Page 530«..1020..529530531532..540550..»

Potential Baldness Pathway Uncovered while Studying Rare Skin … – Genetic Engineering & Biotechnology News

The researchers constructed mouse models for WNT10A-associated HED by deleting the Wnt10a gene. The mutant mice displayed the same symptoms as HED patients with severe loss-of-function mutations in the WNT10A gene. Long-term absence of WNT10A leads to miniaturization of hair follicle structures and enlargement of the associated sebaceous glands, a phenomenon that is also observed in male pattern baldness.

We showed "that -catenin pathway activity and adult epithelial progenitor proliferation are reduced in the absence of WNT10A, and identify Wnt-active self-renewing stem cells in affected tissues including hair follicles, sebaceous glands, taste buds, nails, and sweat ducts, the authors wrote. Human and mouse WNT10A mutant palmoplantar and tongue epithelia also display specific differentiation defects that are mimicked by the loss of the transcription factor KLF4. We found that -catenin interacts directly with region-specific LEF/TCF [lymphoid enhancer factor/T-cell factor] factors, and with KLF4 in differentiating, but not proliferating, cells to promote expression of specialized keratins required for normal tissue structure and integrity.

Interestingly, the UPenn team also discovered that cracking and scaling of palm and foot sole skin in WNT10A patients is due to decreased expression of a structural protein called keratin 9, which is specifically expressed in these regions of skin and contributes to its mechanical integrity.

"Our studies took us back and forth between human patients and our mouse model," said Dr. Millar. "Our goal was to find what happened to cellular components affected by the WNT10A mutation to make better treatments."

Dr. Millar and her colleagues showed that decreased proliferation and keratin 9 expression in the absence of WNT10A resulted from the failure of signaling through a well-characterized pathway that stabilizes -catenin, allowing it to enter the cell nucleus and activate gene transcription. These findings indicate that small-molecule drugs that activate the -catenin pathway downstream of WNT10A could potentially be used to treat hair thinning and palm and sole skin defects in WNT10A patients. These agents may also be useful for preventing hair loss in a subgroup of people with male-pattern baldness.

Read more:
Potential Baldness Pathway Uncovered while Studying Rare Skin ... - Genetic Engineering & Biotechnology News

Recommendation and review posted by sam

A new gene therapy may help fight against an incurable form of breast cancer – Hindustan Times

A small study presented at the worlds largest cancer conference found treating patients with the drug olaparib could slow cancer growth by three months and be less toxic for patients with inherited BRCA-related breast cancer. A type of inherited and incurable breast cancer that tends to affect younger women could be targeted by a new gene therapy, researchers have found. However, researchers have said there was not enough data to say whether patients survived longer as a result of the treatment.

We are in our infancy, said Dr Daniel Hayes, president of the American Society of Clinical Oncology and professor of breast cancer research at the University of Michigan. This is clearly an advance; this is clearly proof of concept these can work with breast cancer. Does it look like its going to extend life? We dont know yet, he said.

The drug is part of the developing field of precision medicine, which targets patients genes to tailor treatment.

It is a perfect example of how understanding a patients genetics and the biology of their tumor can be used to target its weaknesses and personalize treatment, said Andrew Tutt, director of the Breast Cancer Now Research Centre at The Institute of Cancer Research.

Olaparib is already available for women with BRCA-mutant advanced ovarian cancer, and is the first drug to be approved that is directed against an inherited genetic mutation. The study was the first to show olaparib can slow growth of inherited BRCA-related breast cancer. The drug is not yet approved for that use.

People with inherited mutations in the BRCA gene make up about 3% of all breast cancer patients, and tend to be younger. The median age of women in the olaparib trial was 44 years old.

BRCA genes are part of a pathway to keep cells reproducing normally. An inherited defect can fail to stop abnormal growth, thus increasing the risk of cancer. The study examined the effectiveness of olaparib against a class of BRCA-related cancers called triple negative. Olaparib is part of a class of four drugs called PARP-inhibitors that work by shutting down a pathway cancer cells use to reproduce.

Patients who received olaparib saw cancer advance in seven months, versus four months for only chemotherapy. (Shutterstock )

The study from Memorial Sloan Kettering Cancer Center in New York randomly treated 300 women with advanced, BRCA-mutated cancer with olaparib or chemotherapy. All the participants had already received two rounds of chemotherapy.

About 60% of patients who received olaparib saw tumors shrink, compared with 29% of patients who received chemotherapy. That meant patients who received olaparib saw cancer advance in seven months, versus four months for only chemotherapy.

Researchers cautioned it is unclear whether olaparib extended life for these patients, and that more research was needed to find out which subset of patients benefit most from olaparib.

Follow @htlifeandstyle for more

Read the original post:
A new gene therapy may help fight against an incurable form of breast cancer - Hindustan Times

Recommendation and review posted by sam

This Doctor Says He Can Reverse Abortions – Mother Jones

And pro-life lawmakers are taking notice.

Nina Liss-SchultzJun. 9, 2017 6:00 AM

So-called crisis pregnancy centers are well known for trying to convince women not to end their pregnancies. But George Delgado, a physician with a crisis pregnancy center called Culture of Life Family Services clinic in San Diego, takes the practice a step further: He claims to have developed a technique to reverse the effects of a pill-induced abortion. Have you taken the first dose of the ABORTION PILLDo you regret your decision and wish you could reverse the effects of the abortion pill? reads the website of the project Delgado started. We are waiting to help you! The promotional language suggests that, with some strong and timely doses of the hormone progesterone, women can stop the abortion and carry the pregnancy to term: IT MAY NOT BE TOO LATE, IF YOU CALL QUICKLY.

The only problem, according to several doctors I spoke to, is that there is scant medical evidence that the procedure works. Based only on anecdotal accounts from pro-life doctors and a small case study, the abortion pill reversal protocol is experimental at best, they say. But that hasnt stopped conservative state legislatures from trying to push through laws requiring doctors tell their patients that, should they regret their abortions, they might be able to undo them.

A medication abortion typically involves two drugs. The first, mifepristone, which is administered in a doctors office, ends the pregnancy, and the second, misoprostol, which the woman takes at home, expels it from her body. Since 2000, when the Food and Drug Administration approved mifepristone sales, medication abortions have soared in popularity for women less than three months into their pregnancy. In 2014, abortion with mifepristone and misoprostol accounted for about a third of all abortions in the United States. Its also a target of anti-abortion advocates, who call it dangerous (major complications result in less than0.4 percent of all cases) and say that it contributes to an abortion-on-demand culture.

The abortion pill reversal protocol was born in 2009, when Delgado got a call about a woman in Texas who changed her mind after taking mifepristone. Then the medical director of Culture of Life Family Services, Delgado reasoned that progesterone, a hormone given to pregnant women to prevent miscarriage, might help. He found a Texas physician who agreed to give the woman progesterone injections. According to Delgado, it worked, and the woman carried the pregnancy to term.

After that, says Delgado, more requests started coming in. In 2012, Delgado co-authored a case study reviewing the experiences of six women whod contacted him for abortion reversals after taking mifepristone. Each were given doses of progesterone, which latches onto the same hormone receptors as mifepristone, and four of the six carried pregnancies to term. Through the study, Delgado got in touch with a North Carolina doctor, Matthew Harrison, who claims he oversaw the first successful reversal in 2007. Together they created the Abortion Pill Reversal group, which boasts foundational principles such as, It is reasonable and appropriate to respect a womans right to choose to reverse a medical induced abortion.

Through the group, which runs a hotline and prints testimonials from anonymous women whove reversed their abortionsnot following through with the abortion pill has been a tremendous blessingDelgado and Harrison say theyve amassed a network of over 350 doctors and mid-level practitioners across the country willing to try abortion reversal with progesterone. According to Delgado, the group has taken more than 2,000 calls and saved nearly 300 babies. We are very excited to give women this second chance at choice, he told me.

Word of Delgados technique soon spread to lawmakers. Americans United for Life, the influential anti-abortion advocacy group, wrote model legislation for abortion pill reversal. Testifying in front of an Arizona legislative committee in 2015, Dr. Allan Sawyer opined that women should not have their babies stolen from them just because they arent getting accurate information about their abortions. Thats why, said Sawyer, the former president of an anti-abortion OB-GYN group, he wants the state to ensure that doctors inform women that if a woman changes her mind it may be possible to reverse her medication abortion.

Less than a month later, Arizona became the first state to pass an abortion-pill reversal law requiring physicians who offer medication abortion to tell their patients that, should they come to regret their decisions, they might be able to undo them. Arkansas followed suit with a similar law. In 2016, South Dakota enacted an abortion reversal law, and this year, four more states introduced similar bills. The measures are similar to many other restrictions on abortion access and care that pro-life groups have pushedabout350 since 2010and play on the same tropes: Women regret their abortions, according to anti-abortion groups, and so if theyre given information and time to think about what theyre doing, they might change their mind.

But many doctors and medical experts have pointed to a number of problems with the technique. The leading medical association for obstetricians and gynecologists wrote of the 2015 Arizona bill: claims of medication abortion reversal are not supported by the body of scientific evidence. In a review of the literature on mifepristone, Dr. Daniel Grossman and others point out that Delgados study did not have approval from an institutional review board, which usually monitors research involving human subjects. Nor does the study actually make the case that the womens pregnancies continued because of the mifepristone; as Grossman explains, taking mifepristone alonewithout misoprostolcan result in a continued pregnancy up to 46 percent of the time, depending on the dosage and the gestational age of the fetus. In other words, doing nothing after taking mifepristone might be as effective as the progesterone doses.

Everyone I know who provides abortion would try to determine whether or not someone is feeling ambivalentthats a critical part of providing good care, says Karen Meckstroth, and OB-GYN at an abortion clinic in San Francisco. I dont think its wrong to talk to people about reversal as a theoretical possibility. But it could cause real harm if its not true.

Grossman, Meckstroth, and a third doctor, Matthew Zerden, at Planned Parenthood South Atlantic, all said that passing laws based on a single, and problematic, study leads to bad medicine. Zerden, whose Planned Parenthood affiliate has clinics in North Carolina, says that women receiving abortion care are already informed that they have other options, and that women must consultwith a nurse or doctor 72 hours before their abortion appointment because of a waiting period law in the state. The vast majority of patients dont change their mind, he says. Its extremely patronizing, what Delgado is insinuating. Indeed, a 2015 study of nearly 700 women found that 95 percent of women who got abortions reported that it was the right decision three years later.

Delgado counters that the method makes biologic sense and that further criticism of our work isnt warranted. In an interview with Mother Jones, Delgado pointed to what he called the three pillars that back up abortion pill reversal: first, the fact that progesterone interacts with the same hormone receptors as mifepristone, thereby, at least theoretically, canceling out the effects of the abortion drug (Grossman points out that mifepristone is known to bind more tightly to those receptors than progesterone). Second, Delgado points to a Japanese study involving pregnant rats who were given mifepristone and progesterone and did not abort. The third pillar, Delgado says, are the two new studies his team is publishing this year. One of those studies, which has not yet been submitted for peer review, will look at the hundreds of cases the group has documented since 2012, according to Delgado.

So far, none of the abortion reversal bills introduced this year have become law. And the Arizona measure never took effect and was ultimately struck down in court. After Delgado testified in support of Colorados bill in February, it was defeated in committee. Other measures in North Carolina, Indiana, and Georgia, have been stalled in committee.

But anti-abortion advocates are not giving up on lobbying lawmakersand in the meantime Meckstroth fears the procedure could do more harm than good. Its very experimental and its completely inappropriate to recommend it, says Meckstroth. For it to become law or a recommendation with no research is unfair to women.

Nina Liss-Schultz is the research editor at Mother Jones. You can reach her at nliss-schultz@motherjones.com.

Mother Jones is a nonprofit, and stories like this are made possible by readers like you. Donate or subscribe to help fund independent journalism.

Continue reading here:
This Doctor Says He Can Reverse Abortions - Mother Jones

Recommendation and review posted by sam

St. Louis Clinic Introduces Weight Loss Breakthrough – Benzinga

Conventional weight loss strategies are leaving people frustrated and unsuccessful in an era of processed foods, chemicals, and hormone disruptions. A new approach at Balanced Body Health Center, LLC is having patients shed 15-20 lbs of fat per month by adapting the body's ability to process these stresses.

St. Louis, MO (PRWEB) June 04, 2017

Sadly, our allopathic, insurance-based medical model for health care hasn't found a sustainable way to rid itself of Diabetes, weight gain, and the toll obesity has on our health. Instead, people are getting sicker, more inflamed, and more dependent on medications. A St. Louis clinic has taken upon itself to break this mold and offer a simple solution for people to live more vibrant and happy livesand get leaner in the process!

Functional Nutritionist, Dr. De Geer, explains 95% of diets don't work. Most people try to research weight loss strategies on their own and there's the infamous yo-yo effect where a person loses weight only to regain it later. A myth that consistently fails to explain the overweight epidemic is: weight problems are merely a consequence of taking in too many calories and not burning enough. A physician's typical advice regarding this issue is: "eat less and exercise more." This limited approach fails to touch upon hormones, toxins, food choices, inflammation, stress, and gut health.

Learn more at http://www.drdegeer.com/weight-loss-program/

At Balanced Body Health Center, LLC patients are educated on these factors and follow guidelines that result in 15-20 lbs of fat loss per month on average. Here, a person initially meets with a physician to casually discuss health and weight loss goals and to uncover metabolic roadblocks they may be facing. Most people live a lifestyle that promotes fat storage while shutting down pathways to access this later for energy.

Dr. De Geer explains fat cells accumulate hormones and toxins. "The more fat we have, the more hormonal problems and toxin-related issues we can face." Fat cells are also prime targets for hormone-disrupting chemicals that can increase the number and size of fat cells.

Another common condition gaining media attention is leaky gut. With leaky gut, the digestive tract lining breaks down, stimulating the release of inflammatory molecules. This downregulates the breakdown of fat cells and stimulates the production of more fat cells. These two mechanisms lead to an inability to lose weight. Also, those who are obese tend to have a less diverse collection of gut bacteria than those who maintain a healthy weight.

Balanced Body Health Center, LLC takes an innovative approach at removing toxins, controlling inflammation and completely transforming patients' lives. For an effective strategy on how lose weight, visit http://www.drdegeer.com/weight-loss-program/ or call (314) 541-8188 to schedule a consultation.

For the original version on PRWeb visit: http://www.prweb.com/releases/2017/06/prweb14386878.htm

Read the original:
St. Louis Clinic Introduces Weight Loss Breakthrough - Benzinga

Recommendation and review posted by Bethany Smith

3-D Mammograms And Molecular Breast Imaging Personalized … – HuffPost

This article is authored by the Mayo Clinic Center for Individualized Medicine. The mission of the Center is to discover and integrate the latest in genomic, molecular and clinical sciences into personalized care for patients.

A picture is worth a thousand words. While that saying may be true, for the more than 50 percent of all women who have dense breast tissue, a picture from traditional, 2-D mammography may not tell the full story about whether they have breast cancer.

Breast density is like the wolf in sheeps clothing. Both tumors and dense breast tissue appear white on a mammogram. A traditional 2-D mammogram may not distinguish between the two. Thats why mammograms find as few as 40 percent of cancers in women with dense breasts, says Deborah Rhodes, M.D., a Mayo Clinic Breast Clinic physician.

If tumors are obscured by dense tissue on a mammogram, the tumor may go undetected for a year or longer during which time the tumor will grow which is a significant problem when you consider how closely survival from breast cancer is linked to tumor size at diagnosis. If we discover a tumor when it is less than 1 centimeter, that patient has over a 90 percent chance of surviving. If we could reliably find tumors in dense tissue when they are small, more lives could be saved," adds Dr. Rhodes.

In addition to dense breast tissue masking tumors on a mammogram, research has shown that women with dense breast tissue have a higher risk of developing breast cancer. Many states have now passed legislation mandating that women found to have dense breasts on a mammogram be provided with information about the impact of breast density on breast cancer detection and risk.

Because both Minnesota and Arizona have this legislation, and because national guidelines on breast cancer screening differ, Mayo Clinic breast specialists developed consensus guidelines for breast cancer screening in women with dense breasts.

Bringing dense breast tissue into focus - 3-D mammograms and molecular breast imaging (MBI)

In order to provide the best screening to detect breast cancer, Mayo Clinic physicians recommend that women with dense breasts initially have a 3-D mammogram and be given the option to have further screening with molecular breast imaging (MBI).

Dense breast tissue what you should know

Women with dense breast tissue have a higher proportion of dense tissue compared to fatty tissue in their breasts. You can find out whether you have dense breast tissue by talking with your physician and reading your mammogram report.

Factors that lead to women having dense breasts include:

Adjusting the lens researchers work to refine screening tools

Mayo Clinic Center for Individualized Medicine has supported development of molecular breast imaging as an individualized approach to cancer screening and will continue to support research that refines this technology in order to provide patients with dense breast tissue the best care.

Our goal is to identify the best tool to screen for and diagnose cancer at its earliest stages, when it is more treatable. By finding the best individualized care for women with dense breasts, I think we can greatly reduce the number of breast cancers diagnosed when they are already advanced - cancers that were not visible on an x-ray. We have already demonstrated that MBI can detect many cancers including advanced cancers that were not seen on traditional 2-D mammography. Our future research will continue to evaluate the effectiveness of 3-D mammograms and MBI. While this research is ongoing and important, MBI is available now as a tool for women who seek additional screening because they have dense breasts, says Dr. Rhodes.

Read more here:
3-D Mammograms And Molecular Breast Imaging Personalized ... - HuffPost

Recommendation and review posted by simmons

New Clinic Fills Need for LGBT-focused Care – Hospitals & Health Networks


Hospitals & Health Networks
New Clinic Fills Need for LGBT-focused Care
Hospitals & Health Networks
The clinic, now in its fourth month, offers specialized primary care services for the LGBT community, including hormone therapy and monitoring, HIV care, and referrals for specialty services. It also provides support for family members, health ...

Original post:
New Clinic Fills Need for LGBT-focused Care - Hospitals & Health Networks

Recommendation and review posted by simmons

Low testosterone risk flagged for testicular cancer survivors – medwireNews

medwireNews: Clinicians should be aware of the risk of hypogonadism in men who have been treated for testicular cancer, highlight findings from The Platinum Study.

The results showing that 38% of 491 survivors had low testosterone or were using testosterone replacement therapy were reported at the 2017 annual meeting of the American Society of Clinical Oncology in Chicago, Illinois, USA.

Mohammad Issam Abu Zaid, from Indiana University School of Medicine in Indianapolis, USA, told delegates that hypogonadism was more common in patients who were older, affecting 51.6% of those aged 50 years or older versus 29.7% of patients aged 1839 years.

Overweight and obese patients were also more likely to have hypogonadism than those with a healthy weight (41.9 and 44.3 versus 25.6%), as were patients with one or at least two risk alleles in the SHBG gene versus none (36.1 and 41.2 vs 26.6%).

In addition, patients with low testosterone were more likely than those without to have high cholesterol (20 vs 6%), hypertension (19 vs 11%), erectile dysfunction (20 vs 12%), diabetes (6 vs 3%), and anxiety or depression (15 vs 10%).

Zaid explained that as hypogonadism is associated with risk factors for heart disease, patients should be encouraged to maintain a healthy weight and lifestyle, and healthcare providers should treat patients with hypogonadism.

Speaking at a press conference, Zaid told medwireNews that in an earlier study of patients with hypogonadism, testosterone replacement was able to immediately mitigate a lot of these side effects, such as improved patient mood and cholesterol levels.

However, he emphasized that the focus should be on screening patients for symptoms of hypogonadism rather than measuring patient hormone levels routinely, as the normal range for testosterone is wide.

By Lynda Williams

medwireNews is an independent medical news service provided by Springer Healthcare. 2017 Springer Healthcare part of the Springer Nature group

Original post:
Low testosterone risk flagged for testicular cancer survivors - medwireNews

Recommendation and review posted by sam

ASCO 2017: Prostate cancer in 696 hypogonadal men with and without long-term testosterone therapy: Results from a … – UroToday

Chicago, IL (UroToday.com) The endocrinology relationship between testosterone and prostate cancer (PCa) is well-established, however whether men with hypogonadism have increased prostate cancer incidence or severity is controversial. Dr. Haider and colleagues from Germany presented their results of assessing prostate cancer outcomes among men on long-term testosterone therapy (TTh) at the 2017 ASCO annual meetings prostate cancer poster session.

A recent Canadian population-based observational study reported that men treated with testosterone replacement therapy were at decreased risk of prostate cancer diagnosis compared to controls [1]. Thus, the objective of this study was to assess the incidence and severity of prostate cancer in hypogonadal men on long-term testosterone therapy in comparison to an untreated hypogonadal control group.

For this study, 400 men with testosterone 350 ng/dL and symptoms received testosterone undecanoate 1000 mg replacement therapy every 3 months for up to 10 years, while 296 hypogonadal men (age 57-74) opted against replacement therapy and formed the control group. Prostate volume, PSA, weight and C-reactive protein (CRP) were assessed, and digital rectal examination/transrectal ultrasound was performed prior to testosterone therapy initiation and then every 6-12 months.

Over a median follow-up of 8 years and 5,000 patient-years, patients receiving testosterone replacement therapy had a statistically significant increase in prostate volume (2.4 mL, p<0.001) with no appreciable change in the PSA. Men on therapy dropped 18% of their body weight while the control group increased 1.8%. Similarly, CRP levels decreased in the testosterone therapy group and remained unchanged in the control arm. In the testosterone therapy group, 9 men (2.3%) were diagnosed with prostate cancer, compared to the control arm in which 15 (5.1%) men were diagnosed with prostate cancer. The incidence per 10,000 years was 29 in the testosterone group and 102 in in the control group. Interestingly, radical prostatectomy was performed in all men, and in the testosterone group, all men had Gleason score 6 disease. The weaknesses of this study includes the retrospective design with inherent selection bias, in addition to no long-term prostate cancer outcomes. Second, there is no metric with regards to how hypogonadal the men in the control arm truly were.

The authors concluded that hypogonadal men treated with testosterone therapy may have decreased incidence of prostate cancer compared to hypogonadal men not treated with testosterone. Given the inherent limitations of this study (a few, as such, mentioned above), this study certainly requires prospective validation. The implications of potentially feeling the need to treat all hypogonadal men with testosterone to perceivably decrease their risk of prostate cancer clearly has ramifications.

Presented By: Ahmad Haider, MD, PhD, Private Urology Practice, Bremerhaven, Germany

Co-Authors: Karim Sultan Haider

Written By: Zachary Klaassen, MD, Urologic Oncology Fellow, University of Toronto, Princess Margaret Cancer Centre Twitter: @zklaassen_md

at the 2017 ASCO Annual Meeting - June 2 - 6, 2017- Chicago, Illinois, USA

REFERENCES: 1. Wallis CJ, Lo K, Lee Y, et al. Survival and cardiovascular events in men treated with testosterone replacement therapy: an intention-to-treat observational cohort study. Lancet Diabetes Endocrinol 2016 Jun;4(6):498-506.

See the original post:
ASCO 2017: Prostate cancer in 696 hypogonadal men with and without long-term testosterone therapy: Results from a ... - UroToday

Recommendation and review posted by simmons

Heart Disease – Closer Look at Stem Cells

Cardiovascular disease is the number one cause of death worldwide in men, women and children, claiming more than 17 million lives each year. The effects of congestive heart failure and acute myocardial infarction (heart attack) present great challenges for doctors and researchers alike.

In this section:

Heart attacks cause damage to the heart muscle, making it less efficient at pumping blood throughout the circulatory system.

Your heart is constructed of several types of cells. For mending damaged heart tissue, researchers generally focus on three specific heart cell types:

Gladstone Institutes. Close up of a mouse heart stained to reveal the important structural protein that helps heart muscle cells to contract (red). The cell nuclei are labeled in magenta.

Despite major advances in how heart disease is managed, heart disease is progressive. Once heart cells are damaged, they cannot be replaced efficiently, at least not as we understand the heart today.

There is evidence that the heart has some repair capability, but that ability is limited and not yet well understood.

Heart failure is a general term to describe a condition in which the hearts blood-pumping action is weaker than normal. How much weaker varies widely from person to person, but the weakness typically gets worse over time. Blood circulates more slowly, pressure in the heart increases, and the heart is unable to pump enough oxygen and other nutrients to the rest of the body. To compensate, the chambers of the heart may stretch to hold more blood, or the walls of the chambers may thicken and become stiff. Eventually, the kidneys respond to the weaker blood-pumping action by retaining more water and salt, and fluid can build up in the arms, legs, ankles, feet, and even around the lungs. This general clinical picture is called congestive heart failure.

Many conditions can lead to congestive heart failure. Among the most common are:

The American Heart Association defines normal blood pressure for an adult as 120/80 or lower. What do those numbers mean? The top number is the systolic pressure that is, the pressure in your arteries when your heart beats, or contracts. The bottom number measures diastolic pressure, or the pressure in your arteries between beats, when the heart refills with blood.

In the early stages of congestive heart failure, treatment focuses on lifestyle changes (healthy diet, regular exercise, quitting smoking, etc.) and specific medications; the goals are to slow down any progression of the disease, lessen symptoms and improve quality of life.

Medications called beta blockers are often prescribed after a heart attack or to treat high blood pressure. Other medications called ACE inhibitors prevent heart failure from progressing.

For moderate to severe congestive heart failure, surgery may be necessary to repair or replace heart valves or to bypass coronary arteries with grafts. In severe cases, patients may be put on fluid and salt restriction and/or have pacemakers or defibrillators implanted to control heart rhythms.

Acute myocardial infarction, or a heart attack, occurs when the blood vessels that feed the heart are blocked, often by a blood clot that forms on top of the blockage. The blockage is a build-up of plaque that is composed of fat, cholesterol, calcium and other elements found in the blood. Without oxygen and other nutrients from the blood, heart cells die, and large swaths of heart tissue are damaged.

After a heart attack, scar tissue often forms over the damaged part of the heart muscle, and this scar tissue impairs the hearts ability to keep beating normally and pumping blood efficiently. The heart ends up working harder, which weakens the remaining healthy sections of the heart; over time, the patient experiences more heart-related health issues.

Doctors often use a procedure called angioplasty to disrupt the blood clot and widen clogged arteries. Angioplasty involves inserting and inflating a tiny balloon into the affected artery. Sometimes this temporary measure is enough to restore blood flow. However, angioplasty is often combined with the insertion of a small wire mesh tube called a stent, which helps keep the artery open and reduces the chances that it will get blocked again.

Other post-heart attack treatments include the regular use of blood thinners (for example, low-dose aspirin) to prevent new clots from forming and other medications to help control blood pressure and blood cholesterol levels. Lifestyle changes, such as lowering salt and fat intake, exercising regularly, reducing alcohol consumption and quitting smoking are also recommended to reduce the chances of a subsequent heart attack.

Scientists and clinicians have long suspected and recently confirmed that a persons genetic makeup contributes to the likelihood of their having a heart attack. Learn more here

The goals of heart disease research are to understand in greater detail what happens in heart disease and why, and to find ways to prevent damage or to repair or replace damaged heart tissue. Scientists have learned much about how the heart works and the roles different cells play in both normal function and in disease, and they are learning more about how cardiomyocytes and cardiac pacemaker cells operate, including how they communicate with each other and how they behave when damage occurs.

Researchers grow cardiomyocytes in the lab from the following sources:

These cells will beat in unison in a culture dish, the same way they do in a living heart muscle. This is exciting to consider, as researchers explore whether they might someday grow replacement tissue for transplantation into patients. However, it is not yet known whether lab-grown cardiomyocytes will integrate or beat in unison with surrounding cells if they are transplanted into the human body.

Gordon Keller Lab. Heart cells beating in a culture dish.

Scientists also use various types of stem cells to study the hearts natural repair mechanisms and test ways to enhance those repair functions. The evidence we have so far suggest thats the heart may have a limited number of cardiac stem cells that may conduct some repair and replacement functions throughout an individuals life, but we dont know where they live in the heart or how they become activated.

Human cells made from iPS cells are also incredibly useful for creating human models of heart disease to get a better understanding of exactly what goes wrong and for testing different drugs or other treatments. They can also be used to help predict which patients might have toxic cardiac side effects from drugs for other diseases such as cancer.

The key to treating heart disease is finding a way to undo the damage to the heart. Researchers are trying several tactics with stem cells to repair or replace the damaged heart tissue caused by congestive heart failure and heart attacks.

Areas under investigation include:

The Europe-wide BAMI clinical trial (the effect of intracoronary reinfusion of bone marrow-derived mononuclear cells on all-cause mortality in acute myocardial infarction) that began in 2014, is testing the infusion of cells from the participants bone marrow into one of the coronary arteries (one of two major arteries that supply the heart) to spark repair activity. However, it is not yet clear whether these cells will support heart repair function or in what way.

Researchers are also exploring transplantation of cardiomyocytes generated from both iPS cells and cardiac progenitor cells. They need to determine whether these transplanted cells survive and function in the body and whether they help speed up the hearts innate repair mechanisms.

Some of these approaches are still being evaluated in the lab while others are already being tested in clinical trials around the world. However, these trials are in their early stages and the results will not be clear for many years. Indeed, some published data conflict in critical ways, so carefully designed and well-monitored trials are key to working out what is safe and effective.

Continued here:
Heart Disease - Closer Look at Stem Cells

Recommendation and review posted by simmons

Human heart tissue grown from stem cells improves drug testing – Medical Xpress

June 8, 2017 This image shows human heart muscle cells growing in the 3D tissue structure. The cells have been stained with fluorescent molecules to identify the nuclei in blue, and cardiac-specific protein, in green. Credit: Agency for Science, Technology and Research (A*STAR), Singapore

Researchers at the Institute of Bioengineering and Nanotechnology (IBN) of A*STAR have engineered a three-dimensional heart tissue from human stem cells to test the safety and efficacy of new drugs on the heart.

"Cardiotoxicity, which can lead to heart failure and even death, is a major cause of drug withdrawal from the market. Antibiotics, anticancer and antidiabetic medications can have unanticipated side effects for the heart. So it is important to test as early as possible whether a newly developed drug is safe for human use. However, cardiotoxicity is difficult to predict in the early stages of drug development," said Professor Jackie Y. Ying, Executive Director at IBN.

A big part of the problem is the use of animals or animal-derived cells in preclinical cardiotoxicity studies due to the limited availability of human heart muscle cells. Substantial genetic and cardiac differences exist between animals and humans. There have been a large number of cases whereby the tests failed to detect cardiovascular toxicity when moving from animal studies to human clinical trials.

Existing screening methods based on 2-D cardiac structure cannot accurately predict drug toxicity, while the currently available 3-D structures for screening are difficult to fabricate in the quantities needed for commercial application.

The video will load shortly

To solve this problem, the IBN research team fabricated their 3-D heart tissue from cellular self-assembly of heart muscle cells grown from human induced pluripotent stem cells. They also developed a fluorescence labelling technology to monitor changes in beating rate using a real-time video recording system. The new heart tissue exhibited more cardiac-specific genes, stronger contraction and higher beating rate compared to cells in a 2-D structure.

"Using the 3-D heart tissue, we were able to correctly predict cardiotoxic effects based on changes in the beating rate, even when these were not detected by conventional tests. The method is simple and suitable for large-scale assessment of drug side effects. It could also be used to design personalized therapy using a patient's own cells," said lead researcher Dr Andrew Wan, who is Team Leader and Principal Research Scientist at IBN.

The researchers have filed a patent on their human heart tissue model, and hope to work with clinicians and pharmaceutical companies to bring this technology to market.

This finding was reported recently in the Biofabrication journal.

Explore further: Stem cell-based screening methods may predict heart-related side effects of drugs

More information: Hong Fang Lu et al. Engineering a functional three-dimensional human cardiac tissue model for drug toxicity screening, Biofabrication (2017). DOI: 10.1088/1758-5090/aa6c3a

Coaxing stem cells from patients to become heart cells may help clinicians personalize drug treatments and prevent heart-related toxicity.

Scientists at The University of Queensland have taken a significant step forward in cardiac disease research by creating a functional 'beating' human heart muscle from stem cells.

Matters of the heart can be complicated, but York University scientists have found a way to create 3D heart tissue that beats in synchronized harmony, like a heart in love, that will lead to better understanding of cardiac ...

A team of biomedical engineering researchers, led by the University of Minnesota, has created a revolutionary 3D-bioprinted patch that can help heal scarred heart tissue after a heart attack. The discovery is a major step ...

Researchers have grown heart tissue by seeding a mix of human cells onto a 1-micron-resolution scaffold made with a 3-D printer. The cells organized themselves in the scaffold to create engineered heart tissue that beats ...

(Medical Xpress)A large team of researchers from the Netherlands, Italy and the U.S. has found a possible explanation for the injury and death to patients in a clinical trial held last year in France. In their paper published ...

Drexel University and Georgia Institute of Technology researchers have discovered how the Rad52 protein is a crucial player in RNA-dependent DNA repair. The results of their study, published today in Molecular Cell, reveal ...

Yale scientists produced increased grooming behavior in mice that may model tics in Tourette syndrome and discovered these behaviors vanish when histaminea neurotransmitter most commonly associated with allergiesis ...

Some bodily activities, sleeping, for instance, mostly occur once every 24 hours; they follow a circadian rhythm. Other bodily functions, such as body temperature, cognitive performance and blood pressure, present an additional ...

Myelomeningocele is a severe congenital defect in which the backbone and spinal canal do not close before birth, putting those affected at risk of lifelong neurological problems. In a preclinical study published June 6th ...

Delivering drugs to the brain is no easy task. The blood-brain barrier -a protective sheath of tissue that shields the brain from harmful chemicals and invaders - cannot be penetrated by most therapeutics that are injected ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

The rest is here:
Human heart tissue grown from stem cells improves drug testing - Medical Xpress

Recommendation and review posted by simmons

Stem cells regenerate external layer of a human heart – Today’s Medical Developments

Activating stem cells Wnt signaling pathways can drive cardiac progenitor cells to become epicardium instead of myocardium cells.

A process using human stem cells can generate epicardium cells that cover the external surface of a human heart, according to a multidisciplinary team of researchers.

In 2012, we discovered that if we treated human stem cells with chemicals that sequentially activate and inhibit the Wnt signaling pathway, they become myocardium muscle cells, says Xiaojun Lance Lian, assistant professor of biomedical engineering and biology, who is leading the study at Pennsylvania State University (Penn State). Myocardium, the middle of the hearts three layers, is the thick, muscular part that contracts to drive blood through the body. The Wnt signaling pathway is a group of signal transduction pathways made of proteins that pass signals into a cell using cell-surface receptors.

We needed to provide the cardiac progenitor cells with additional information in order for them to generate into epicardium cells, but prior to this study, we didnt know what that information was, Lian says. Now, we know that if we activate the cells Wnt signaling pathway again, we can re-drive these cardiac progenitor cells to become epicardium cells, instead of myocardium cells.

Lance Lian/Penn State

The groups results bring researchers one step closer to regenerating an entire heart wall. Through morphological assessment and functional assay, the researchers found that the generated epicardium cells were similar to epicardium cells in living humans and those grown in the laboratory.

The last piece is turning cardiac progenitor cells to endocardium cells (the hearts inner layer), and we are making progress on that, Lian says.

The groups method of generating epicardium cells could be useful in clinical applications, for patients who suffer a heart attack.

Heart attacks occur due to blockage of blood vessels, Lian says. This blockage stops nutrients and oxygen from reaching the heart muscle, and muscle cells die. These muscle cells cannot regenerate themselves, so there is permanent damage, which can cause additional problems. These epicardium cells could be transplanted to the patient and potentially repair the damaged region.

In addition to generating the epicardium cells, researchers can keep them proliferating in the lab after treating them with a cell-signaling pathway Transforming Growth Factor Beta (TGF) inhibitor.

After 50 days, our cells did not show any signs of decreased proliferation. However, the proliferation of the control cells without the TGF Beta inhibitor started to plateau after the tenth day, Lian says.

Pennsylvania State University http://www.psu.edu

The rest is here:
Stem cells regenerate external layer of a human heart - Today's Medical Developments

Recommendation and review posted by sam

Bone marrow transplants: When your heritage leads to a needle-in … – ABC Online

Updated June 09, 2017 10:59:15

Leukaemia patient Jake Cooper, 14, is desperately searching for the cure to his cancer, but his hopes of a life-saving fix now rest with strangers, not scientists.

Jake has chronic myeloid leukaemia and as his condition progresses will need a bone marrow transplant.

So why, when there are 29 million accessible donors on worldwide bone marrow registries, do so many patients, including Jake, struggle to find a match?

The answer is ethnicity, where your cultural background can turn your chance of survival into a desperate needle-in-a-haystack search.

Bone marrow transplants, sometimes called stem cell transplants, can be used to treat patients with cancers such as leukaemia, lymphoma and multiple myeloma.

But first a suitable donor needs to be found and that in itself can be a months or years-long process, one that usually starts with a patient's siblings, Red Cross bone marrow donor centre operations manager Paul Berghofer said.

"There's a one-in-four chance that [any one] sibling will be a match," he said.

While those odds aren't bad, and obviously improve if you're from a big family, they don't always deliver a match.

Then, the search broadens to the Australian Bone Marrow Donor Registry and beyond that, to a global registry, but for many patients these offer little hope.

While donors of north-west European backgrounds are over-represented on the registries, other ethnic groups are desperately under-represented.

"The chance of finding you a matched donor who is not related to you is best with people of a similar ethnic background," Mr Berghofer said.

The process wasn't drawn out but there were a bunch of general health check-ups, the initial typing and there was a discussion about the process involved.

I was told I could stop anytime up until a point of no return, I think a week or two before the transplant. You can't pull out in the last week because the [recipient] will almost certainly die.

Part of the workup is self-administering a course of an artificial hormone for five days into the flesh of my stomach. By day four or five, everything ached - like growing pains or shin splints.

The procedure itself was sitting in a chair, sticking my arms out by my side and local anaesthetic [being injected] in the crook of both elbows. To prevent damaging blood and increase the flows, they use big needles, they were ridiculous. That's why you have the anaesthetic!

Then I just lay in a chair and listened to music for four hours.

The process wasn't painful or bad, just uncomfortable and a little bit cold.

I don't regret it at all, I'd definitely do it again - it helped someone and it might be their only chance.

For Jake, whose dad is Samoan and German, and his mum Australian and British, his "incredibly rare" DNA means, despite monthly checks of the global registry, there is no bone marrow match available to tackle the "monster" in his body.

"The condition is bad enough but if it came to him [urgently] needing the transplant, I'd have to say to him, 'there's nothing I can do, we don't have a match'," his mum Renee Cooper said.

Complicating Jake's search is the fact Samoa does not have its own bone marrow registry, meaning thousands of potential matches are missed.

"It drives me crazy, there's not a day I don't think about it that someone is out there [possibly] with the cure," she said.

"The most frustrating part is I could be walking past them in a shopping centre and not even know."

Ms Cooper started Jake's Quest for a Cure on Facebook, a page she hoped would be shared to spread Jake's search around the world.

She said a lack of awareness of the registry and misinformation about the donation process were hurting patients' chances of a cure.

"There are no advertisements on bone marrow, there's no education around it in schools the way there is with organ donation," she said.

"People hear bone marrow and they think, 'oh my God, they're cutting my bones out'. People just have no idea at all."

Mr Berghofer said in 80 per cent of cases, the donation process was done as a peripheral blood stem cell collection which was not dissimilar to donating blood.

"The donor gets a needle in one arm, the blood goes through the apheresis machine and filters off blood stem cells and returns the rest of the blood back into their other arm," he said.

Pamela Bousejean, founder of Ur the Cure, an organisation striving to boost ethnic diversity on bone marrow registries, said potential donors were "slipping through our fingers everyday".

"People don't even know the bone marrow registry exists and how easy it is to donate stem cells if you're called up. You're saving a life doing something so simple," she said.

Ms Bousejean launched her campaign for a more representative registry after her own search for a donor, when she was diagnosed with Hodgkin lymphoma in 2010.

After chemotherapy and radiation treatments failed, she was told her "last chance" was to have a stem cell transplant.

"But they also told me it was going to be difficult to find me a match because of my Lebanese background," she said.

"That was really hard to hear."

For the next six months while his sister waited for a life-saving match, Ms Bousejean's brother took matters into his own hands, launching a social media campaign to find a donor.

"You're stuck in this limbo state," Ms Bousejean said.

"You know the cure to my cancer is out there in someone else's body."

In many ways, the campaign was successful raising awareness of the need for ethnic diversity on the Australian and international bone marrow registries but it didn't deliver the adult match she had been hoping for.

Instead, a "plan b" treatment in the form of a cord-blood donation gave the marketing professional her cure and she went into remission in 2012.

Now, she is on a mission to improve education programs targeted at ethnic and Indigenous communities and boost opportunities to recruit ethnically diverse bone marrow donors.

"We can make some small changes that would make a big difference," she said.

Topics: blood, diseases-and-disorders, leukaemia, perth-6000, australia

First posted June 09, 2017 06:00:36

Read more:
Bone marrow transplants: When your heritage leads to a needle-in ... - ABC Online

Recommendation and review posted by sam

Patients with rare blood cancer brought back to normal – The Hindu

Patients with rare blood cancer brought back to normal
The Hindu
All the three patients who underwent bone marrow transplantation of matching stem cells from donors, including one from Germany, crossed 100 days which is considered an important milestone in the transplant process, said Padmaja Lokireddy, consultant, ...

and more »

Visit link:
Patients with rare blood cancer brought back to normal - The Hindu

Recommendation and review posted by Bethany Smith

New Technology Uses Body Fat to Help Relieve Joint Pain – Healthline

The Lipogems technology has great promise, but experts say itll take time to assess how successful the new procedure is.

What if you could put that little bit of body fat around your midsection to good use?

A procedure called Lipogems utilizes a persons body fat as a source of stem cells to help treat arthritis and joint conditions.

At least thats the promise.

Lipogems was approved for widespread use by the Food and Drug Administration (FDA) in November 2016, and its already garnering a lot of attention.

Rush University Medical Center recently became the first sports medicine specialists in the Midwest to offer treatment with the device.

The technology is ideal for patients with certain orthopedic conditions, such as painful joints including the knee, ankle, or shoulder with limited range of motion. Additionally, it can be used in soft tissue defects located in tendons, ligaments, and/or muscles to improve the biologic environment, said Dr. Brian Cole, professor of orthopedic surgery, and section head of the Rush Cartilage Restoration Center, in a press release.

Read more: Stem cell therapies offering hope for MS patients

Stem cells work by growing and differentiating themselves into different cells in the body based on the site of injection.

They are believed to help the natural regenerative processes in the body.

Hence they have earned the nickname as mini drug stores based on their ability to secrete a spectrum of bioactive molecules and support the natural regeneration of focal injuries.

Stem cells can be harvested from certain parts of the human body, most notably bone marrow and adipose tissue (fat).

Harvesting bone marrow stem cells is a significantly more invasive and time-consuming procedure that is performed using general anesthesia.

Lipogems offers a novel approach to orthopedic stem cell treatments by using a persons own fat.

The procedure uses a small incision into an area of subcutaneous fat, from which a quantity of fat tissue is harvested and processed by the Lipogems apparatus.

The technology itself, which really is the device that processes the fat, creates a concentration of fat that has been cleansed of all the extraneous things like red blood cells and fibrous tissues, Cole told Healthline.

The concentrated stem cells within that fat tissue are then applied to the problematic joint or bone area.

The procedure can be completed in under 30 minutes.

Read more: Stem cell therapy a possible treatment for rheumatoid arthritis

Lipogems offers a streamlined procedure for stem cell treatment, but there is nothing new about the science itself.

The use of stem cells to treat a variety of conditions has been ongoing for some time now.

As Healthline reported earlier this year, stem cells have been touted as a breakthrough treatment for some time, but real proof of efficacy is still being researched.

The same is true for Lipogems.

What were lacking is really good data at this point in the clinical setting, Cole said. There is substantial data in the laboratory suggesting that these cells may function in the way Ive described: reducing inflammation and so forth. But, we really dont have yet much in the way of good solid clinical data saying that definitively this is making a difference.

He further cautions individuals thinking that the new procedure, or that stem cells in general, are a panacea.

Read more: Unproven stem cell treatments offer hope but also risks

Instead, he would like those seeking orthopedic treatment to understand that Lipogems is just one part of a much larger and more complex suite of tools used by physicians.

It has to be taken into context of all the other possible treatment options, from simply icing down a swollen ankle, to changing your daily activity, to surgery.

The unfortunate thing is that people think, well this is the solution that can be used instead of, say, a joint replacement and no longer do we need to do surgery, said Cole.

Nothing could be further from the truth.

Nonetheless, Cole and his team are still excited about the possibilities of the Lipogems procedure.

Using a readily available and easily accessible substance like fat as a source of stem cells could have far-reaching implications for procedures in the future.

Were optimistic and intuitively there is a good argument to be made that this is as good or better than any other source of stem cells, said Cole.

Read this article:
New Technology Uses Body Fat to Help Relieve Joint Pain - Healthline

Recommendation and review posted by simmons

Stem cell treatment for lethal STAT1 gene mutation produces mixed results – Medical Xpress

June 8, 2017 One example of STAT1 GOF Mutation phenotype. Credit: Hiroshima University

Researchers report the first-ever study assessing how patients with "gain of function" mutation of the STAT1 gene respond to stem cell transplantation. It involved 15 young patients from nine different countries, each suffering a range of complications caused by the gene's mutation.

Of these, only six survived a regime of stem cell transplantationwith five completely cured and disease free by the study's conclusion.

The study was carried out by Dr. Satoshi Okada (Hiroshima University), Professor Jennifer Leiding (University of Florida), Professor Tomohiro Morio (Tokyo Medical and Dental University), and Professor Troy Torgerson (University of Washington).

Dr. Okada, who first discovered the STAT1 gain of function mutation in 2011, says, "Overall, this result is disappointing but the fact that five patients were cured proves that treatment with stem cells can work, and we now need to learn from these 15 individual cases."

The STAT1 gene plays a vital role in the body's immune system. Rare mutations can lead to STAT1's over-activation (GOF) and autoimmunity.

While the majority of patients afflicted typically show mild to moderate symptoms involving fungal (mostly Candida), bacterial, and viral infectionsabout 10 percent of cases are severe and life threatening.

Until now, developing suitable treatments has been challenging; e.g. anti-fungal drugs temporarily treat the symptoms but not the source mutation, and immunosuppressive therapies often do more harm than good by knocking out already overburdened immune systems.

With only one confirmed case prior to this study of a sufferer being successfully cured using stem cell transplantation, researchers are keen to build an understanding of best practices in order to offer real hope for the typically young sufferers of this condition.

The 15 selected patients were sourced via an international appeal to transplant centers and consortiums. Their ages ranged from 13 months to 33 years at the time of treatment. Screening by HU researchers confirmed that each had the STAT1-GOF mutation, and that the mutation was the source of their ailments.

Treatment was carried out independently by centers around the world. It used chemotherapy to eradicate the host's bone marrowthe source of the damaging STAT1 mutation in these patients. Healthy stem cell cultures sourced from donors were then transplanted into the subjects with the aim of reconstituting their bone marrow to a mutation-free, disease-fighting state.

The researchers suspect three reasons for the low 40 percent success rate:

In response, the researchers have made several proposals for improving this treatment. Due to most of the patients having mild to moderate ailments, only those suffering from severe symptoms should undergo this treatment. In addition, the chemotherapy dosage should be reduced. Those who received low-dose chemotherapy reacted better.

However, a balance must be struck. Low-dose chemotherapy may not eradicate host bone marrow to the extent required for its reconditioning the chance of transplant rejection is thus increased. With this in mind, support treatment may be required to neutralize host antibodies and prevent attacks of introduced stem cells.

Finally, due to the relative success seen in younger patients, stem cell transplantation should occur at as early an age as possible. Due to recent advancements in STAT1-GOF diagnosis, early detection is now a very real possibility hopefully leading to greater success rates, and less suffering for those carrying this potentially devastating mutation.

Explore further: 'Smart' genetic library makes disease diagnosis easier

More information: Jennifer W. Leiding et al. Hematopoietic stem cell transplantation in patients with Gain of Function STAT1 Mutation, Journal of Allergy and Clinical Immunology (2017). DOI: 10.1016/j.jaci.2017.03.049

Researchers at Hiroshima University have developed a smart genetic reference library for locating and weeding out disease-causing mutations in populations.

A single blood test and basic information about a patient's medical status can indicate which patients with myelodysplastic syndrome (MDS) are likely to benefit from a stem cell transplant, and the intensity of pre-transplant ...

UCLA researchers have developed a stem cell gene therapy cure for babies born with adenosine deaminase-deficient severe combined immunodeficiency, a rare and life-threatening condition that can be fatal within the first year ...

Physicians at the University of Illinois Hospital & Health Sciences System have cured 12 adult patients of sickle cell disease using a unique procedure for stem cell transplantation from healthy, tissue-matched siblings.

Using a technique that avoids the use of high-dose chemotherapy and radiation in preparation for a stem cell transplant, physicians at the University of Illinois Hospital & Health Sciences System have documented the first ...

A large, nationwide study published in the journal JAMA Oncology found that people who received transplants of cells collected from a donor's bone marrow the original source for blood stem cell transplants, developed decades ...

Researchers at UC Berkeley have found unexpected effects of viral infections, a discovery that may explain why viruses can make people feel so lousy.

In news that may bring hope to asthma sufferers, scientists discover a mechanism that provides a possible new target for allergy treatments.

(HealthDay)Administration of allergen immunotherapy (AIT) in patients with allergic asthma leads to lower short-term symptom and medication scores, according to a review published online May 19 in Allergy.

A single treatment giving life-long protection from severe allergies such as asthma could be made possible by immunology research at The University of Queensland.

Malaria caused by Plasmodium parasites is a life-threatening infectious disease that kills at least half a million people annually while causing over 200 million new infections. In some cases, complications can quickly develop ...

Virtually the entire population of sub-Saharan Africa, and some 70% of African Americans, carry a gene variant (allele) which results in a trait referred to as Duffy-negative. It has long been known that carriers of this ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

View original post here:
Stem cell treatment for lethal STAT1 gene mutation produces mixed results - Medical Xpress

Recommendation and review posted by simmons

John Theurer Cancer Center and MedStar Georgetown University Hospital Announce 100th Blood Stem Cell Transplant – PR Newswire (press release)

The BMT program at MedStar Georgetown is a joint effort with specialists from John Theurer Cancer Center and a key component of the Lombardi Comprehensive Cancer Center, the only cancer program in the Washington, D.C. region designated by the National Cancer Institute (NCI) as a comprehensive cancer center.

"Once considered experimental, BMT is today's established gold standard for treating patients with a number of malignant and other non-malignant diseases of the immune system, blood, and bone marrow, including multiple myeloma, lymphoma, and acute and chronic leukemia. For some conditions, blood stem cell transplant can provide a cure in patients who have failed conventional therapies," says Scott Rowley, M.D., chief of the BMT program at MedStar Georgetown as well as a member of the John Theurer Cancer Center's Blood and Marrow Stem Cell Transplantation. "For some conditions, it can actually be a cure; for others, it prolongs survival and improves quality of life. Having performed 100 BMTs at MedStar Georgetown including allogenic transplantation illustrates the strength and maturity of our program achieved in rather short time."

MedStar Georgetown's program is also the only comprehensive BMT center within Washington, D.C. and southern Maryland with accreditation from the Foundation for the Accreditation of Cellular Therapy (FACT) for adult autologous procedures, where the patient donates his or her own cells.

The BMT program at John Theurer Cancer Center is one of the top 10 transplant programs in the United States, with more than 400 transplants performed annually.

A BMT involves a two-step process: first, collecting bone marrow stem cells from the patient and storing them for future use. Then, a week or so later, patients receive high dose chemotherapy to eliminate their disease. The previously stored cells are reinfused back into the bloodstream, where after reaching the bone marrow, they begin repopulating and allow the patient to recover their blood counts over the following 2 weeks.

"Even though BMT is considered standard therapy for myeloma worldwide, in the United States fewer than 50 percent of the patients who could benefit from BMT are referred for evaluation," says David H. Vesole, M.D., Ph.D., co- chief and director of Research of John Theurer Cancer Center's Multiple Myeloma division and director of MedStar Georgetown's Multiple Myeloma Program.

"That's mostly due to physicians' concerns that a patient is too old or compromised from other health conditions like diabetes, cardiac disease or renal failure. But new techniques and better supportive care have improved both patient outcomes and the entire transplant process, extending BMT to more patients than ever before."

The MedStar Georgetown/Georgetown Lombardi Blood and Marrow Stem Cell Transplant Program is part of a collaborative cancer research agenda and multi-year plan to form an NCI-recognized cancer consortium. This recognition would support the scientific excellence of the two centers and highlight their capability to integrate multidisciplinary, collaborative research approaches to focus on all the aspects of cancer.

The research areas include expansion of clinical bone marrow transplant research; clinical study of "haplo" transplants use of half-matched stem cell donor cells; re-engineering the function and focus of key immune cells; and the investigation of "immune checkpoint" blocking antibodies that unleash a sustained immune response against cancer cells.

"In this partnership, we've combined John Theurer's strength in clinical care with Georgetown Lombardi's strong research base that significantly contributes to clinical excellence at MedStar Georgetown. By working together, we have broadened our cancer research to offer more effective treatment options for tomorrow's patients," says Andrew Pecora, M.D., FACP, CPE, president of the Physician Enterprise and chief innovations officer, Hackensack Meridian Health. "This is one of many clinical and research areas that have been enhanced by this affiliation."

"Our teams are pursuing specific joint research projects we feel are of the utmost importance and significance in oncology particularly around immuno-oncology as well as precision medicine," says Andr Goy, M.D., MS, chairman of the John Theurer Cancer Center and director of the division chief of Lymphoma; chief science officer and director of Research and Innovation, RCCA; professor of medicine, Georgetown University. "Together our institutions have a tremendous opportunity to transform the delivery of cancer care for our patient populations and beyond."

ABOUT THE JOHN THEURER CANCER CENTER AT HACKENSACK UNIVERSITY MEDICAL CENTER John Theurer Cancer Center at Hackensack University Medical Center is New Jersey's largest and most comprehensive center dedicated to the diagnosis, treatment, management, research, screenings, and preventive care as well as survivorship of patients with all types of cancers. The 14 specialized divisions covering the complete spectrum of cancer care have developed a close-knit team of medical, research, nursing, and support staff with specialized expertise that translates into more advanced, focused care for all patients. Each year, more people in the New Jersey/New York metropolitan area turn to the John Theurer Cancer Center for cancer care than to any other facility in New Jersey. Housed within a 775-bed not-for-profit teaching, tertiary care, and research hospital, the John Theurer Cancer Center provides state-of-the-art technological advances, compassionate care, research innovations, medical expertise, and a full range of aftercare services that distinguish the John Theurer Cancer Center from other facilities.www.jtcancercenter.org.

ABOUT MEDSTAR GEORGETOWN UNIVERSITY HOSPITAL MedStar Georgetown University Hospital is a not-for-profit, acute-care teaching and research hospital with 609 beds located in Northwest Washington, D.C. Founded in the Jesuit principle of cura personaliscaring for the whole personMedStar Georgetown is committed to offering a variety of innovative diagnostic and treatment options within a trusting and compassionate environment. MedStar Georgetown's centers of excellence include neurosciences, transplant, cancer and gastroenterology. Along with Magnet nurses, internationally recognized physicians, advanced research and cutting-edge technologies, MedStar Georgetown's healthcare professionals have a reputation for medical excellence and leadership. For more information please visit: medstargeorgetown.org/bmsct

ABOUT HACKENSACK MERIDIAN HEALTH HACKENSACK UNIVERSITY MEDICAL CENTER Hackensack Meridian Health Hackensack University Medical Center, a 775-bed nonprofit teaching and research hospital located in Bergen County, NJ, is the largest provider of inpatient and outpatient services in the state. Founded in 1888 as the county's first hospital, it is now part of one of the largest networks in the state comprised of 28,000 team members and more than 6,000 physicians. Hackensack University Medical Center was listed as the number one hospital in New Jersey in U.S. News & World Report's 2016-17 Best Hospital rankings - maintaining its place atop the NJ rankings since the rating system was introduced. It was also named one of the top four New York Metro Area hospitals. Hackensack University Medical Center is one of only five major academic medical centers in the nation to receive Healthgrades America's 50 Best Hospitals Award for five or more years in a row. Becker's Hospital Review recognized Hackensack University Medical Center as one of the 100 Great Hospitals in America 2017. The medical center is one of the top 25 green hospitals in the country according to Practice Greenhealth, and received 25 Gold Seals of Approval by The Joint Commission more than any other hospital in the country. It was the first hospital in New Jersey and second in the nation to become a Magnet recognized hospital for nursing excellence; receiving its fifth consecutive designation in 2014. Hackensack University Medical Center has created an entire campus of award-winning care, including: the John Theurer Cancer Center; the Heart & Vascular Hospital; and the Sarkis and Siran Gabrellian Women's and Children's Pavilion, which houses the Joseph M. Sanzari Children's Hospital and Donna A. Sanzari Women's Hospital, which was designed with The Deirdre Imus Environmental Health Center and listed on the Green Guide's list of Top 10 Green Hospitals in the U.S. Hackensack University Medical Center is the Hometown Hospital of the New York Giants and the New York Red Bulls and is Official Medical Services Provider to The Northern Trust PGA Golf Tournament. It remains committed to its community through fundraising and community events especially the Tackle Kids Cancer Campaign providing much needed research at the Children's Cancer Institute housed at the Joseph M. Sanzari Children's Hospital. To learn more, visit http://www.HackensackUMC.org.

To view the original version on PR Newswire, visit:http://www.prnewswire.com/news-releases/john-theurer-cancer-center-and-medstar-georgetown-university-hospital-announce-100th-blood-stem-cell-transplant-300471445.html

SOURCE Hackensack Meridian Health

Continue reading here:
John Theurer Cancer Center and MedStar Georgetown University Hospital Announce 100th Blood Stem Cell Transplant - PR Newswire (press release)

Recommendation and review posted by sam

My Turn: Do something within your power to save another life – The Recorder

This week alone in the news weve seen air strikes, suicide bombings and murders caused by hate. Violence over the hue of someones skin, the way they speak or how they dress. Hate-filled speech by neighbors at meetings and on Facebook. At dinner yesterday, my 8-year-old step-daughter asked her dad, Whats a bomb? My heart is heavy.

Its easy to forget that we are more alike than we are unalike. I offer to you a different perspective.

Six years ago my brother got the call he had Hodgkin Lymphoma, a cancer that starts in cells that are part of the bodys immune system. He was 28 years old. It started as a visible lump under his collar bone, and sometimes you wonder how can so much suffering be caused by such a little lump? And so my story begins.

About one year into his treatment, he reached remission, and from there he was required to undergo an autologous stem cell transplant (a transplant using his own stem cells) to replace his bone marrow and stem cells that were destroyed by chemotherapy and radiation. Fast-forward 10 or so months and my brothers cancer returned. This time the treatment plan had to change his body needed help actually fighting the cancer cells, rather than just a replenishment of normal blood cells. This time around, he required an allogeneic stem cell transplant (a transplant using the stem cells from a healthy donor) and as his sister, I needed to be tested to see if I was a tissue match.

This was all new to me and our family. You hear a lot about cancer. We all know someone who has it, if you dont have cancer yourself. But I knew nothing about stem cell transplants or what it meant to be a donor. First we had to find out if my brother and I were a match.

I received a kit in the mail and all I had to do was swab the inside of my cheek, place the swab inside a sealed bag, and mail it back to the hospital. A week or so later, my brother got the news from his doctor that changed our lives. I was, in fact, a match a near perfect match and we could move forward with his second stem cell transplant.

At this point in my story, youre probably thinking, Of course, youd be a match, youre his sister. I assumed so, as well. Read on.

On Aug. 12, 2016, my brother and I underwent our stem cell transplant at Dana Farber/Brigham and Womens Hospital in Boston. There are two different ways to donate stem cells peripheral blood stem cells (stem cells extracted from your blood after receiving five days of injections of a drug called filgrastim, used to increase the number of blood-forming cells in your bloodstream) and bone marrow (a surgical procedure where doctors use needles to withdraw liquid marrow from both sides of the back of your pelvic bone). Due to my brothers specific treatment plan, he required pure bone marrow, and my bone marrow was taken from my pelvis. Two liters worth of my bone marrow was processed at Dana Farber and then brought to my brother immediately, who received it via an IV drip.

So how does my story end? Why am I telling you all this?

My brother is thriving. My pelvis has healed. And we were absolutely blessed to find a match right within our family.

The reality is that fewer than 30 percent of patients with a blood cancer or blood disease will find a related-donor; the other 70 percent, thousands of patients with blood cancers like leukemia and lymphoma, sickle cell anemia or other life-threatening diseases, depend on the national bone marrow registry to find a match to save their life. Some day you or someone you love might depend on a complete stranger who might be a Muslim, a Republican, gay or straight. But it wont matter because from the inside, they will be the same.

I plead with you to remember that we are more alike than we are unalike, and to do something positive for humanity.

You can visit http://www.bethematch.org and join the Be The Match national bone marrow registry.

Or you can attend one of my in-person donor drives in Greenfield over the next few months. The first will be this Saturday, June 10, from 2 to 4 p.m. at the Pints in the Park event at the Greenfield Energy Park.

If you are between the ages of 18 and 44, patients especially need you. You could be someones cure.

I note the obvious differences

between each sort and type,

but we are more alike, my friends,

than we are unalike.

We are more alike, my friends,

than we are unalike.

From Human Family, a poem by Maya Angelou

Ashli Stempel is a Greenfield resident and a member of the Greenfield Town Council.

Excerpt from:
My Turn: Do something within your power to save another life - The Recorder

Recommendation and review posted by sam

Stem Cells PRP, Acne & Skin Rejuvenation Cape Town

PRP Skin Regeneration Therapy, a type of regenerative medicine with the patients own blood, uses components called platelets in the blood to rejuvenate the skin.

Based on an innate wound-healing ability, the therapy is performed by injecting components collected from the blood and is associated with no risk of allergy or infections. The safe therapy has been studied and applied in a variety of fields. It is indicated for a wide variety of conditions; it is used for the treatment of trauma and burn in the department of plastic surgery and also used as an adjunct to implant therapy in the department of dentistry.

Our clinics have introduced a new technology for extraction of platelet-rich plasma containing autologous white blood cells that has a PRP enrichment rate of about 6- to 10-fold (about three to five times higher than that for conventional one). It also contains white blood cells, which are not contained in conventional PRP. The therapy is found to have much greater efficacy in rejuvenating the skin, eliminating wrinkles, and reducing irregularities from acne marks compared with conventional therapy.

Indications: Expected Effects in Cosmetic Medicine

PRP is particularly effective for crepy skin under the eyes (fine wrinkles) that are difficult to treat by conventional Rejuvenation Therapy. Inducing skin regeneration, the therapy is also effective in treating wrinkles, acne marks, sags and wrinkles on the neck.

Features of the Process Include:

1. Allowing the extraction of White Blood Cells not found in conventional PRP

2. The interaction between PRP and white blood cells results in the release of growth factors that potentiate the natural healing power and tissue reorganization potential at injection sites and subsequent regeneration of the skin.

3. In conventional therapy, it takes about two months for any benefit to be seen, although the time varies among individuals. New-PRP Skin Regeneration Therapy produces noticeable symptomatic improvement in a short period of about two weeks.

Comparison with Conventional Procedures

The PRP enrichment rate is three to five times higher than that for conventional procedures, and the time to benefit is reduced to one-fourth.

Mechanism of New-PRP Skin Regeneration Therapy

PRP Skin Regeneration Therapy uses components called platelets contained in the blood. Platelets play a role in stopping bleeding and repairing damaged blood vessels and cells in the body. Platelets contain substances called growth factors that activate and rejuvenate cells in the body. The growth factors, when released, induce the production of collagen and generation of new capillaries to rejuvenate the skin.

Precautions on How to Choose PRP Therapy

Many clinics now use what they call autologous platelets to eliminate wrinkles and treat acne marks. All those clinics claim skin regeneration therapy with autologous platelets. However, the efficacy of therapy differs substantially.

Important factors for greater efficacy include the concentration and component of platelets for injection. As described previously, skin regeneration with PRP is based on the mechanism that platelets release a variety of growth factors to promote tissue repair, angiogenesis, and collagen production for skin rejuvenation.

The efficacy is enhanced by improving the quality of platelets. Our clinics use a method of injecting platelet-rich plasma containing autologous white blood cells that is prepared by mixing enriched platelets (6 to 10 fold) collected from blood and an appropriate amount of white blood cells, which are rarely contained in common PRP. Our method is found to be highly effective in a range of symptoms.

Skin Rejuvenation with PRP

1. Injection of Platelet Component (PRP):The aged skin has less collagen, low elasticity, reduced amount of hyaluronic acid, and low ability to retain moisture.

2. Release of Growth Factors From Platelet Component (PRP) cell growth is activated, and collagen is produced.

3. Regeneration and Rejuvenation of Skin Tissue:Here Collagen is produced, and skin elasticity is improved. The ability to retain moisture is restored.

For separation of platelet-rich plasma (PRP), a dedicated kit called Fibrinet AGF is used. The use of a specific filter and a centrifuge achieves a high platelet recovery rate of 97% or more and allows preparation of plasma containing six to ten times as many platelets as the common one. This is a three step process:

Step 1: Collection of Blood

Step 2:Separation of Platelet Component A specific filter and a centrifuge are used to prepare platelet-rich plasma (PRP) containing autologous white blood cells.

Step 3. Injection of Platelet Component The platelet-rich plasma (PRP) with autologous white blood cells is injected into the area of concern. It takes about 30 to 40 minutes from blood collection to injection.

Platelets and white blood cells exert a synergistic effect, resulting in the release of a variety of growth factors at the injection sites. This promotes the production of collagen and hyaluronic acid and wound healing, leading to improvement of symptoms such as wrinkles and irregularities from acne marks.

Comparison of Conventional Anti-Aging Therapy

PRP Skin Regeneration Therapy is expected to provide great benefit for crepy skin under the eyes, which are difficult to treat with conventional rejuvenating injections and laser therapy. The therapy uses the patients own blood for rejuvenation and thus poses no risk of infection or allergy. It has the advantage of a longer duration of efficacy compared with injection of hyaluronic acid and collagen that are absorbed into the body. Other features such as no need for skin incision and short downtime (swelling usually resolves in two to three hours) make this therapy a safe treatment.

NOTE: When injection is performed under the eyes, redness may persist for two to three days but resolve over time.

Consult a physician about the best procedure, depending on the sites and conditions of your wrinkles and others symptoms.

Before and After

Another feature of the therapy is that the patient will experience a natural change in the operative site, as well as minimal discomfort as the beneficial effects gradually occur after about two weeks of therapy.

As simple as giving a tube of blood, this nonsurgical treatment utilises patients own platelets and stem cells to promote wound healing. PRP can effectively improve the bodys natural collagen production, resulting in a more youthful appearance.

Neocel PRP kits are the only FDA approved stem cells harvesting kit in the world. The Wembley MediSpa in Cape Town is amongst the few clinics in South Africa to offer this world class treatment with a world class Doctor (90 120 mins).

More:
Stem Cells PRP, Acne & Skin Rejuvenation Cape Town

Recommendation and review posted by simmons

The Vitamin That Targets and Kills Cancer Stem Cells – Care2.com

While the search for possible cures for cancer continue in laboratories around the world, exciting new research turns our attention to a commonly available, inexpensive vitamin. Thats because a humble vitamin has been found to seek out and destroy cancer stem cells, which are cells that are believed to drive the creation of new cancer cells and cancer tumors.

The study, published in the medical journal Oncotarget, found that vitamin C can actually seek out and destroy cancer stem cells, thereby preventing the spread of the disease. Vitamin C was found by researchers to be up to 10 times more effective at killing cancer stem cells than experimental drugs. Thats good news considering the toll that cancer is currently taking. Cancer is currently the second leading cause of death and killed almost 9 million people in 2015 alone.

Lead study author Dr. Michael P. Lisanti, professor of translational medicine at the University of Salford said in an interview with Medical News Today: We have been looking at how to target cancer stem cells with a range of natural substancesbut by far the most exciting are the results with vitamin C. Vitamin C is cheap, natural, nontoxic and readily available, so to have it as a potential weapon in the fight against cancer would be a significant step.

Vitamin C is found in most fruits and vegetables, but especially in red bell peppers, strawberries, oranges, grapefruit, lemons, limes, pomegranates, black currants, spinach, beet greens, tomatoes and sprouts. Eating a plant-based or largely plant-based diet high in vitamin C-rich foods may be helpful in preventing or treating cancer, but supplementation may be necessary to achieve the study results. Vitamin C is available in a variety of forms, with ascorbic acid being the primary one, along with other buffered options such as calcium ascorbate. The Oncotarget study found that ascorbic acid effectively sought out and destroyed cancer stem cells.

It is not clear how much vitamin C is necessary to create the anti-cancer results. More research may help to determine the ideal dosage. The recommended dietary intake is 90 milligrams of vitamin C, but many natural health experts believe that this amount is extremely low and doesnt take stress or diseases like cancer into account. Stress causes the rapid depletion of vitamin C. Our stress glands, the adrenal glands, which are two small, triangular-shaped glands that sit atop the kidneys in the abdominal region, use high amounts of vitamin C, particularly when they are dealing with acute or chronic stress. Many natural health experts recommend 2000 milligrams of vitamin C daily, and sometimes even more than that if it is part of a therapeutic protocol.

Nobel Prize winner Dr. Linus Pauling first discovered vitamin C and its role in fighting cancer. This new Oncotarget study builds on Dr. Paulings research, showing that vitamin C also targets cancer stem cells, an important advancement in our knowledge of cancer and vitamin C. Other research published in the medical journal Science found that high doses of vitamin C may help in the treatment of colorectal cancer. It is a good idea to work with a naturally-minded health professional if you intend to take high doses of vitamin C, divided throughout the day.

Because vitamin C is water soluble, it is not stored in our body and must therefore be ingested on a daily basis to avoid a deficiency. Some of the symptoms of a vitamin C deficiency include: excessive hair loss, becoming exhausted easily, fragile bones, frequent nosebleeds, gums that bleed easily, skin that bruises easily, and sores or wounds that heal slowly.

Vitamin C is also crucial to the formation of bones and teeth, digestion, blood cell formation, wound healing and the production of collagen, which is involved in maintaining the skins youthful elasticity.

Related:Dont Believe in Herbal Medicine? 10 Things to Change Your MindThe 5 Best Herbs to Soothe Your NervesShould You Actually Starve a Fever?

Dr. Michelle Schoffro Cook, PhD, DNM is the publisher of the free e-news Worlds Healthiest News, president of PureFood BC, and an international best-selling and 20-time published book author whose works include: The Life Force Diet: 3 Weeks to Supercharge Your Health and Get Slim with Enzyme-Rich Foods.

Disclaimer: The views expressed above are solely those of the author and may not reflect those of Care2, Inc., its employees or advertisers.

Read the rest here:
The Vitamin That Targets and Kills Cancer Stem Cells - Care2.com

Recommendation and review posted by simmons

Crispr | Definition of Crispr by Merriam-Webster

2 : a gene editing technique in which CRISPR and the RNA segments and enzymes it produces are used to identify and modify specific DNA sequences in the genome of other organisms Just a few years after its invention, CRISPR gene editing is already having a major impact on biomedical research. It makes it easy to turn off genes one at a time, to see what they do. It can introduce specific mutations, to find out why they make cells cancerous or predispose people to diseases. And it can be used to tinker with the genes of plants and animals Michael Le Page Using CRISPR, they have now disabled four rice genes, suggesting that the technique could be used to engineer this crucial food crop. Elizabeth Pennisi Scientists hope Crispr might also be used for genomic surgery, as it were, to correct errant genes that cause disease. Andrew Pollack The technique is sometimes called CRISPRCas9, which includes the name of the enzyme that cleaves DNA. an incredibly fast-paced field in which laboratories around the world have used CRISPR-Cas9 to edit genomes of a wide range of cell types and organisms. Jennifer A. Doudna and Emmanuelle Charpentier

See the rest here:

Crispr | Definition of Crispr by Merriam-Webster

Recommendation and review posted by simmons

CRISPR hack unearths gems buried in ‘dark genome’ – Spectrum

Download PDF Sequence search: A DNA-editing tool helps scientists find functions for the more than 98 percent of the genome that doesn't include genes.

theasis / iStock

Tweaks to the CRISPR gene-editing system allow researchers to identify stretches of DNA that regulate gene expression1. Researchers could use the method to find sequences that control genes tied to autism.

The CRISPR system uses RNA guides to direct the DNA-cleaving enzyme CAS9 to specific spots in the genome. Scientists have used the system to edit, activate and disable genes. But regions that control these genes are hidden in the vast expanse of poorly understood DNA dubbed the dark genome.

The new method, described in the April issue of Nature Biotechnology, involves the use of chemical tags for DNA that activate or deactivate certain sections of the genome. Researchers engineered one version of CAS9 to add an activating tag, and another to add a deactivating tag.

They created two libraries that each contain thousands of guide RNAs. Each of the RNAs targets a DNA segment thought to regulate the expression of a gene or group of related genes. One library is specific for the beta-globin region, which contains genes involved in the production of hemoglobin. The other targets the breast cancer gene HER2.

The researchers loaded each of the guide RNAs into a virus and injected the virus into cultured human cells.

After 14 days in culture, the researchers gauged the expression of HER2 and beta-globin genes in the cells using fluorescent markers on the genes. They used a specialized instrument to sort out the brightest 10 percent and the darkest 10 percent of cells.

The researchers then identified where in the genome the guides had attached, revealing the sequences that regulate the expression of HER2 or beta-globin genes.

The study confirmed known regulatory segments for beta-globin genes and revealed new ones for HER2.

The regulatory segments generally produce subtle changes in gene expression, those that differ from baseline by less than twofold. But several of them working together might produce more dramatic changes, the researchers say.

They also say the method can be scaled up to enable screening of the entire genome, rather than just selected regions.

Go here to read the rest:

CRISPR hack unearths gems buried in 'dark genome' - Spectrum

Recommendation and review posted by simmons

CRISPR pioneer Feng Zhang’s lab spawns a new Cambridge biotech – Boston Business Journal

CRISPR pioneer Feng Zhang's lab spawns a new Cambridge biotech
Boston Business Journal
They include Zhang, a co-inventor of CRISPR/Cas9, the experimental and potentially revolutionary technology for cutting out and replacing parts of genes. Two graduate students who work in Zhang's lab and have conducted research related to CRISPR, ...

Original post:

CRISPR pioneer Feng Zhang's lab spawns a new Cambridge biotech - Boston Business Journal

Recommendation and review posted by sam

Molecular Genetics – Cell and Gene Therapy Conferences

Sessions/Tracks

Track 1:Molecular Biology

Molecular biologyis the study of molecular underpinnings of the processes ofreplication,transcription,translation, and cell function. Molecular biology concerns themolecularbasis ofbiologicalactivity between thebiomoleculesin various systems of acell,gene sequencingand this includes the interactions between theDNA,RNAand proteinsand theirbiosynthesis. Inmolecular biologythe researchers use specific techniques native to molecular biology, increasingly combine these techniques and ideas from thegeneticsandbiochemistry.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

2nd World Congress onHuman Genetics&Genetic Disorders, November 02-03, 2017 Toronto, Canada; 9th International Conference onGenomicsandPharmacogenomics, June 15-16, 2017 London, Uk; 6th International Conference and Exhibition onCellandGene Therapy, Mar 27-28, 2017 Madrid, Spain; Gordon Research Conference,Viruses&Cells, 14 - 19 May 2017, Lucca, Italy;Human Genome Meeting(HGM 2017), February 5-7 2017, Barcelona, Spain; Embl Conference:Mammalian GeneticsAndGenomics:From Molecular Mechanisms To Translational Applications, Heidelberg, Germany, October 24, 2017;GeneticandPhysiological Impacts of Transposable Elements, October 10, 2017, Heidelberg, Germany.

American Society for Cell Biology;The Society for Molecular Biology & Evolution;American Society for Biochemistry and Molecular Biology;The Nigerian Society of Biochemistry and Molecular Biology;Molecular Biology Association Search Form - CGAP.

Track 2:Gene Therapy and Genetic Engineering

Thegenetic engineeringis also called asgenetic modification. It is the direct manipulation of an organism'sofgenomeby usingbiotechnology. It is a set of technologies used to change the genetic makeup of the cell and including the transfer of genes across species boundaries to produce improved novelorganisms. Genesmay be removed, or "knocked out", using anuclease.Gene is targetinga different technique that useshomologousrecombinationto change anendogenous gene, and this can be used to delete a gene, removeexons, add a gene, or to introducegenetic mutations. There is an dna replacement therapy, Genetic engineering does not normally include traditional animal and plant breeding, gene sequencing, in vitro fertilization, induction of polyploidy,mutagenesisand cell fusion techniques that do not use recombinant nucleic acids or a genetically modified organism in the process,diseases treated with gene therapywas initially meant to introduce genes straight into human cells, focusing on diseases caused by single-gene defects, such as cystic fibrosis, hemophilia, muscular dystrophy and sickle cell anemia

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

8thWorld Congress onMolecular Pathology, June 26-27, 2017 San Diego, USA; 11thInternational Conference onSurgical Pathology& Practice, March 27-28, 2017, MADRID, SPAIN; 13th EuropeanPathologyCongress, Aug 02-03, 2017, MILAN, ITALY; 28th Annual Meeting, Austrian Society ForHuman GeneticsAnd The Swiss Society OfMedical GeneticsCombined Meeting 2017 march 29, 2017 - March 31, 2017, bochum , Germany.

Association for Clinical Genetic Science;Genetics Society of America | GSA;Association of Genetic Technologists;Molecular Genetics - Human Genetics Society of Australasia;Genetic Engineering - Ecological Farming Association.

Track 3:Cell & Gene Therapy

Cell therapy is also calledcellular therapyorCyto therapy, in which cellular material is injected into patient this generally means intact, living cells. The first category iscell therapyin mainstream medicine. This is the subject of intense research and the basis of potential therapeutic benefit. Such research can be controversial when it involves human embryonic material. The second category is in alternative medicine, and perpetuates the practice of injecting animal materials in an attempt to cure disease.Gene therapyis the therapeutic delivery of nucleic acid polymers into a patient's cells as a drug to treat disease. Gene therapy is a way to fix agenetic problemat its source. The polymers are either translated into proteins, interfere with targetgene expression, or possibly correct genetic mutations. The most common form uses DNA that encodes a functional,therapeutic gene to replace a mutated gene. The polymer molecule is packaged within a "vector", which carries the molecule inside cells. Vectors used in gene therapy, the vector incorporates genes intochromosomes. The expressed nucleases then knock out and replace genes in the chromosome. The Center forCell and Gene Therapyconducts research into numerous diseases, including but not limited to PediatricCancer, HIV gliomaandCardiovascular disease.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

2nd World Congress onHuman Genetics&Genetic Disorders, November 02-03, 2017 Toronto, 27 Canada ; 7th International Conference onPlant Genomics, July 03-05, 2017, Bangkok, Thailand ; American Society ofGeneandCell Therapy(ASGCT) 20th Annual Meeting, 10 - 13 May 2017, Washington, DC;Genomic Medicine for Clinicians(course), January 25-27, 2017, Hinxton , Cambridge, UK; Embo Conference:ChromatinandEpigenetics, Heidelberg, Germany, May 3, 2017; 14th International Symposium on Variants in theGenomeSantiago de Compostela, Galicia, Spain, June 5 - 8, 2017;

Genetics and Molecular Medicine - American Medical Association;Genetics Society of America / Gsa;British Society for Genetic Medicine;British Society for Gene and Cell Therapy; Australasian Gene Therapy Society.

Track 4:Cell Cancer Immunotherapy

Immunologydeals with the biological and biochemical basis for the body's defense against germs such as bacteria, virus and mycosis (fungal infections) as well as foreign agents such asbiological toxinsand environmental pollutants, and failures and malfunctions of these defense mechanisms. Cancer immunotherapy is the use of the immune system to treat cancer. Immunotherapies can be categorized as active, passive or hybrid (active and passive). Antibodies are proteins produced by the immune system that bind to a target antigen on the cell surface. The immune system normally uses them to fight pathogens. A type of biological therapy that uses substances to stimulate or suppress the immune system to help the body fight cancer, infection, and other diseases. Some types of immunotherapy only target certain cells of the immune system. Others affect the immune system in a general way. Types of immunotherapy include cytokines, vaccines, bacillus Calmette-Guerin (BCG), and some monoclonal antibodies.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

9thAnnual Meeting onImmunologyandImmunologist, July 03-05, 2017 Kuala Lumpur, Malaysia; 8th MolecularImmunology&ImmunogeneticsCongress, March 20-21, 2017 Rome, Italy; 8th EuropeanImmunologyConference, June 29-July 01, 2017 Madrid, Spain; July 03-05, 2017; B Cells and T Follicular Helper Cells Controlling Long-Lived Immunity (D2), April 2017, 2327, Whistler, British Columbia, Canada; Mononuclear Phagocytes in Health,Immune Defense and Disease, 304 May, Austin, Texas, USA;Modeling Viral Infections and ImmunityMAY 2017, 14, Estes Park, Colorado, USA; IntegratingMetabolism and Immunity(E4)292 June, Dublin, Ireland.

The American Association of Immunologists;Clinical Immunology Society ; Indian Immunology Society;IUIS - International Union of Immunological Societies;American Society for Histocompatibility and Immunogenetics.

Track 5:Clinical Genetics

Clinical geneticsis the practice of clinical medicine with particular attention tothe hereditary disorders. Referrals are made togenetics clinicsfor the variety of reasons, includingbirth defects,developmental delay,autism,epilepsy, and many others. In the United States, physicians who practice clinical genetics are accredited by theAmerican Board of Medical Genetics and Genomics(ABMGG).In order to become a board-certified practitioner of a Clinical Genetics, a physician must complete minimum of 24 months of his training in a program accredited by the ABMGG. Individual seeking acceptance intoclinical geneticstraining programs and should hold an M.D. or D.O. degree (or their equivalent)and he/she have completed a minimum of 24 months of their training in ACGME-accredited residency program internal medicine, pediatrics and gynecology or other medical specialty.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

Belgian Society OfHuman GeneticsMeeting 2017 february 17, 2017, Belgium; American College Of Medical Genetics 2017 AnnualClinical GeneticsMeeting march 21-25 2017, phoenix , United States; German Society Of Human Genetics 28th Annual Meeting, Austrian Society ForHuman GeneticsAnd The Swiss Society OfMedical GeneticsCombined Meeting 2017 march 29, 2017 - March 31, 2017, bochum , Germany; Spanish Society OfHuman GeneticsCongress 2017april 25, 2017 - April 28, 2017 madrid , Spain;

Clinical Genetics Associates;Clinical Genetics Society(CGS);The genetic associate;International Conference on Clinical and Medical Genetics;Association for Clinical Genetic Science;The American Society of Human Genetics.

Track 6:Pharmacogenetics

Pharmacogeneticsis the study of inherited genetic differences in drug metabolic pathways which can affect individual responses towards the drugs, both in their terms of therapeutic effect as well as adverse effects. In oncology, Pharmacogenetics historically is the study ofgerm line mutations(e.g., single-nucleotide polymorphisms affecting genes coding forliver enzymesresponsible for drug deposition and pharmacokinetics), whereaspharmacogenomicsrefers tosomatic mutationsin tumoral DNA leading to alteration in drug response.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

Spanish Society OfHuman GeneticsCongress 2017april 25, 2017 - April 28, 2017, madrid , Spain; 8th World Congress onPharmacology, August 07-09, 2017 Paris, France; World Congress onBio therapeutics, May 22-23, 2017, Mexico City, Mexico; 8th World Congress OnPharmacologyAndToxicology, July 24-26, 2017, Melbourne, Australia; German Society Of Human Genetics 28th Annual Meeting, Austrian Society ForHuman GeneticsAnd The Swiss Society OfMedical GeneticsCombined Meeting 2017march 29, 2017 - March 31, 2017 bochum , Germany.

Pharmacogenomics - American Medical Association;Associate Principal Scientist Clinical Pharmacogenetics;European Society of Pharmacogenomics and Personalised Therapy;Genome-wide association studies in pharmacogenomics.

Track 7:Molecular Genetic Pathology

Molecular genetic pathologyis an emerging discipline withinthe pathologywhich is focused in the study and diagnosis of disease through examination of molecules within the organs, tissues or body fluids. A key consideration is more accurate diagnosis is possible when the diagnosis is based on both morphologic changes in tissuestraditional anatomic pathologyand onmolecular testing. Molecular Genetic Pathology is commonly used in diagnosis of cancer and infectious diseases. Integration of "molecular pathology" and "epidemiology" led tointerdisciplinaryfield, termed "molecular pathological epidemiology" (MPE),which representsintegrative molecular biologicand population health science.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

8th World Congress OnMolecular Pathology, June 26-27, 2017 San Diego, USA; 11th International Conference OnSurgical Pathology& Practice, March 27-28, 2017, Madrid, Spain; 13th EuropeanPathologyCongress, Aug 02-03, 2017, Milan, Italy; Embl Conference:Mammalian GeneticsAndGenomics, Heidelberg, Germany, October 24, 2017; Embo|Embl Symposium: TheMobile Genome: Genetic And Physiological Impacts Of Transposable Elements, Heidelberg, Germany, October 10, 2017.

Clinical Pathology Associates Molecular Pathology; Association mapping Wikipedia;Association for Molecular Pathology(AMP);Molecular Pathology - Association of Clinical Pathologists;SELECTBIO - Molecular Pathology Association of India.

Track 8:Gene Mapping

Genomemappingis to place a collection of molecular markers onto their respective positions ongenome.Molecular markerscome in all forms. Genes can be viewed as one special type of genetic markers in construction ofgenome maps, and the map is mapped the same way as any other markers. The quality ofgenetic mapsis largely dependent upon the two factors, the number of genetic markers on the map and the size of themapping population. The two factors are interlinked, and as larger mapping population could increase the "resolution" of the maps and prevent the map being "saturated". Researchers begin a genetic map by collecting samples of blood or tissue from family members that carry a prominent disease or trait and family members that don't. Scientists then isolate DNA from the samples and closely examine it, looking for unique patterns in the DNA of the family members who do carry the disease that the DNA of those who don't carry the disease don't have. These unique molecular patterns in the DNA are referred to as polymorphisms, or markers.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

3rd WorldBio Summit&Expo, Abu Dhabi, UAE, June 19-21, 2017; 9th International Conference onGenomicsandPharmacogenomicsJune 15-16, 2017 London, Uk; Keystone Symposium: Mononuclear Phagocytes in Health,Immune DefenseandDisease, 304 May 2017, Austin, Texas, USA;Molecular Neurodegeneration(course) Hinxton, Cambridge, UK, January 9-14, 2017;

Association for Clinical Genetic Science;Genome-wide association study Wikipedia;Gene mapping by linkage and association analysis NCBI;Gene mapping by linkage and association analysis | Springer Link.

Track 9:ComputationalGenomics

Computational genomics refers to the use of computational and statistical analysis to decipherbiologyfromgenome sequencesand related data, including DNA and RNA sequence as well as other "post-genomic" data. This computational genomics is also known asComputational Genetics. These, in combination with computational and statistical approaches to understanding the function of the genes and statistical association analysis, this field is also often referred to as Computational and Statistical Genetics/genomics. As such, computational genomics may be regarded as a subset of bioinformatics and computational biology, but with a focus on using whole genomes rather than individual genes to understand the principles of how the DNA of a species controls its biology at the molecular level and beyond. With the current abundance of massive biological datasets, computational studies have become one of the most important means to biological discovery.The field is defined and includes foundations in thecomputer sciences,applied mathematics, animation, biochemistry, chemistry, biophysics,molecular genetics,neuroscienceandvisualization. Computational biology is different from biological computation, which is a subfield of computer engineering using bioengineering and biology to build computers, but is similar tobioinformatics.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

Modeling Viral Infections and Immunity,10. MAY 2017, 14, Estes Park, Colorado, USA;Integrating Metabolism and Immunity(E4)292 June, Dublin, Ireland; EMBL Conference:Mammalian GeneticsandGenomics, Heidelberg, Germany, October 24, 2017; EMBO|EMBL Symposium: The Mobile Genome:GeneticandPhysiological Impacts of Transposable Elements, Heidelberg, Germany, October 10, 2017;

American Association of Bio analysts - Molecular/Genetic Testing;ISCB - International Society for Computational Biology;International Society for Computational Biology Wikipedia;Bioinformatics societies OMICtools;Towards an Australian Bioinformatics Society.

Track 10:Molecular Biotechnology

Molecular Biotechnologyis the use of living systems and organisms to develop or to make products, or "any technological application that uses the biological systems, living organisms or derivatives, to make or modify products or processes for specific use. Molecular biotechnology results from the convergence of many areas of research, such as molecular biology, microbiology, biochemistry, immunology, genetics and cell biology. It is an exciting field fueled by the ability to transfer genetic information between organisms with the goal of understanding important biological processes or creating a useful product. The completion of the human genome project has opened a myriad of opportunities to create new medicines and treatments, as well as approaches to improve existing medicines. Molecular biotechnology is a rapidly changing and dynamic field. As the pace of advances accelerates, its influence will increase. The importance and impact of molecular biotechnology is being felt across the nation. Depending on the tools and applications, it often overlaps with the related fields of bioengineering,biomedical engineering, bio manufacturing andmolecular engineering.Biotechnologyalso writes on the pure biological sciences animalcell culture, biochemistry,cell biology, embryology, genetics, microbiology, andmolecular biology.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

8th EuropeanImmunologyConference, June 29-July 01, 2017 Madrid, Spain; World Congress onBio therapeutics, May 22-23, 2017, Mexico City, Mexico;Human Genome Meeting(HGM 2017), February 5-7 2017, Barcelona, Spain;Integrating MetabolismandImmunity (E4), 292 June, Dublin, Ireland.

Biotech Associations - Stanford University;Indian Society of Genetics, Biotechnology Research & Development;Genetics and Molecular Medicine - American Medical Association;Genetics Society of America | GSA, British Society for Genetic Medicine;Heritability in the Era of Molecular Genetics - Association for Psychological science.

Track 11:Genetic Transformation

Genetic Transformationis the genetic alteration of cell resulting from the direct uptake and incorporation ofexogenous genetic materialfrom its surroundings through thecell membrane. Transformation is one of three processes for horizontal gene transfer, in which exogenous genetic material passes from bacterium to another, the other two being conjugation transfer of genetic material between two bacterial cells in direct contact andTransductioninjection offoreign DNAby a bacteriophage virus into thehost bacterium. And about 80 species of bacteria were known to be capable of transformation, in 2014, about evenly divided betweenGram-positiveandGram-negative Transformation" may also be used to describe the insertion of new genetic material into non-bacterial cells, including animal and plant cells.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

13th EuropeanPathologyCongress, Milan, Italy; Embl Conference:Mammalian GeneticsAndGenomics, Heidelberg, Germany, October 24, 2017; Embo|Embl Symposium: TheMobile Genome: Genetic And Physiological Impacts Of Transposable Elements, Heidelberg, Germany, October 10, 2017; 2nd World Congress onHuman Genetics&Genetic Disorders, November 02-03, 2017 Toronto, Canada; 9th International Conference onGenomicsandPharmacogenomics, June 15-16, 2017 London, Uk;

American Society of Gene & Cell Therapy: ASGCT;Gene Therapy Societies and Patient Organizations - Gene Therapy Net;European Society of Gene and Cell Therapy (ESGCT);British Society for Gene and Cell Therapy;Gene Therapy - American Medical Association.

Track 12:Genetic Screening

Genetic screenis an experimental technique used to identify and select the individuals who possess a phenotype of interest inmutagenized population. A genetic screen is a type ofphenotypic screen. Genetic screen can provide important information on gene function as well as the molecular events that underlie a biological process or pathway. While thegenome projectshave identified an extensive inventory of genes in many different organisms, genetic screens can provide valuable insight as to how thosegenes function.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

13th EuropeanPathologyCongress, Aug 02-03, 2017, Milan, Italy; 2nd World Congress onHuman Genetics&Genetic Disorders, November 02-03, 2017 Toronto, 27 Canada; 7th International Conference onPlant Genomics, July 03-05, 2017, Bangkok, Thailand; Embl Conference:Mammalian GeneticsAndGenomics, Heidelberg, Germany, October 24, 2017; Embo|Embl Symposium: TheMobile Genome: Genetic And Physiological Impacts Of Transposable Elements, Heidelberg, Germany, October 10, 2017, 10 - 13 May 2017, American Society ofGeneandCell Therapy(ASGCT) 20th Annual Meeting, Washington, DC;

Association for Clinical Genetic Science; Association for Molecular Pathology (AMP);Mapping heritability and molecular genetic associations with cortical;Genetics and Molecular Medicine - American Medical Association.

Track 13:Regulation of Gene Expression

Regulation of Gene expressionincludes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA), and is informally termed gene regulation. Sophisticated programs of gene expression are widely observed in biology, Virtually any step of gene expression can be modulated, fromtranscriptional initiation,RNA processing, and post-translational modificationof a protein. Often, one gene regulator controls another in a gene regulatory network. Any step of gene expression may be modulated, from theDNA-RNA transcriptionstep to post-translational modification of a protein.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

7th International Conference onPlant Genomics, July 03-05, 2017, Bangkok, Thailand; EMBO|EMBL Symposium: The Mobile Genome:GeneticandPhysiological Impacts of Transposable Elements, Heidelberg, Germany, October 10, 2017; 10. MAY 2017, 14, Estes Park, Colorado, USA,Modeling Viral Infections and Immunity; 292 June, Dublin, Ireland,Integrating Metabolism and Immunity(E4); MAY 2017, 14, Estes Park, Colorado, USA,Modeling Viral InfectionsandImmunity; 8th EuropeanImmunologyConference, June 29-July 01, 2017 Madrid, Spain; 9th International Conference onGenomicsandPharmacogenomics, June 15-16, 2017 London, Uk;

Gene Therapy Societies and Patient Organizations - Gene Therapy Net;European Society of Gene and Cell Therapy (ESGCT);British Society for Gene and Cell Therapy;Gene Therapy - American Medical Association

Track 14: Cancer Gene Therapy

Cancer is an abnormal growth of cells the proximate cause of which is an imbalance in cell proliferation and death breaking-through the normal physiological checks and balances system and the ultimate cause of which are one or more of a variety of gene alterations. These alterations can be structural, e.g., mutations, insertions, deletions, amplifications, fusions and translocations, or functional (heritable changes without changes in nucleotide sequence). No single genomic change is found in all cancers and multiple changes (heterogeneity) are commonly found in each cancer generally independent of histology. In healthy adults, the immune system may recognize and kill the cancer cells or allow non-detrimental host-cancer equilibrium; unfortunately, cancer cells can sometimes escape the immune system resulting in expansion and spread of these cancer cells leading to serious life threatening disease. Approaches to cancer gene therapy include three main strategies: the insertion of a normal gene into cancer cells to replace a mutated (or otherwise altered) gene, genetic modification to silence a mutated gene, and genetic approaches to directly kill the cancer cells. Pathway C represents immunotherapy using altered immune cells. Another unique immunotherapy strategy facilitated by gene therapy is to directly alter the patient's immune system in order to sensitize it to the cancer cells. One approach uses mononuclear circulating blood cells or bone marrow gathered from the patient.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

8th EuropeanImmunologyConference, June 29-July 01, 2017 Madrid, Spain; World Congress onBio therapeutics, May 22-23, 2017, Mexico City, Mexico;Human Genome Meeting(HGM 2017), February 5-7 2017, Barcelona, Spain;Integrating MetabolismandImmunity (E4), 292 June, Dublin, Ireland.

Biotech Associations - Stanford University;Indian Society of Genetics, Biotechnology Research & Development;Genetics and Molecular Medicine - American Medical Association;Genetics Society of America | GSA, British Society for Genetic Medicine;Heritability in the Era of Molecular Genetics - Association for Psychological science.

Track 15:Genetic Transplantation

Transplantation genetics is the field of biology and medicine relating to the genes that govern the acceptance or rejection of a transplant. The most important genes deciding the fate of a transplanted cell, tissue, or organ belong to what is termed the MHC (the major histocompatibility complex). Genetic Transplantation is the moving of an organ from one body to another or from a donor site to another location on the person's own body, to replace the recipient's damaged or absent organ. Organs and/or tissues that aretransplantedwithin the same person's body are calledauto grafts. Transplants that are recently performed between two subjects of the same species are calledallografts. Allografts can either be from a living or cadaveric source Organs that can be transplanted are the heart, kidneys, liver, lungs, pancreas, intestine, and thymus. The kidneys are the most commonlytransplanted organs, followed by the liver and then the heart. The main function of the MHC antigens is peptide presentation to the immune system to help distinguish self from non-self. These antigens are called HLA (human leukocyte antigens). They consists of three regions: class I (HLA-A,B,Cw), class II (HLA-DR,DQ,DP) and class III (no HLA genes)

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

8th World Congress onPharmacology, August 07-09, 2017 Paris, France; International Conference onClinicalandMolecular Genetics, Las Vegas, USA, April 24-26, 2017; Aug 02-03, 2017, 13th EuropeanPathologyCongress, Milan, Italy; Embl Conference:Mammalian GeneticsAndGenomics, Heidelberg, Germany, October 24, 2017; 7th International Conference onPlant Genomics, July 03-05, 2017, Bangkok, Thailand.

American society of Transplantation;American Society of Transplant Surgeons: ASTS; Patient associations. Donation and transplantation;American Society of Gene & Cell Therapy ASGCT;Gene Therapy Societies and Patient Organizations - Gene Therapy Net.

Track 16:Cytogenetics

Cytogeneticsis a branch ofgeneticsthat is concerned withstudy of the structure and function of the cell, especially thechromosomes. It includes routine analysis of G-banded chromosomes, othercytogenetic banding techniques, as well as molecular Cytogenetics such as fluorescent in suitable hybridization FISH and comparativegenomic hybridization.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

9thAnnual Meeting onImmunologyandImmunologist, July 03-05, 2017 Kuala Lumpur, Malaysia; 8th MolecularImmunology&ImmunogeneticsCongress, March 20-21, 2017 Rome, Italy; 8th EuropeanImmunologyConference, June 29-July 01, 2017 Madrid, Spain; July 03-05, 2017; B Cells and T Follicular Helper Cells Controlling Long-Lived Immunity (D2), April 2017, 2327, Whistler, British Columbia, Canada.

European Cytogeneticists Association;Association of Genetic Technologists;Association for Clinical Genetic Science;Cytogenetics - Human Genetics Society of Australasia;European Cytogeneticists Association

Molecular Biology 2016

Molecular Biology 2016 Report

2ndWorld Bio Summit & Molecular Biology Expowas organized during October 10-12, 2016 at Dubai, UAE. The conference was marked with the attendance ofEditorial Board Members of supporting journals, Scientists, young and brilliant researchers, business delegates and talented student communities representing more than 25 countries, who made this conference fruitful and productive.

This conference was based on the theme Recent advances in Bio Science which included the following scientific tracks:

Molecular Biology

Microbiology

Analytical Molecular Biology

Bioinformatics

Biochemistry and Molecular Biology

Molecular Biology and Biotechnology

Cancer Molecular Biology

Computational Biology

Molecular Biology of the Cell

Molecular biology of the cardiovascular system

Molecular Biology in Cellular Pathology

Molecular Biology of Diabetes

Molecular Biology and Genetic Engineering

Enzymology and Molecular Biology

Molecular Biology of the Gene

Read the original:
Molecular Genetics - Cell and Gene Therapy Conferences

Recommendation and review posted by simmons

Nationwide Children’s spins out fourth gene therapy company this one is staying in Central Ohio – Columbus Business First


Columbus Business First
Nationwide Children's spins out fourth gene therapy company this one is staying in Central Ohio
Columbus Business First
Nationwide Children's Hospital has spun out its fourth gene therapy startup to result from decades of research and millions in investment in manufacturing equipment and commercialization personnel.

See the article here:
Nationwide Children's spins out fourth gene therapy company this one is staying in Central Ohio - Columbus Business First

Recommendation and review posted by Bethany Smith

Berkeley Biologist: CRISPR Gene Editing Will Cure Genetic Disease – Futurism

The End of Genetic Disease CRISPR-Cas9,the worlds best gene editing tool, has lent itself toa plethora of research and experiments. Scientists owea great deal to the person considered to be its founder if we could really credit one person specifically with its advent. Certainly, University of California Berkeley biologist Jennifer Doudna deserves consideration for thetitle as one of the worlds leading figure in whats being called the CRISPR Revolution. It was Doudnas work in 2012 that first suggested the possibility of using CRISPR-Cas9 for genome editing. Since then, it has certainly been put into good use human clinical trials of the technologys capabilities areexpected to begin soon in the United States.

On Thursday,speaking at WIREDs 2017 Business Conference in New York, Doudna made a bold claim about the future of CRISPR. I think its really likely that in the not-too-distant future it will cure genetic disease, she saidat the conference.However, Doudna remains aware thatthe use of such a powerful tool needs to be carefully considered especially since studies have shownit can haveunintended repercussions.

But globally we need to come up with a consensus on moving forward in a responsible way, Doudna added. This wasnt the first time she emphasized need for ethical responsibility in using CRISPR.

Doudna herself has certainly been careful to practice what she preaches: In 2015, she became part of a broad coalition of leading biologists that put parameters in place for the use of CRISPR. They agreed to a worldwide moratorium on gene editing to whats called the germ line. In other words, putting a prohibition onedits that would bepassed down to subsequent generations. However, because it isnt legally binding, it wasnt able tostop such experiments from taking place. In China, for instance, theres already work involving CRISPR to edit the genome of human embryos.

Recognizing the legal and ethical hurdles CRISPR still needs toovercome, Doudna went on tospeak about a much more plausible area for this gene editing tool to demonstratemore immediate success: its application for farming. When I think about where we are likely to see the biggest impacts in the shortest amount of time, I really think its going to be in agriculture, Doudna told the audience in New York.

Indeed, CRISPR has already been already been successfully used to grow and eat! one crop in particular. The first wasthat cabbage in Sweden, and now, agricultural giant Monsanto has even been given license by the Broad Institute to use CRISPR-Cas9 in seed development. Doudna also mentioned research by scientists from the Cold Spring Harbor Laboratory in New York that could make harvesting tomatoes easier.

For me, that really illustrates the potential for this, Doudna said who is herself a tomato farmer. [CRISPR] allows plant breeders to do things that would have been very difficult, sometimes impossible in the past.

With the science, the ethics, and the legal ramifications of CRISPR still being ironed out, farming seems to a reasonable compromise for continue to experiment with the tech, and many experts are already working on its continued refinement.Given that dedication, itmight not be that long before the end of genetic diseases which is what Doudna hopes could be ultimately realized would be accomplished with the help of CRISPR.

Read the original post:

Berkeley Biologist: CRISPR Gene Editing Will Cure Genetic Disease - Futurism

Recommendation and review posted by Bethany Smith


Archives