A year before, Fujifilm spent $307M to acquire the iPSC company Cellular Dynamics.

Although a big success story is still lagging behind, recent advances in the field argue that stem cells indeed have the potential to translate into effective therapies for currently intractable diseases. Heres an overview of what biotechs stem cells are up to!

Stem cell treatment is not a new concept hematopoietic stem cells (HSCs) were described as early as the 1960s and bone marrow transplants have been used to treat blood cancer for decades.

The reason that we get excited about stem cell therapies comes from our experience with the hematopoietic stem cells. If you want to see what a mature stem cell therapy is like, you only need to look at bone marrow transplantation explained James Peyer, Managing Partner at Apollo Ventures, who has a Ph.D. in stem cell biology.

According to Peyer, the hematopoietic stem cell field is one of the most active areas in the stem cell world right now, mainly fueled by our advances in the gene editing space. Tools like CRISPR and TALEN allow for the genetic modification of a patients own bone marrow stem cells, which can then be expanded and returned to the patient for the correction of a genetic defect.

Last year, regulators gave green light to one of the first therapies of this kind. Strimvelis, developed by GSK, consists of an ex vivo stem cell gene therapy to treat patients with the very rare type of Severe Combined Immunodeficiency (SCID). Using the patients own cells avoids the risk of graft versus host disease (GvHD), which still affects around 30% of people receiving a bone marrow transplant.

Small wonder that the CRISPR companies, CRISPR Therapeutics, Editas, and Intellia are all active in this field, with preclinical programs in a number hematological diseases.

To date, the most prominent stem cells in the clinic are mesenchymal stem cells (MSCs), which are moving through more than 300 registered clinical trials for a wide array of diseases. These cells are able to form a variety of tissues including bone, cartilage, muscle or fat, and can be readily harvested from patients or donors for use in autologous or allogeneic therapies.

While MSCs have deluded the biotech scene with good safety profiles in clinical trials, their actual regenerative potential remains controversial, and there have been a great number of clinical failures, which many blame on a lack of demonstrated mechanisms of action.

As Peyer explained, The problem here is that, as opposed to other adult stem cells, the MSC has been unclearly defined. We know roughly what it does but we dont fully understand the molecular mechanisms driving these cells. On top of being unclearly defined, the regenerative powers of MSCs have been massively over-claimed in the past.

Another reason for the lack of clinical benefit has also been attributed to the use of undifferentiated MSCs, as Rawadi explained to me. The Belgian biotech Celyad, which has been pioneering cell therapy in the cardiovascular space, is using bone-marrow derived autologous MSCs and differentiates them into cardiomyocyte precursors to produce new heart muscle in patients with heart failure.

Although the company missed its primary endpoint in a phase III trial last year, Celyad has staked out a patient subpopulation that showed significant improvement. Its technology still has the confidence of the FDA, which just handed out a Fast Track designation and Celyad is now planning a refined Phase III trial.

One of Celyads major competitors, Australian Mesoblast, is forging ahead using allogeneic MSCs with Phase III programs in heart failure, chronic low back pain (CLBP) due to disc degeneration, as well as a range of inflammatory conditions including GvHD and rheumatoid arthritis.

Although the ability of MSCs to regenerate tissues remains questionable, the Mesoblasts approach hinges on a body of evidence showing that MSCs can suppress inflammation and mobilize endogenous repair mechanisms through indirect effects on immune cells.

Indeed, the first-ever approved stem cell therapy, Prochymal, also depends on this mechanism. Prochymal was developed by US-based Osiris Therapeutics and in 2012 received Canadian approval to treat acute GvHD. But after Sanofi opted to shelve its partnership with Osiris prior to FDA approval, the biotech sold out its off-the-shelf stem cell platform to Mesoblast in a $100M deal.

In Belgium, companies like TiGenix and Promethera are also banking on the immunomodulatory properties of MSCs. The companies are developing treatments for patients with Crohns disease and liver diseases, respectively.

The ultimate hope for stem cell therapies has been to regenerate damaged or diseased tissues as found in diabetes, heart failure or blindness. Holostem Terapie Avanzate, a spin-off from the University of Modena and Reggio Emilia was the first company to move towards this goal.

Building on 20 long years of research, the biotech has developed Holoclar, the first and only autologous stem cell therapy (apart from bone marrow transplants) to enter the European market. Holoclar is based on limbal stem cells, located in a part of the eye called the limbus, which can be used to restore eyesight in patients that have lost sight due to burn injuries.

Meanwhile, UK-based Reneuron is developing off-the-shelf therapies that aim to restore the cognitive function of patients following a stroke. Backed by no other than Neil Woodford, the company recently raised an impressive 100M to advance its lead therapy to the market.

The biotechs fetal-derived neural stem cell line CTX was able to significantly reduce the disability of post-stroke patients in a Phase II trial and ReNeuron is now planning to push its candidate into pivotal trials.

A major question in the space a decade ago was safety. Today, theres been a lot of trials done that show that safety is not an issue. I think safety is kind of off the table but efficacy is still a question mark. And thats what were trying to deliver now, Olav Helleb, CEO of ReNeuron, told me.

While neural stem cells and other tissue-specific stem cells are able to regenerate the cells of a particular tissue, Embryonic Stem Cells (ESCs) and their engineered counterparts, iPSCs, are capable of making every cell type in the body, a property known as pluripotency. Pluripotent stem cells can also expand indefinitely in culture and their identification unlocked massive expectations for these cells to transform the regenerative medicine field.

Yet, these cells come with significant challenges associated with the safety of the final preparation. Apart from ethical issues surrounding ESCs, today, a lot of companies have been cautious about using these cells for therapy, because undifferentiated pluripotent cells can drive tumor formation, explained Rawadi. Since ESCs can, in principle, form every cell type, they can lead to the formation of teratomas.

A major reason for the fairly slow progress in the field is based on the difficulties of directing a pluripotent cell to exactly the cell type that is needed for cell therapy. We can readily drive the cells from the undifferentiated state to the differentiated state. However, getting those cells to pause anywhere in the middle of this continuum to yield progenitor cells is incredibly challenging, Peyer explained. Another challenge, he says, is to engraft the cells in the right place to enable them to become fully integrated.

Besides initial hurdles, companies like US-based Asterias or ViaCyte are now running the first Phase I/II trials with ESC-derived cells to treat patients with spinal cord injuries and to restore the beta cells in type I diabetes. So far, the eye has been the the dominant organ for many of the first human clinical trials with pluripotent stem cells, where the cells are assessed in diseases such as age-related macular degeneration (AMD) to restore the loss of the retinal epithelium.

Deriving retinal epithelium from pluripotent cells is relatively easy and in fact, researchers in Japan are now running the very first clinical trial using donor-derived iPSCs to treat patients with AMD. For reasons of safety and standardization, the trial is based on an allogeneic approach. However, since this doesnt offer an exact genetic match, allogeneic therapies raise the prospect of immune rejection, an issue that has been plaguing the use of ESCs.

But the scientists in Japan have contended that iPSC banks could potentially solve this problem. The team in Japan is currently establishing an iPSC bank, consisting of HLA-characterized cell lines from 5-10 different donors, which should match 3050% of Japans population.

Such haplobanks have the benefits of allogeneic cell therapy, namely cost-effectiveness and standardization, but you still have matching immune systems, Peyer agrees.

For now, this remains a vision for the future, but the potential seems enormous. As Julian Howell, CMO of ReNeuron, told me, iPSCs have still got an awful long way to go. For the iPSC program running in Japan, they recently acknowledged that it took about $1.5M and 6 months to treat each patient. Its a great idea but its still got some way to go before it reaches the scale that could get into the clinic.

Images via nobeastsofierce,Natali_ Mis,vchal/ Shutterstock

View post:
Regenerating the Body With Stem Cells Hype or Hope? - Labiotech.eu (blog)

Recommendation and review posted by Bethany Smith

Regenerative Medicine: The Future of Medicine is Here Miami’s … – Miami’s Community Newspapers

Regenerative medicine is a revolutionary approach to treating many degenerative conditions and includes a variety of different techniques including stem cell therapy. This field joins nearly all disciplines of science and holds the realistic promise of repairing damaged tissue by harnessing the bodys ability to heal itself.

Adult stem cells are found in every part of the body and their primary role is to heal and maintain the tissue in which they reside. Stem cells are unspecialized cells capable of renewing themselves by cell division. In addition, they have the ability to differentiate into specialized cell types. Adult stem cells can be harvested from a patients own tissue, such as adipose (fat) tissue, muscle, teeth, skin or bone marrow.

One of the most plentiful sources of stem cells in the body is the fat tissue. In fact, approximately 500 times more stem cells can be obtained from fat than bone marrow. Stem cells derived from a patients own fat are referred to as adipose-derived stem cells. The mixed population of cells that can be obtained from fat is called a stromal vascular fraction (SVF). The SVF can easily be isolated from fat tissue in approximately 30-90 minutes in a clinic setting (under local anesthesia) using a mini-lipoaspirate technique. The SVF contains a mixture of cells including adipose-derived stem cells or ADSCs and growth factors and has been depleted of the adipocyte (fat cell) population.

ADSCs are multi-potential and can differentiate into a variety of different types of tissue including but not limited to bone, cartilage, muscle, ligament, tendon and fat. These cells have also been shown to express a variety of different growth factors and signaling molecules (cytokines), which recruit other stem cells to facilitate repair and healing of the affected tissue. ADSCs are very angiogenic in nature and can promote the growth of new blood vessels.

Based on research performed in our FDA registered facilities, stem cell quality and functionality can vary greatly depending on the methods utilized to obtain the cells. It is important to utilize a product that has undergone full characterization to include safety, identity, purity and potency. We have developed a method for harvesting and isolating stem cells from fat for therapeutic use. The use of a cell population that retains the ability to function in vivo will lead to more consistent patient results with long term success.

Adipose stem cells can be obtained from the patient easily, abundantly, and with minimal patient discomfort. Clinical applications for patients can be performed in an office setting safely, legally, and ethically using autologous ADSCs. Current applications include orthopedic conditions (tendon/ligament injuries, osteoarthritis, etc.), degenerative conditions (COPD, diabetes), neurological (MS, Parkinsons, spinal cord injuries, TBI, etc.) and auto-immune (RA, Crohns, colitis, lupus).

Stem cells possess enormous regenerative potential. The potential applications are virtually limitless. Patients can receive cutting edge treatments that are safe, compliant, and effective. Our team has successfully treated over 7000 patients with very few safety concerns reported. One day, stem cell treatments will be the gold standard of care for the treatment of most degenerative diseases. We are extremely encouraged by the positive patient results we are seeing from our physician-based treatments. Our hope is that stem cell therapy will provide relief and an improved quality of life for many patients. The future of medicine is here!

For additional information on our South Miami clinic, visit http://www.stemcellcoe.com.

Connect To Your Customers & Grow Your Business

See the original post here:
Regenerative Medicine: The Future of Medicine is Here Miami's ... - Miami's Community Newspapers

Recommendation and review posted by simmons

Growth Opportunities in Cell Harvesting Systems Market: New Research Report – LANews By Abhishek Budholiya (press release) (blog)

Cell harvesting is a technique of collecting stem cells for regenerate, transplant or repair the damaged organ with healthy functioning ones. Cell harvesting is considered as an important step in biopharmaceutical manufacturing industry that can directly affect the product quality and related downstream processes. Stem cells harvesting helps in treating with diseases namely cancers, blood disorders, immune deficiency diseases and various injuries. This therapy is also beneficial for burn victims which help them in grafting new skin cells as a replacement for damaged ones. Many companies are focusing on regeneration of myocardial tissue by injection of cell graft consist of adult stem cells from the patients for manufacturing regenerating medicines. For the treatment of eye diseases new healthy cells are also be grown. For harvesting bone marrow a companies are manufacturing devices with passive flexible drilling unit and suction mechanism which will help in reducing the invasiveness of bone marrow transplantation. Cell harvesting system helps in reducing the invasiveness of bone marrow aspiration from the iliac bone with less punctures. Moreover, helps in reducing procedure time and contamination by T-cells.

Cell Harvesting Systems Market are witnessing maximum growth owing to increase bone marrow transplantation procedures attributed to high prevalence of blood cancer and anemia. Moreover, improving healthcare expenditure, survival rate after treatment, increasing investment in logistic services, expansion bone marrow transplant registry for heart along with neuronal disorders and growing per capita healthcare expenditure. However, high cost of cumbersome treatment, lack of reimbursement policies, immunological rejection, viable cell density, and identification of stem cells in adult tissues, and complications during cell harvesting and inadequate number of HSCs cells for transplantation is a major barrier to the cell harvesting systems market.

The cell harvesting systems market has been classified on the basis of techniques, application and end user.Based on techniques, the cell harvesting systems market is segmented into the following: Altered Nuclear Transfer, Blastomere Extraction; Based on application, the cell harvesting systems market is segmented into the following: Bone Marrow, Peripheral Blood, Umbilical Cord Blood, Adipose Tissue; Based on end-user, the cell harvesting systems market is segmented into the following: Research Centers, Academics Institutes, Diagnostic Labs, Hospitals

Cell harvesting systems market witnessed substantial growth owing to equipment efficacy and accuracy during stem cells harvest. By application type, bone marrow aspiration is anticipated to hold the major share in the cell harvesting systems market owing to less process error, safe and simple procedure and less side effects. People suffering from Leukemia eligible for bone marrow transplant, is expected to contribute highest share in the global cell harvesting systems market. Cell harvesting systems helps in enhancing proper pigmentation in scar reconstruction which encourage companies for continuous technology advancement in both cell isolation techniques and downstream purification processes.

Depending on geographic region, cell harvesting systems marketis segmented into seven key regions: North America, Latin America, Eastern Europe, Western Europe, Asia Pacific, Japan, and Middle East & Africa. Asia Pacific dominates the cell harvesting systems marketfollowed by Europe, Japan and North America owing to high concentration of bone marrow stem cells harvesting centers and registries along with skilled doctors for the process of harvesting stem cells in these regions. Asia Pacific, Middle East and Africa hold huge potential and shows substantial growth in terms of wide acceptance of new technologyowing to awareness among population, increasing healthcare expenditure along with high number of potential candidate for the procedure.

Key players of cell harvesting systems market are PerkinElmer Inc.Tomtec, Bertin Technologies, TERUMO BCT, INC., hynoDent AG, Avita Medical, Argos Technologies, Inc., SP Scienceware, Teleflex Incorporated., Arthrex, Inc., Thomas Scientific, BRAND GMBH

Request Report Sample@ http://www.futuremarketinsights.com/reports/sample/rep-gb-1754

See the original post here:
Growth Opportunities in Cell Harvesting Systems Market: New Research Report - LANews By Abhishek Budholiya (press release) (blog)

Recommendation and review posted by sam

New NUH study to test stem cells as treatment for liver disease – TODAYonline

SINGAPORE The use of stem cell treatment to repair liver cirrhosis, or hardening of the liver, will be tested in a clinical trial here involving 46 patients and costing S$2.6 million.

The four-year study, which was launched yesterday, came amid a growing waiting list in Singapore for a liver transplant, which is currently the only cure for patients with end-stage liver cirrhosis.

Conducted by a multi-centre team from several restructured hospitals here, the study is led by the National University Hospital (NUH).

Liver failure is one of the top 20 causes of death in Singapore, but many patients are not suitable for a transplant due to factors such as age and surgical fitness.

Out of every five patients doctors see with end-stage liver disease, only one qualifies for a liver transplant, said Dr Dan Yock Young, principal investigator of the clinical trial and senior consultant at NUHs division of gastroenterology and hepatology.

(A liver transplant) is curative, but it is a complex procedure, and many patients are not suitable for it. For these patients, treatment is limited, but morbidity and mortality rates are high as high as 50 per cent in one year and this is probably worse than many (of the) other terminal illnesses we talk about today, he said.

Animal studies conducted over the last five years have shown that stem cells can reconstruct the micro-environment of a normal liver.

Like how branches are of critical importance in supporting the leaves and fruits of a tree, the endothelial (stem) cells contribute to supporting a nutritious environment for the hepatocyte (liver) cells, Dr Dan explained.

While similar stem-cell studies have been conducted in other centres in Asia, there has been no definitive evidence of the benefits of the treatment for liver patients.

The study will recruit 46 patients aged between 40 and 70 years old, and who are at the terminal stages of chronic liver disease, over three years. It is funded by the National Medical Research Council.

During the clinical trial, patients will be divided into a therapeutic group and a control group.

All patients will receive an injection to stimulate their bone marrow cells as part of the supportive treatment for their liver cirrhosis. However, only patients in the study group will have the stem cells from the bone marrow extracted and deposited directly into their liver for more targeted repair.

Using ones own stem cells will avoid the problem of cell rejection.

The liver tissue will be examined three months later, and an investigation to compare pre- and post-transplant results will be conducted after a year.

Since invasive surgery is not required for stem-cell therapy, the fatality risk is significantly lowered for the patient. However, other risks such as severe bleeding and infections still remain, given the patients weakened condition.

NUH also noted that the stem-cell therapy does not replace liver transplants, and the latter remains the best available treatment for liver cirrhosis.

It is very painful to turn patients away when we cannot offer them a liver transplant, said Dr Dan, adding that this stem cell therapy will serve as an alternative option.

We hope that this is a stepping stone to trials for stem cell candidates, he added.

MORE WAITING FOR A LIVER

The number of people on the waiting list for a liver transplant has been growing in recent years. In June last year, it was reported that there were 54 people on the list, more than double the 24 patients in 2011.

Chronic Hepatitis B remains the primary cause of non-alcoholic fatty liver disease, which refers to a range of liver conditions affecting people who drink little to no alcohol. However, obesity has become a contributing factor to the illness as well.

Link:
New NUH study to test stem cells as treatment for liver disease - TODAYonline

Recommendation and review posted by Bethany Smith

The CI Advantage | Cryonics Institute

Why choose CI?

The Cryonics Institute offers the public cryonic suspensions of the highest quality at the lowest reasonable cost. This has been our mission since 1976, when CI was founded by Robert C.W. Ettinger, the scientist who founded the cryonics movement. Our goal is to preserve life at liquid nitrogen temperatures until the day when medical technologies mature to the point where our patients can be successfully revived to new life, health and even renewed youth.

Cryonics offers a second chance at life. Not surprisingly, the Cryonics Institute is not the sole organization advancing this revolutionary concept.

However, as the stewards of Robert Ettingers legacy, we believe the Cryonics Institute is the organization most vested in advancing cryonics, and as such, offers significant advantages over other cryonic suspension providers.

Our prices are lower than any other organization in fact, the most affordable prices anywhere in the world. We set our prices low because we exist only to benefit our members - we dont want to overcharge ourselves.

Our minimum whole-body suspension fee is $28,000. (For members at a distance, transportation costs and local help will be additional.) Our $28,000 fee is a one-time only payment, with no subsequent charges. It's easily funded by life insurance or other investments subject to CI verification. One competitors cost is $200,000 for similar cryopreservation procedures and perpetual storage services. (* See more below on mandatory remote standby and how it can increase costs.)

Does our lower cost mean lower quality patient care or services? Absolutely not. Specific methods and research differ only slightly, and we believe our procedures and policies offer the best possible chance for patient survival.

While we certainly encourage our members to overfund and donate to help offset operational costs, we do not force people to pay beyond what we have determined is an adequate sum to fund our process.

The Cryonics Institutes state-of-the-art cryonic suspensions are performed by our team of experienced and trained cryonics professionals, using what we consider to be the best scientifically tested and proven procedures, equipment and vitrification formula available.

Vitrification is a key element in ensuring an optimal suspension. Our vitrification formula has been specifically formulated to minimize ice crystal formation and structural tissue damage associated with the freezing process, resulting in superior suspensions. CI made a significant research investment to arrive at this scientifically tested formula and we share the results openly. Our open source formula is freely available so that anyone who needs it can replicate it for local standby procedures, or to conduct their own independent quality tests.

Since 1976, we have successfully cryopreserved over 100 patients, all of whom are still in perfect cryostasis today. Our long proven track record of successful suspensions makes us one of the most reliable and respected cryonics organization around.

Robert C.W. Ettinger himself was cryopreserved by CI in 2011. A close examination of the late Mr. Ettingers own cryonics case report proves that a superior suspension need not involve expensive remote standby services. Solid planning utilizing local resources is a lower cost, and often superior, solution.

One might ask if the founder of cryonics chose CI (the very organization he founded) for his own cryopreservation, then why would anyone choose a different, more expensive provider? We agree CI is the best choice and hope you will too.

We have a unique, proven track record of financial security and stability, as well as price stability. CI is the only cryonics organization with no debt, no stockholders, and no landlords. We own our patient care facilities outright, and all of our member officers and directors donate their services voluntarily. We're one of the oldest cryonics organizations in existence -- and the only such organization that has never raised its prices, even in high-inflation times like the late 70s and early 80s. Adjusting for inflation, our prices have actually steadily declined.

This is a critical distinction, because as members ourselves, each and every one of us has a vested interest in the long-term viability of our organization - our facilities, cryostats and finances are built to last into the future we're striving toward.

Importantly, CI has kept its paid staff to a minimum to avoid high labor costs of excess labor. CI has never had a case of embezzlement, employee corruption or, of course, any patients lost. Through due diligence and careful examination of our personnel and procedures, CI has avoided the negative PR and lawsuits that have plagued other organizations.

Our volunteer leadership is an importan asset. It includes very talented people with successful careers in key areas - law, acounting, investment, emergency medical technology and company CEOs - all factors critical to running a successful cryonics organization. These leaders provide their high-priced talent to CI at no cost - because they believe in the promise of cryonics for themselves and their families.

We anticipate greater growth and stability through increased membership and by helping people from all socioeconomic groups. All of CIs directors and officers are directly elected by and from our membership, giving our members institutional oversight and ownership. Many CI members volunteer time and resources, receiving no pay other than the pride and satisfaction of helping one another. All decisions are made by our members, for the benefit of our members. We have no bureacracy, and no decision-maker has any financial interest except to benefit the organization.

While some organizations make centralized remote standby mandatory, CI offers this as an option available through Suspended Animation, Inc., the same organization that serves other providers. CI does not believe in a one size fits all standby solution. Instead, we encourage members to plan and set up their own decentralized local resources. We think that the ultimate responsibility for standby relies to a certain degree with the individual member, since each member can assess his or her own individual circumstances.

Spending large sums of money for remote standby services, unfortunately does not guarantee a successful suspension. Members must take an active role in planning and not be lulled into a false sense of security. By such arrangements, Robert Ettinger himself illustrated this point through the common sense cooperation between his family and friends. He didnt need to spend an extra $170,000 to receive an optimum suspension.

For those who do choose a remote standby option, CI offers its members the identical SA remote standby option as other cryonics providers, but at a much lower cost. For some people, especially those who live close enough to remote standby resources, this option can make sense based on proximity and experience.

However, when evaluating remote standby it is wise to consider the question of time and distance from the remote standby team and the cryonics service provider. Indeed, this is recognized in many life-saving situations. While it would benefit a cardiac arrest patient to have a team of medical professionals on call to perform CPR when needed, it wouldnt help this patient if that team was two hours away and arrived too late. In contrast, a simple network of laypeople five minutes away with the capability to perform CPR would have a much better chance of saving the patient. Similarly, a vast network of volunteers is the gold standard for most of the worlds rural fire and emergency medical services. In the case of cryonics, almost every city has funeral directors willing to provide quick cool down and transport to CI.

We believe that human life comes before profit. We follow fair business practices and hold ourselves to the highest ethical standards.

We welcome you to shop around and ask questions. When you consider the alternatives, were confident that you will agree we are the best, most affordable and most trustworthy cryonics organization available.

Read this article:
The CI Advantage | Cryonics Institute

Recommendation and review posted by simmons

Lights, Cameras, CRISPR: Biologists Use Gene Editing to Store Movies in DNA – Scientific American

Internet users have a variety of format options in which to store their movies, and biologists have now joined the party. Researchers have usedthe microbial immune system CRISPRCasto encode a movie into the genome of the bacteriumEscherichia coli.

The technical achievement, reported on July 12 inNature, is a step towards creating cellular recording systems that are capable of encoding a series of events, says Seth Shipman, a synthetic biologist at Harvard Medical School in Boston, Massachusetts. While studying brain development, Shipman became frustrated by the lack of a technique to capture how cells in the brain take on distinct identities. This inspired him to explore the possibility of making cellular recorders.

Cells have this privileged access to all sorts of information, he says. I would like to have these molecular recordings functioning in the developing nervous system and recording information.

To develop such a system, however, his team would need to establish a method for recording hundreds of events in a cell. Shipman and his colleagues, including Harvard geneticist George Church, harnessed the CRISPRCas immune system best known for enabling researchers to alter genomes with relative ease and accuracy.

Shipmans team exploited the ability tocapture snippets of DNA from invading virusesand store them in an organized array in the host genome. In nature, those snippets then target an enzyme to slice up the invaders DNA. (It is typically this targeted DNA cutting that geneticists harness for gene editing.)

The team designed its system so that these snippets corresponded to pixels in an image. The researchers encoded the shading of each pixelalong with a barcode that indicated its position in the imageinto 33 DNA letters. Each frame of the movie consisted of 104 of these DNA fragments.

The movie that the researchers selected consisted of five frames adapted from British photographer Eadweard MuybridgesHuman and Animal Locomotionseries. The photos show a mare named Annie G. galloping in 1887.

The team introduced the DNA intoE. coliat a rate of one frame per day for five days. The researchers then sequenced the CRISPR regions in a population of bacteria to recover the image. Because the CRISPR system adds DNA snippets sequentially, the position of each snippet in the array could be used to determine the original frame to which the snippet belonged.

The system is a long way from becoming the recorder of which Shipman dreamt while studying the brain. Substantial technological advances are needed to reach that point, notes bioengineer Randall Platt at the Swiss Federal Institute of Technology (ETH) Zurich in Basel. Because no single cell takes up more than one DNA snippet from each frame, the information for the movie is stored across populations of cells. And no one has yet transferred the CRISPR arrays into mammalian cells. Its full of limitations, but this is pioneering work that theyre doing, he says. Its elegant.

Other CRISPRCas systems can convert RNA into DNA that is then inserted into the CRISPR array[2]. This could open up the door to using the arrays to track gene expression without cracking cells open to remove their RNA, Platt notes.

Victor Zhirnov, chief scientist at the Semiconductor Research Corporation in Durham, North Carolina, calls the work revolutionary, and hopes to start tinkering with the technique at his research foundation. Its like this is the first aeroplane flown in 1903: it was just a curiosity, says Zhirnov. But ten years from that, we had aeroplanes almost like what we have today.

This article is reproduced with permission and wasfirst publishedon July 12, 2017.

Read the original post:

Lights, Cameras, CRISPR: Biologists Use Gene Editing to Store Movies in DNA - Scientific American

Recommendation and review posted by Bethany Smith

Novel cancer treatment wins endorsement of FDA advisers – Washington Post

Food and Drug Administration advisers on Wednesday enthusiastically endorsed a first-of-its-kind cancer treatment that uses patients' revved-up immune cells to fight the disease, concluding that the therapy's benefits for desperately ill children far outweigh its potentially dangerous side effects.

The unanimous recommendation from theOncologic Drugs Advisory Committeemeans the treatment could be approved by the FDA by the end of September, forging a new path in the immunotherapy frontier.

8-year-old Ava Christiansen has been battling cancer for half her life. Now a new specialized cancer treatment may be able to keep her in remission. (Whitney Leaming/The Washington Post)

Timothy Cripe, a panel member who is an oncologist with Nationwide Children's Hospitalin Columbus, Ohio, called the treatment the "most exciting thing I've seen in my lifetime."

Novartis, the drugmaker behind the CAR T-cell therapy, is seeking approval to use it for children and young adults whose leukemia doesn't respond to traditional treatments a group that numbers 600 or so patientsa year in this country. But the approach also is being tested for a range of diseases from non-Hodgkin lymphoma and multiple myeloma to solid tumors.

If cleared by the FDA, it would be the first gene therapy approved in the United States. But unlike traditional gene therapy, the new treatment doesn't replace disease-causing genes with healthy ones. Instead, it uses technology to reprogram immune cells called T cells to target and attack malignancies.

When a patient is treated under the Novartis process, T cells are extracted from a patient's blood, frozen and sent to the company's plant in Morris Plains, N.J. There, the cells are genetically modified to attack the cancer, expanded in number, refrozen and shipped back to the patient for infusion.

Once inside the body, the cells multiply exponentially and go hunting for the CD19 protein, which appears on a kind of white blood cell that can give rise to diseases, such as leukemia and lymphoma.The turnaround time for manufacturing the therapy, called vein-to-vein time, will be an estimated 22 days, Novartis officials told the committee Wednesday.

From the start of Wednesday'smeeting, committee members made clear that they were not concerned about the treatment's efficacy, which has been well established 83 percent of patients went into remission in the pivotal Novartis trial. Rather, the panel homed in onhow to best to handle possible shot-term toxicities, as well as long-term safety risks and manufacturing quality.

Most patients in the Novartis study experienced something called cytokine release syndrome, which causes fever and flulike symptoms that can range from mild to extremely severe, said Stephan Grupp, an oncologist at the Children's Hospital of Philadelphia who led the Novartis trial. Some patients in that study also had neurological problems, including seizures and delirium. But there were no cases of fatal brain swelling, as occurred in another company's trial, Grupp said.

To try to ensure safety, Novartis is limiting the therapy's availability to 30 to 35 medical centers where personnel have had extensive training with the treatment. The company also plans to post Novartis employees at hospitals using the therapy and to follow patients for up to 15 years.

During the committee meeting, hundreds of people packed the hearing room at FDA headquarters in Silver Spring, Md., including prominent scientists, such as Carl June of the University of Pennsylvania, who developed the treatment. Though the FDA isn't required to follow the guidance of its advisory committees, it usually does.

David Maloney, medical director for cellular immunotherapy at Fred Hutchinson Cancer Research Center in Seattle, said he was elated that the field is moving forward. It represents a paradigm shift in treating cancers, said Maloney, who is extensively involved in CAR T-cell research but not in the Novartis product.

One of the big issues in CAR-T cell therapy the cost, which analysts say could be in the hundreds of thousands of dollars wasn't discussed because that is beyond the FDA's purview. Novartis hasn't released pricing information.

During the public comment portion of the hearing, Amy Kappen, whose 5-year-old daughter underwent CAR T-cell therapy in Philadelphia, called for approval. The treatment beat back her daughter's cancer and brought back the sparkle in her eyes. And while she died three months later, our children deserve this chance, Kappen said.

For other parents, there were happier outcomes. Don McMahon, whose son Connor was treated at Duke Children's Hospital in North Carolina, said the therapy was far less debilitating than what he endured on standard chemotherapy during two relapses. The boy, an avid hockey player, is doing well now.

Thomas Whitehead, whose daughter was the first pediatric patient to receive the treatment, choked up while telling panel members about Emily's experience. She got CAR T-cell therapy when she was 6 and close to death from leukemia. The treatment almost killed her, but she recovered and today is cancer free.

"If you want to see what a cure looks like for relapsed ALL [acute lymphoblastic leukemia], shes standing right beside me," said Whitehead, his voice cracking.

Read more:

First gene therapy 'a true living drug ' on the cusp of FDA approval

Cancer drug prices are so high that doctors will test cutting doses

Limited coverage, subsidies for some in Senate GOP's proposed health-care overhaul

This cancer doctor is running for Congress. Here's why

'This is not the end': Using immunotherapy and a genetic glitch to give cancer patients hope

Follow this link:
Novel cancer treatment wins endorsement of FDA advisers - Washington Post

Recommendation and review posted by Bethany Smith

Baby Charlie remains on life support as parents fight doctors for experimental treatment – CBC.ca

He can't cry, kick his legsor breathe unassisted. His body is growing;his brain is not.

Baby Charlie Gard, threeweeks shy of his first birthday, suffers from a rare degenerative disorder. There is no cure. He's being kept alive on a ventilator at a renowned children's hospital in London,where doctors want to take him off life support to allow him to "die with dignity."

But Charlie's parents are in a bitter legal fight to try one last experimental treatment in the U.S. that they know won't say his life but which they say might at least improve it.

"He wakes up, he enjoys his tickles, we lie next to him,"said his mother, Connie Yates.

"If he was suffering, I couldn't do it.I promise you."

Charlie has mitochondrial depletion syndrome, which saps his muscles and organs of energy. He has brain damage and cannot move or cry. The disease is considered fatal. (Charlie Gard Facebook)

But whether or not he's suffering is one of the many disputed facts in this case. Doctors say prolonging his life is causing sufferingand thatno existing treatment can save him.

The Pope, U.S. President Donald Trump and a variety of lawyers, ethicists and doctors have all weighed in on the British baby's fate. As Charlie lies mute inhospital, an impassioned debate swirls around what rights parents have to control their children's medical care.

Kaylom Hoppe, 5, leads chants to 'save Charlie Gard' outside London's Court of Justice, which is hearing evidence in the Gard case Thursday. (Susan Ormiston/CBC)

Two previous courts have ruled with the doctors at London's Great Ormond Hospital. The case is now being heard at Britain's Supreme Court.Under British law, in the rare case when a dispute arises over a child's treatment, a hospital can take it to the courts to decide.

Justice Nicholas Francis was expected to rule on the caseThursday morning but delayed the decision until the courtcan hear from the U.S. doctor who would administer the experimental treatment the family is seeking, called nucleoside bypass therapy.

The doctor is expected to testify via videolater this morning.

On Monday, in an emotional, high-spirited hearing before the court, Francisruled the parents had until Wednesday to deliver new evidence of treatment they believe could benefit their son.

"I'm still fighting for the same thing that I've been fighting for since November 2016,"said Charlie's mother.

Even a 10-per-centchance of improvement, at best, is "a good enough chance to take oral medication with no major side effects," she says.

A health-care facility in the U.S. hasagreed to care for the baby and administer the experimental treatment. It is not curative, but the family's lawyers argue it could slightly improve the baby's underlying condition.

Charlie's father determined to get his baby to the U.S. for an experimental treatment called nucleoside bypass therapy that won't save his life but that the parents think could improve his condition. (Charlie Gard Facebook )

Born healthy, Charlie's muscles began to fail around sixmonths. Doctors discovered he had inherited the faulty RRM2B gene thatinhibitscells from making energy and hadmitochondrial depletion syndrome. His current care team says subsequent seizures in January caused irreparable brain damage. His parentsdisagree.

"I've yet to see something that tells me my son's got irreversible structural brain damage," said Yates.

She told the BBC thatother children with Charlie's condition are currently on the experimental medication.

"They all have mitochondrial depletion syndrome as well as Charlie, but theirs is caused by a slightly different gene. They're all getting stronger."

"This isn't about the parent's right to control what happens to their child," saidPenney Lewis, co-director of the Centre of Medical Law and Ethics at Kings College London.

Protesters stand outside a London court to show support for Charlie and his parents. (Reuters)

"Parents don't have that right, [but] they do have a responsibility to take care of their child as best they can.

"I think one of the things that seems so heartbreaking is that the parents really believe that he could be saved, that he could have a much improved quality of life, and that doesn't appear to be what the evidence suggests."

Yates and Charlie's father, Chris Gard, have used social media to their advantage to spread the word and to crowdfund enough money on GoFundMefor them to travel to the U.S. for treatment. More than 400,000 people have signed a petition calling on doctors to allow the baby to travel to the U.S. AFacebook page has been chartingthe legal steps in the case, and an American Christian group protesting euthanasia has arrived in London promoting#IamCharlieGard on Twitter.

The world's most high-profile tweeter, U.S. President Trump, interjected his opinion on Monday:"If we can help little #CharlieGard, as per our friends in the U.K. and the Pope, we would be delighted to do so."

Then on Wednesday, U.S. Vice-President Mike Pence used the case to make a political point in the U.S. health-care debate. Speaking to Rush Limbaugh on radio, Pence said the baby Gard case is evidence the "single payer"system of medicine doesn't work.

"The mother and father should be able to choose the lifesaving treatment that's available ... instead of submitting to a government program, which says, 'No,we're going to remove the life support from your precious 11-month-old child.'"

But the experimental treatment will not save Charlie's life, argue many top physicians in the U.K. If it would, doctors at Great Ormond wouldn't hesitate to administer it.

"I think it is disturbing to watch," Lewis said in an interview with CBC News. "I think sometimes, one loses sight of a very very unwell child. Because it becomes a kind ofpolitical circus in some sense."

Britain's top pediatrician,Neena Modi, wrote in an open letter,"Charlie's situation is heartbreaking for his parents, and difficult for everyone, including the doctors and nurses looking after him."

She said the interventions from high-profile figures are "unhelpful."

But as Charlie lies in his tiny hospital cot, with round-the-clock care, his parents believe all the international attention has "saved his life so far."

"We're not strong people, but what is strong is the love for our little boy,"said Chris Gard."He's kept us going through all of this."

Follow this link:
Baby Charlie remains on life support as parents fight doctors for experimental treatment - CBC.ca

Recommendation and review posted by Bethany Smith

Don’t Blame Your Mom’s Dad for Male Pattern Baldness – Inverse

One day, a guys got a full head of tousleable, luscious hair. The next, that same guy looks into a mirror and sees a reflection of himself with a receding hairline, skin creeping out where hair used to grow wild.

Its male pattern baldness, and while a dude might be tempted to blame his maternal grandfather for the curse of his receding mop, the genetic truth is way murkier.

Balding is actually the result of a very complicated mix of biological and environmental factors. This makes it hard to predict who will go bald, let alone how to turn back the clock on Americas follicles. Thanks to scientific breakthroughs, however, were getting closer than ever to unlocking the mysteries of The Rocks seductive scalp and your own, much less attractive skull.

That hasnt stopped scientists and hardcore hairdressers from capitalizing on hair loss, officially known as alopecia, with the male pattern baldness industry ringing in $3.6 billion dollar industry dedicated to fighting it with wigs, transplants, chemical treatments, and lots and lots of prayer.

An old adage states that you can predict your own fate based on your moms dad and his hair, but new research is showing this to be overly simplistic. Yes, genes related to hair loss are in fact on the X sex chromosome, and therefore passed down to you by your mother but there are a bunch of other factors at play.

In some cases, hair loss can be brought on by stress or poor diet, autoimmune diseases, and pharmaceuticals. But these are all rare. The majority of hair loss is tied to male pattern baldness, a quasi-hereditary trait responsible for the majority of hair loss in men. Part of it is your moms X chromosome, but numerous other genes, hormones, even your immune system functions are involved.

Lets start with testosterone. While everyone has it coursing through their body, men have a lot more testosterone than women. The sex hormone is important for many reasons, including encouraging the development of male genitals, heart health, and the like. But in human hair follicles, testosterone can be all-too-easily transformed into dihydrotestosterone, which shrinks the follicle and stops hair from growing. Thats part of why more more men experience hair loss than women, who have less testosterone at work in their bodies and on their scalps.

Our immune system may also be a key player when it comes to hirsutism. In May, researchers published a report in the journal Cell that showed T cells can change how follicles work for the worse. Apparently, T cells have a tight pact with the stem cells that allow for hair regeneration. When the T cells living in the skin on your head are disrupted, so is hair growth. While the results were most clearly tied to a variety of hair loss known to result from autoimmune disorders, the researchers think T cells could shape male pattern baldness, too.

Still, genetics are probably the single most crucial components of male patterned baldness but no one understands exactly how. One of the most comprehensive studies on this factor, published in Nature Communications in March, looked at data compromising more than 10,000 men with early-onset hair loss and an equal number of controls. They found a whopping 63 different spots scattered throughout human DNA that can contribute to male pattern baldness. Thats a lot of different genes working together far too many to allow for an easy genetic solution to thinning hair.

All of this goes to say: Hair loss is a lot more complicated than whatevers going on with your grandpas noggin. But its also extremely common: In fact, as many at 85 percent of men go on to experience some hair loss over the course of their lives, with increased prevalence among Caucasian men.

It also has to be said that, though people may spend small fortunes trying to combat it for aesthetic purposes, theres nothing wrong with being bald. In fact, some evolutionary biologists theorize that in the distant past, premature baldness made men stand out to potential mates. Baldness is sometimes associated with age and wisdom, so a 20 year old losing his hair may have looked distinguished instead of decrepit. So as these theorists and Tooth Fairys Dwayne The Rock Johnson can attest, there might be something to be said for wholeheartedly embracing that smooth-shaven life.

So skip the Rogaine and stay confident, baldy buddy.

Original post:
Don't Blame Your Mom's Dad for Male Pattern Baldness - Inverse

Recommendation and review posted by Bethany Smith

DNA Diagnostics Center brings four genetic testing options to retail – Drug Store News

FAIRFIELD, Ohio DNA Diagnostics Center on Tuesday announced the launch of its new product line called HomeDNA, a targeted selection of at-home genetic tests for skin care, healthy weight, ancestry and paternity that helps consumers make better health and wellness choices, and provides answers about family relationships both past and present.

Beginning in July, HomeDNA from DDC will be the first suite of home DNA testing products in retail stores nationwide, according to the company.

"For the first time ever, consumers can choose from an assortment of DNA tests that interest them and buy the kits at their local drug store," stated Connie Hallquist, DDC CEO. "It's exciting that cutting-edge science is so accessible and the process is so easy. Consumers collect their DNA at home with a simple cheek swab, send to our lab for processing then receive their custom report online."

The HomeDNA selection currently includes four products: Skin Care, Healthy Weight, Ancestry and Paternity.

See the original post here:
DNA Diagnostics Center brings four genetic testing options to retail - Drug Store News

Recommendation and review posted by sam

Direct-To-Consumer Genetic Testing Can Be a Trip Down the Rabbit Hole – Newswise (press release)

Newswise Genetics isnt just for geneticists anymore. With the rise of direct-to-consumer genetic testing companies like 23andMe, anyone can rifle through their genotypes at hundreds of thousands of positions throughout their DNA. Beyond lighthearted factoids about ear wax type and Neanderthal vestiges, anyone can learn much harder facts, such as whether they carry any of dozens of mutations known to cause Alzheimers, frontotemporal dementia, and other fatal neurodegenerative diseases.

Alzforum explores this genetic Wild West, reporting on what kind of information curious customers can find in their data files, how the FDA views direct-to-consumer genetic data disclosure, and how the role of genetic counseling is changing in the wake of the public rush to obtain genetic data from a spit sample. The story also raises hope that the movement toward personalized genetic data sharing could be harnessed toward a common good, e.g., by referring carriers of pathogenic mutations to prevention trials that could avert Alzheimers or related diseases.

Read more here:
Direct-To-Consumer Genetic Testing Can Be a Trip Down the Rabbit Hole - Newswise (press release)

Recommendation and review posted by simmons


Archives