Page 642«..1020..641642643644..650660..»

How do you feel after eating? Advice on Eating For Life With Spinal Cord Injuries – Video


How do you feel after eating? Advice on Eating For Life With Spinal Cord Injuries
http://www.amplifiedagility.com How Do You Feel After Eating? Dr Angela Smith from AmplifiedAgility asks this question as she discusses the nutritional aspects of common problems if you have...

By: Amplified Agility

Read the original post:
How do you feel after eating? Advice on Eating For Life With Spinal Cord Injuries - Video

Recommendation and review posted by sam

Caf Scientifique – Video


Caf Scientifique
Peggy Assinck, a PhD researcher at ICORD, speaks about the biology of spinal cord injury and why cell transplantation might be a useful thing. She also touches on recent research that has...

By: Spinal Cord Injury BC

See the rest here:
Caf Scientifique - Video

Recommendation and review posted by sam

James Yoo en II Congreso de Terapia Celular – Video


James Yoo en II Congreso de Terapia Celular
James Yoo es profesor, director asociado y jefe cientfico del Institute for Regenerative Medicine de Wake Forest, EE.UU. Por su trabajo como cirujano e investigador ha facilitado la transferencia...

By: Cells for Cells - Cell Therapy and Regenerative Medicine

Here is the original post:
James Yoo en II Congreso de Terapia Celular - Video

Recommendation and review posted by sam

Sungduan: Growth factors

EVEN without surgery, one can now experience a dramatic improvement and even cure on health concerns such as diabetes, cancer, HIV, and cardiovascular diseases. This is through the stem cell technology and telomere science.

Dr. Marc Lavaro Jr., an expert on general & ocular oncology, general & ocular pharmacology, pediatric ophthalmic medicine, and Science of Epigenetics said these new technology are considered as breakthrough which repairs and rejuvenates the cells.

Lavaro, head of a molecular biology research in Gifu Prefecture, Japan and Osato Research Institute, Tokyo Japan stressed that stem cell is a kind of cell that can duplicate all kinds of cell which is why it can repair a damaged heart for instance.

In his book entitled 278+ Growth Factors which he is set to publish, he also mentioned that there are also certain organs which do not regenerate like the heart and brain but through stem cells it can revitalize.

Growth factors are stem cell stimulators that address medical conditions including diseases. Each growth factor is equivalent to 1 disease. For example, in a tumor kidney problem, stem cells produce growth factors to combat it.

Another technology is the telomere science under science of Epigenetics. Telomere is part of the chromosome and it protects it. It is responsible for the cell division and daily produces new cell to replace the dead cells.

Ang cell natin is designed to last forever but and pag-ikli ng telomere ang cause of sickness. Pero pwede na siyang marepair. Activator enzyme siya kaya reverse telomere rejuvenate cell, Lavaro explained.

The good news is the stem technology is now in the market and it comes in the form of liquid gel, capsule, and syrup. This is produced by Jeunesse , an exclusive patent pending stem cell technology advance technology, science of epigenetics, and stem cell science technology. It is also cheaper compared to the old stem technology wherein one has to pay for at least 700,000 to more than one million pesos per shot.

Jeunesse is a product of medical research conducted by Dr. Nathan Newman, the father of stem cell technology and world renowned for his cosmetic surgery and innovator of stem cell lift cutting edge cosmetic surgery, without cutting.

Dapat conscious tayo sa health natin at alamin ang tinatake natin if nagwowork talaga o hype lamang ng company, Lavaro added.

Visit link:
Sungduan: Growth factors

Recommendation and review posted by simmons

UCI team gets $5 million to create stem cell treatment for Huntington’s disease

Irvine, Calif., March 26, 2015 -- Leslie Thompson of the Sue & Bill Gross Stem Cell Research Center at UC Irvine has been awarded $5 million by the California Institute for Regenerative Medicine to continue her CIRM-funded effort to develop stem cell treatments for Huntington's disease.

The grant supports her next step: identifying and testing stem cell-based treatments for HD, an inherited, incurable and fatal neurodegenerative disorder. In this project, Thompson and her colleagues will establish an HD therapy employing human embryonic stem cells that can be evaluated in clinical trials.

Over the past seven years, Thompson, a UCI professor of psychiatry & human behavior and neurobiology & behavior, and her team have used CIRM funding to produce stem cell lines "reprogrammed" from the skin cells of individuals carrying the Huntington's genetic mutation in order to study the disease. In addition, they conducted basic and early-stage transitional studies to develop a stem cell-based technique to treat areas of the brain susceptible to HD.

"These stem cells offer a possible long-term treatment approach that could relieve the tremendous suffering experienced by HD patients and their families," said Thompson, who's also affiliated with UCI's Institute for Memory Impairments and Neurological Disorders (UCI MIND). "We appreciate CIRM and the millions of people in the state of California for generously supporting breakthrough stem cell research."

With this award, CIRM has granted Thompson $10.3 million for her HD work. Overall, UCI has received $105 million from the state-funded agency.

Thompson said that her group has identified a highly promising neural stem cell line that shows disease-modifying activity in HD mice. These neural stem cells were grown from human embryonic stem cells at UC Davis. The researchers also will conduct essential preclinical efficacy and safety studies in HD mice with these cells.

Over the span of the 2-year grant, Thompson said, the goal is to finalize work that will lead to a pre-investigational-new-drug meeting with the Food & Drug Administration and a path forward for clinical trials with the neural stem cells.

"This investment will let us further test the early promise shown by these projects," said Jonathan Thomas, chair of the CIRM governing board. "Preclinical work is vital in examining the feasibility, potential effectiveness and safety of a therapy before we try it on people. These projects all showed compelling evidence that they could be tremendously beneficial to patients. We want to help them build on that earlier research and move the projects to the next level."

HD is a devastating degenerative brain disorder with no disease-modifying treatment or cure. Current approaches only address certain symptoms of HD and do not change its course.

###

Read more:
UCI team gets $5 million to create stem cell treatment for Huntington's disease

Recommendation and review posted by simmons

My message in a bottle, writes Lisa Ray

My bone marrow began sending me messages long before I Learned to listen..I was exhausted, pale, drained, and tired all of the time. I eventually landed myself in the emergency room, and was handed a full membership to the cancer club. I was diagnosed with multiple myeloma, an incurable blood cancer.

My bone marrow began sending me messages long before I Learned to listen..I was exhausted, pale, drained, and tired all of the time. I eventually landed myself in the emergency room, and was handed a full membership to the cancer club. I was diagnosed with multiple myeloma, an incurable blood cancer.

That was June 23, 2009.

As it turned out I was very fortunate. I beat the statistical odds and circumstances were in my favour. After four months of chemo and steroids, I was able to use my own stem cells in what is called an autologous stell cell transplant.

My stem cell transplant was a journey to my very core. It's like witnessing a rebirth. It's awe-inspiring and essential. Visualizing those 'yellow' cells stream their way back into my bone marrow opened my eyes to the singular power stem cells bring into our world.

But I was also reminded of Michael Pinto the undertaker in Bombay.

'Grave Problems Resurrected here'

That's so not gonna happen. Not on my resurrection.

My passage through illness taught me that the knowledge of the curative properties of stem cells needs to be shared to offer hope of renewed life. If you knew what medical science can do with stem cells, and if you saw what I did in the labs, through microscropes, you too would feel like using both hands to scoop those secrets out into the world.

Occasionally I gloss over my past cancer club membership--my treatment, my illnessbut then I am remember what a profound reboot my body has gone through, and I remember why. It's true that the deepest crises are moments of great opportunity; an event that shocks you into seeing with your heart. It is a place that combines survival with celebration.

Read the original:
My message in a bottle, writes Lisa Ray

Recommendation and review posted by Bethany Smith

Pause Hydra Creme -Menopause Skin care – Video


Pause Hydra Creme -Menopause Skin care
Menopause Skin Care By http://www.phytomone.com/menopause-skin-care/ Benefits of Pause Hydra Crme *Specifically designed for menopausal skin *Uses rich source of plant hormones to correct...

By: Phytomone Ltd

Read more:
Pause Hydra Creme -Menopause Skin care - Video

Recommendation and review posted by Bethany Smith

The Florida Center for Brain Tumor Research and Accelerate Brain Cancer Cure Award $350,000 to Florida-Based Researchers

Washington, DC (PRWEB) March 27, 2015

The Florida Center for Brain Tumor Research (FCBTR), in partnership with Accelerate Brain Cancer Cure (ABC2), awarded $350,000 to support brain cancer research at three leading Florida institutions: University of Florida, The Scripps Research Institute and H. Lee Moffitt Cancer Center and Research Institute. The awards support studies with a clear development path and potential to provide meaningful improvements in treatment outcomes for patients in the near future.

The awards fund research in areas on the cutting edge of scientific inquiry, including development of innovative gene, virus, nanoparticle, and immunity-based therapies. The 4 award recipients, in alphabetical order, are

This year, the FCBTR/ABC2 Grants Program received a record number of applications. Twenty-three applications were received from researchers at six centers, including Mayo Clinic, Moffitt, Scripps, University of Florida, University of Miami, and University of West Florida.

The Florida legislature is to be congratulated, again, on establishing a program, the Florida Center for Brain Tumor Research, which continues to bring the worlds best brain tumor scientists to our state, said Dr. William Friedman, Chairman of Neurosurgery at the University of Florida. It has been an honor to collaborate with ABC2 on this important scientific endeavor for Florida.

"Were honored to partner with FCBTR to build a world-class brain cancer research network in Florida," said Max Wallace, CEO of Accelerate Brain Cancer Cure. "Thanks to the fundraising support from patients, families and loved ones participating in ABC2s Florida Brain Cancer 5k, were able to commit significant funding directly into research that holds the potential to hasten the discovery of a cure."

Since 2006, the FCBTR at the Evelyn F. and William L. McKnight Brain Institute of the University of Florida has worked with hospitals statewide to collect tissue and disseminate data on brain tumors, creating a powerful tool to facilitate clinical trials, funding opportunities and research collaborations. In addition to providing brain tumor tissue for research to Floridas scientists, FCBTR participated in The Cancer Genome Atlas, the research program that has helped set the standards for characterizing the genomic underpinnings of dozens of cancers on a large scale. Since its founding in 2001, ABC2 has fueled advancement in the field by funding outstanding and novel translational research to world-renowned researchers and creating novel collaborations with the medical community and academia, industry and government. Together, since 2010, FCBTR and ABC2 have together funded more than $925,000 in Florida-based brain tumor research.

About The Florida Center for Brain Tumor Research The Florida Center for Brain Tumor Research is a collaborative effort and its Scientific Advisory Council includes top researchers from H. Lee Moffitt Cancer Center and Research Institute, Mayo Clinic, University of Florida, Cleveland Clinic Florida, Scripps Research Institute, UFHealth Cancer Center Orlando Health, University of Miami and a representative of neurosurgeons in private practice. FCBTR has sponsored statewide Brain Tumor Biomedical Technology Summits to encourage collaboration. To learn more, please visit http://fcbtr.ufl.edu/

About Accelerate Brain Cancer Cure Accelerate Brain Cancer Cure is a venture philanthropy 501(c) (3) nonprofit organization that drives cutting-edge research and treatments for brain tumors. Through strategic partnerships with medical research centers, early-stage biotechnology companies and large multi-national pharmaceutical companies ABC2 has awarded more than $20 million in brain tumor research funding to highly qualified investigators and physician-scientists from 42 institutions and companies. The organization works to raise awareness about brain cancer and promotes advancements in critical scientific research through research grants and partnerships. To learn more, please visit http://www.abc2.org.

See original here:
The Florida Center for Brain Tumor Research and Accelerate Brain Cancer Cure Award $350,000 to Florida-Based Researchers

Recommendation and review posted by Bethany Smith

Scientists Spot Gene Tied to Severe Autism in Girls

By Dennis Thompson HealthDay Reporter

WEDNESDAY, March 25, 2015 (HealthDay News) -- Researchers say they've discovered a new genetic cause of autism, singling out a rare gene mutation that appears to hamper normal brain development early on in powerful ways.

The gene, CTNND2, provides instructions for making a protein called delta-catenin, which plays crucial roles in the nervous system, said senior author Aravinda Chakravarti, a professor in the Johns Hopkins University School of Medicine's Institute of Genetic Medicine.

His research team found that a group of girls with severe autism carried CTNND2 mutations that appeared to reduce the effectiveness of delta-catenin, potentially affecting their neurological development.

"There are many, many proteins that in fact 'moonlight,' doing many, many different things," Chakravarti said. "Maybe the severity of the effect of delta-catenin comes from the fact that when you lose function of this protein, you lose not just one function but many functions. Although that remains to be shown, it is strongly implicated by our study."

Autism spectrum disorder is a neurological and developmental disorder that begins early in life. The cause is not known, although scientists suspect genes play a role.

The researchers discovered the CTNND2 gene's link to autism using an approach that focuses on rare and extreme cases of autism, according to the study released online March 25 in the journal Nature.

By focusing on extreme cases, they believe they will discover genes that have a more powerful effect on brain development and help explain the root causes of autism.

"If we study rare and extreme forms, they are both genetic and they represent very early neurodevelopmental events," Chakravarti said.

The researchers chose to study girls with autism because they are far less likely to have autism than boys. When girls do develop the disorder, their symptoms tend to be severe.

The rest is here:
Scientists Spot Gene Tied to Severe Autism in Girls

Recommendation and review posted by Bethany Smith

Spring Fling Genetics Conference Brian VanDoormaal Speaking – Video


Spring Fling Genetics Conference Brian VanDoormaal Speaking
Spring Fling Genetics Conference Brian VanDoormaal Speaking.

By: HolsteinWorld MOOTUBE

Read the original post:
Spring Fling Genetics Conference Brian VanDoormaal Speaking - Video

Recommendation and review posted by Bethany Smith

Spinal Cord Injury Spotlight – Damien M. at Project Walk Houston – Video


Spinal Cord Injury Spotlight - Damien M. at Project Walk Houston
Damien Maya suffered a T-12 incomplete spinal cord injury in May of 2011 as a result of multiple gunshots. This is a video of his hard work and dedication to recovering. Damien has said that...

By: Project Walk

Visit link:
Spinal Cord Injury Spotlight - Damien M. at Project Walk Houston - Video

Recommendation and review posted by sam

Stem cells may improve tendon healing, reduce retear risk in rotator cuff surgery

An injection of a patient's bone marrow stem cells during rotator cuff surgery significantly improved healing and tendon durability, according to a study presented today at the 2015 Annual Meeting of the American Academy of Orthopaedic Surgeons (AAOS).

Each year in the U.S., more than 2 million people have rotator cuff surgery to re-attach their shoulder tendon to the head of the humerus (upper arm bone). Rotator cuff tears can occur during a fall or when lifting an extremely heavy object; however, most tears are the result of aging and overuse.

The French study, of which a portion appeared in the September 2014 issue of International Orthopaedics, included 90 patients who underwent rotator cuff surgery. Researchers tried to make the two groups as equivalent as possible based on rotator cuff tear size, tendon rupture location, dominate shoulder, gender and age. Forty-five of the patients received injections of bone marrow concentrate (BMC) mesenchymal stem cells (MSCs) at the surgical site, and 45 had their rotator cuff repaired or reattached without MSCs.

Patient ultrasound images were obtained each month following surgery for 24 months. In addition, MRI images were obtained of patient shoulders at three and six months following surgery, and at one year, two years, and 10 years following surgery.

At six months, all 45 of the patients who received MSCs had healed rotator cuff tendons, compared to 30 (67 percent) of the patients who did not receive MSCs. The use of bone marrow concentrate also prevented further ruptures or retears. At 10 years after surgery, intact rotator cuffs were found in 39 (87 percent) of the MSC patients, but just 20 (44 percent) of the non-MSC patients.

In addition, "some retears or new tears occurred after one year," said Philippe Hernigou, MD, an orthopaedic surgeon at the University of Paris and lead study author. "These retears were more frequently associated with the control group patients who were not treated with MSCs.

"While the risk of a retear after arthroscopic repair of the rotator cuff has been well documented, publications with long-term follow-up (more than three years) are relatively limited," said Dr. Hernigou. "Many patients undergoing rotator cuff repair surgery show advanced degeneration of the tendons, which are thinner and atrophic (more likely to degenerate), probably explaining why negative results are so often reported in the literature, with frequent post-operative complications, especially retear. Observations in the MSC treatment group support the potential that MSC treatment has both a short-term and long-term benefit in reducing the rate of tendon retear."

Story Source:

The above story is based on materials provided by American Academy of Orthopaedic Surgeons. Note: Materials may be edited for content and length.

Here is the original post:
Stem cells may improve tendon healing, reduce retear risk in rotator cuff surgery

Recommendation and review posted by Bethany Smith

Stem cells may significantly improve tendon healing, reduce retear risk in rotator cuff surgery

LAS VEGAS, March 26, 2015 /PRNewswire-USNewswire/ -- An injection of a patient's bone marrow stem cells during rotator cuff surgery significantly improved healing and tendon durability, according to a study presented today at the 2015 Annual Meeting of the American Academy of Orthopaedic Surgeons (AAOS).

Each year in the U.S., more than 2 million people have rotator cuff surgery to re-attach their shoulder tendon to the head of the humerus (upper arm bone). Rotator cuff tears can occur during a fall or when lifting an extremely heavy object; however, most tears are the result of aging and overuse.

The French study, of which a portion appeared in the September 2014 issue of International Orthopaedics, included 90 patients who underwent rotator cuff surgery. Researchers tried to make the two groups as equivalent as possible based on rotator cuff tear size, tendon rupture location, dominate shoulder, gender and age. Forty-five of the patients received injections of bone marrow concentrate (BMC) mesenchymal stem cells (MSCs) at the surgical site, and 45 had their rotator cuff repaired or reattached without MSCs.

Patient ultrasound images were obtained each month following surgery for 24 months. In addition, MRI images were obtained of patient shoulders at three and six months following surgery, and at one year, two years, and 10 years following surgery.

At six months, all 45 of the patients who received MSCs had healed rotator cuff tendons, compared to 30 (67 percent) of the patients who did not receive MSCs. The use of bone marrow concentrate also prevented further ruptures or retears. At 10 years after surgery, intact rotator cuffs were found in 39 (87 percent) of the MSC patients, but just 20 (44 percent) of the non-MSC patients.

In addition, "some retears or new tears occurred after one year," said Philippe Hernigou, MD, an orthopaedic surgeon at the University of Paris and lead study author. "These retears were more frequently associated with the control group patients who were not treated with MSCs.

"While the risk of a retear after arthroscopic repair of the rotator cuff has been well documented, publications with long-term follow-up (more than three years) are relatively limited," said Dr. Hernigou. "Many patients undergoing rotator cuff repair surgery show advanced degeneration of the tendons, which are thinner and atrophic (more likely to degenerate), probably explaining why negative results are so often reported in the literature, with frequent post-operative complications, especially retear. Observations in the MSC treatment group support the potential that MSC treatment has both a short-term and long-term benefit in reducing the rate of tendon retear."

Study abstract

View 2015 AAOS Annual Meeting disclosure statements

About AAOS

Read the rest here:
Stem cells may significantly improve tendon healing, reduce retear risk in rotator cuff surgery

Recommendation and review posted by Bethany Smith

Lung Institute Announces New Treatment with Bone Marrow

Tampa, FL. (PRWEB) March 26, 2015

This month, the Lung Institute has started treating people suffering from chronic lung diseases with stem cells extracted from their bone marrow. This treatment protocol is added to the two other treatment options offered by the Lung Institute: venous (blood-derived) and adipose (fat-derived) stem cell therapy.

The bone marrow and adipose treatments offer the highest concentration of stem cells and allow for the cells to be reintroduced directly into the lungs through a nebulizer. Given this added benefit, most patients in the past opted to receive the adipose treatment over venous. However, many patients have other medical conditions that preclude them from choosing the adipose treatment. Since the number of stem cells harvested from a bone marrow procedure matches that of the adipose procedure, patients that have previously only qualified for the venous procedure are now eligible for a treatment option that produces the highest chance of success.

Patients are often surprised by the simplicity of these minimally invasive procedures, but with cutting-edge technology and the patient-centric clinical team at the Lung Institute, patients can rest assured that they are in good hands. Throughout the entire treatment process, patients have the opportunity to get any questions immediately answered by our knowledgeable medical staff. The Lung Institute clinical team remains in contact with patients after treatment and works together with the patients physician and pulmonologist to create a strong support system for the patient.

About the Lung Institute At the Lung Institute, we are changing the lives of hundreds of people across the nation through the innovative technology of regenerative medicine. We are committed to providing patients a more effective way to address pulmonary conditions and improve their quality of life. Our physicians, through their designated practices, have gained worldwide recognition for the successful application of revolutionary minimally invasive stem cell therapies. With over a century of combined medical experience, our doctors have established a patient experience designed with the highest concern for patient safety and quality of care. For more information, visit our website at LungInstitute.com, like us on Facebook, follow us on Twitter or call us today at (855) 313-1149.

Continue reading here:
Lung Institute Announces New Treatment with Bone Marrow

Recommendation and review posted by Bethany Smith

One year after cancer diagnosis, Bay Area girl continues to highlight need for Asian bone marrow donors

Beneath several blankets and a stuffed giraffe in her UC San Francisco hospital bed, 11-year-old Myla Cunanan is resting after a morning of dialysis to treat a kidney-related complication from her bone marrow transplant last year.Myla is sedated and tired, but not enough to silence her spritely personality.Mom, you put the cover on backwards! she exclaimed, disassembling her iPhone from its case and flipping it around as her mother, Leyna Cunanan, laughed and lovingly stroked the hand of her youngest daughter.She makes us all brave around her, Leyna said of her daughter. She knows that there is a purpose for her for being here. Tuesday marked one year to the day since Myla was diagnosed with myeloid sarcoma, a rare cancer in which a solid collection of leukemic cells occur outside of the bone marrow. The last year also thrust Myla into the spotlight as she and her family sought to find a bone marrow donor, a mission that turned out to be impossible due to a severe lack of Asian donors worldwide.Myla is Filipino-American, and when doctors told her after three rounds of chemotherapy in spring 2014 that she urgently needed a bone marrow transplant, her family learned just how difficult it is to find a match.In fact, Asians comprise just 6 percent of donors with Be The Match Registry, the largest and most diverse marrow registry in the world.The rarer your ethnic subtype is, at least in the U.S., the less likely we are to find you a good donor, said Dr. Christopher Dvorack, who has treated Myla since last year and is an assistant professor of clinical pediatrics in the Division of Allergy, Immunology, and Blood and Marrow Transplant at UC San Francisco.Last summer, her family registered about 300 donors through drives at their church, Mylas school and local shopping centers, and shared Mylas plight on social media with a photo of Myla holding a sign that reads, Will you marrow me?But a match was not found, and by August, doctors told Mylas family they would need to use a half-match donor, which was Mylas father.There are two main ways to donate bone marrow. The first is to have needles inserted into hip bones to extract a small amount of bone marrow. The second requires four days of injections of medicine designed to stimulate bone marrow and cause it to release stem cells from the bone marrow into the blood.The problem with half-match donors is the patients immune system can reject the donated bone marrow, which is what happened to Myla, Dvorack explained.She initially did well, she then later developed a complication that has kept her in the hospital, he said.The complication, thrombotic microangiopathy with renal involvement, means Mylas kidneys function less than 15 percent. She was subsequently diagnosed as chronic kidney disease Stage 5, and has been receiving hemodialysis several times a week.But her family remain advocates for the need for more bone marrow donors, particularly among ethnic minorities.We didnt find a match for Myla ... but we would like to continue to [hold] drives for other patients, her mother said.Ruby Law, a recruitment director for the Asian American Donor Program based in Alameda, worked with Myla and her family last year to seek a donor and said their efforts have extended beyond simply finding a match.Mylas family is very passionate about raising awareness of marrow and blood stem cell donation, Law said.Since Mylas most recent hospitalization, which began a week before Thanksgiving, her mother has lived with her at UCSF. Myla was among the 126 patients transferred from the UCSF Parnassus Campus to the new complex at Mission Bay on Feb. 1.Recently, Myla has been writing a book to help other kids going through similar journeys.When you read this book, I want you to think positive always, the last line of the opening letter states.And that pretty much sums up Mylas attitude, according to her doctor and family. Despite having been hospitalized for the majority of the past year, Myla insists she has plenty to be thankful for. While hospitalized, Myla has held book, bracelet and band-aid drives.There are days, of course, when she doesnt feel good, her mother said. But she always thinks about other people. She likes to give.To sign up as a donor, visit http://www.aadp.org or call (510) 568-3700.

Here is the original post:
One year after cancer diagnosis, Bay Area girl continues to highlight need for Asian bone marrow donors

Recommendation and review posted by Bethany Smith

Julie Gramyk 3 21 2015 Youtube – Video


Julie Gramyk 3 21 2015 Youtube
Julie Gramyk, Medical Esthetic, explains how Momentis #39; new skincare system is the first in the world to penetrate beyond the skin #39;s barrier and target the skin #39;s stem cells resulting in rebuilding...

By: judyrstak

View post:
Julie Gramyk 3 21 2015 Youtube - Video

Recommendation and review posted by Bethany Smith

Stemologica Review – Reduce Wrinkles Appearance Using Stemologica – Video


Stemologica Review - Reduce Wrinkles Appearance Using Stemologica
Click the link below to get a risk free trial; http://skincarebeautyshop.com/go/have-your-stemologica-free-trial/ Read the Terms and Condition before you order. Click the link below to read...

By: Mher Barbs

Read more:
Stemologica Review - Reduce Wrinkles Appearance Using Stemologica - Video

Recommendation and review posted by Bethany Smith

Celprogen Released Stem Cell Active Ingredients for the Cosmetic Industry Tested and Validated in Cosmetic Products …

Celprogen Released Stem Cell Active Ingredients for the Cosmetic Industry Tested and Validated in Cosmetic Products for a Decade

The present invention relates to culturing stem cells in animal free conditions has been developed and optimized by Celprogen utilizing single use bioreactor technology. The cosmetic industry has benefited from this technology for their regenerative skin care product lines. The topical application of these skin care products utilizing Celprogens Stem Cell Derived Conditioned Media have been in the market for 10 plus years.

About Celprogen Inc. Celprogen Inc. is a global Stem Cell Research & Therapeutics company which is developing a proprietary portfolio of unique therapeutics products and life science research tools that includes genetic engineering technologies, stem cell technologies for regenerative medicine, as well as bio-engineering products for tissue & organ transplants. Headquartered in Torrance, California, Celprogen is committed to the research, development, and manufacture of quality Stem Cell, Cancer Stem Cell and Primary Cell Culture products to serve our global community. Additional information about Celprogen is available at http://www.celprogen.com.

For additional information on the product line contact: Jay Sharma Phone: 310 542 8822 info@celprogen.com http://www.celprogen.com

See the original post:
Celprogen Released Stem Cell Active Ingredients for the Cosmetic Industry Tested and Validated in Cosmetic Products ...

Recommendation and review posted by Bethany Smith

Stem cells make similar decisions to humans

Mar 25, 2015

Scientists at the University of Copenhagen have captured thousands of progenitor cells of the pancreas on video as they made decisions to divide and expand the organ or to specialize into the endocrine cells that regulate our blood sugar levels.

The study reveals that stem cells behave as people in a society, making individual choices but with enough interactions to bring them to their end-goal. The results could eventually lead to a better control over the production of insulin-producing endocrine cells for diabetes therapy.

The research is published in the scientific journal PLOS Biology.

Why one cell matters

In a joint collaboration between the University of Copenhagen and University of Cambridge, Professor Anne Grapin- Botton and a team of researchers including Assistant Professor Yung Hae Kim from DanStem Center focused on marking the progenitor cells of the embryonic pancreas, commonly referred to as 'mothers', and their 'daughters' in different fluorescent colours and then captured them on video to analyse how they make decisions.

Prior to this work, there were methods to predict how specific types of pancreas cells would evolve as the embryo develops. However, by looking at individual cells, the scientists found that even within one group of cells presumed to be of the same type, some will divide many times to make the organ bigger while others will become specialized and will stop dividing.

The scientists witnessed interesting occurrences where the 'mother' of two 'daughters' made a decision and passed it on to the two 'daughters' who then acquired their specialization in synchrony. By observing enough cells, they were able to extract logic rules of decision-making, and with the help of Pau Ru, a mathematician from the University of Cambridge, they developed a mathematical model to make long-term predictions over multiple generations of cells.

Stem cell movies

'It is the first time we have made movies of a quality that is high enough to follow thousands of individual cells in this organ, for periods of time that are long enough for us to follow the slow decision process. The task seemed daunting and technically challenging, but fascinating", says Professor Grapin-Botton.

See the original post:
Stem cells make similar decisions to humans

Recommendation and review posted by Bethany Smith

Scientists create functioning "mini-lungs" to study cystic fibrosis

Researchers at the University of Cambridge have grown functional "mini-lungs" using stems cells derived from the skin cells of patients with a debilitating lung disease. Not only can the development help them in coming up with effective treatments for specific lung diseases like cystic fibrosis, but the process has the potential to be scaled up to screen thousands of new compounds to identify potential new drugs.

Creating miniature organoids has been the focus of many a research group, as it allows scientists to better understand the processes that take place inside an organ, figure out how specific diseases occur and develop or even work towards creating bioengineered lungs.

The research team from the Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute studied a lung disease called cystic fibrosis, which is caused by genetic mutation and shortens a patient's average lifespan. Patients have great difficulty breathing as the lungs are overwhelmed by thickened mucus.

To create working mini-lungs, the researchers took skin cells from patients with the most common form of cystic fibrosis and reprogrammed them to an induced pluripotent state (iPS), which allows the cells to grow into a different type of cell inside the body.

They then activated a process called gastrulation which pushes the cells to form distinct layers such as the endoderm and foregut. The cells were then pushed further to form distal airway tissue, the part of the lung that deals with exchange of gases.

In a sense, what weve created are mini-lungs," says Dr Nick Hannan, the lead researcher. While they only represent the distal part of lung tissue, they are grown from human cells and so can be more reliable than using traditional animal models, such as mice."

To find out whether the mini lungs could actually be used to screen drugs, the team tested them out with the aid of chloride-sensitive fluorescent dye. Cells from cystic fibrosis patients typically malfunction and don't allow the chloride to pass through, so there's no change in fluorescence levels.

The team added a molecule that's currently undergoing clinical trials and noted a change in fluorescence, signaling that it was effective in getting the diseased lung cells to function properly and that the mini lungs could, in principle, be used to test potential new drugs.

"Were confident this process could be scaled up to enable us to screen tens of thousands of compounds and develop mini-lungs with other diseases such as lung cancer and idiopathic pulmonary fibrosis," says Dr Hannan. "This is far more practical, should provide more reliable data and is also more ethical than using large numbers of mice for such research."

The research was published in the journal Stem Cells and Development.

Here is the original post:
Scientists create functioning "mini-lungs" to study cystic fibrosis

Recommendation and review posted by Bethany Smith

Researchers greatly increase precision of new genome editing tool

CRISPR-Cas9 is a powerful new tool for editing the genome. For researchers around the world, the CRISPR-Cas9 technique is an exciting innovation because it is faster and cheaper than previous methods. Now, using a molecular trick, Dr. Van Trung Chu and Professor Klaus Rajewsky of the Max Delbrck Center for Molecular Medicine (MDC) Berlin-Buch and Dr. Ralf Khn, MDC and Berlin Institute of Health (BIH), have found a solution to considerably increase the efficiency of precise genetic modifications by up to eightfold.

"What we used to do in years, we can now achieve in months," said gene researcher and immunologist Klaus Rajewsky, indicating the power of this new genome-editing technology. CRISPR-Cas9 not only speeds up research considerably - at the same time it is much more efficient, cheaper and also easier to handle than the methods used so far.

The CRISPR-Cas9 technology allows researchers to transiently introduce DNA double-strand breaks into the genome of cells or model organisms at genes of choice. In these artificially produced strand breaks, they can insert or cut out genes and change the genetic coding according to their needs.

Mammalian cells are able to repair DNA damage in their cells using two different repair mechanisms. The homology-directed repair (HDR) pathway enables the insertion of preplanned genetic modifications using engineered DNA molecules that share identical sequence regions with the targeted gene and which are recognized as a repair template. Thus, HDR repair is very precise but occurs only at low frequency in mammalian cells.

The other repair system, called non-homologous end-joining (NHEJ) is more efficient in nature but less precise, since it readily reconnects free DNA ends without repair template, thereby frequently deleting short sequences from the genome. Therefore, NHEJ repair can only be used to create short genomic deletions, but does not support precise gene modification or the insertion and replacement of gene segments.

Many researchers, including Van Trung Chu, Klaus Rajewsky and Ralf Khn, are seeking to promote the HDR repair pathway to make gene modification in the laboratory more precise in order to avoid editing errors and to increase efficiency. The MDC researchers succeeded in increasing the efficiency of the more precisely working HDR repair system by temporarily inhibiting the most dominant repair protein of NHEJ, the enzyme DNA Ligase IV. In their approach they used various inhibitors such as proteins and small molecules.

"But we also used a trick of nature and blocked Ligase IV with the proteins of adeno viruses. Thus we were able to increase the efficiency of the CRISPR-Cas9 technology up to eightfold," Ralf Khn explained. For example, they succeeded in inserting a gene into a predefined position in the genome (knock-in) in more than 60 per cent of all manipulated mouse cells. Khn has just recently joined the MDC and is head of the research group for "iPS cell based disease modeling." Before coming to the MDC, he was on the research staff of Helmholtz Zentrum Mnchen. "The expertise of Ralf Khn is very important for gene research at MDC and especially for my research group," Klaus Rajewsky said.

Concurrent with the publication of the article by the MDC researchers, Nature Biotechnology published another, related paper on CRISPR-Cas9 technology. It comes from the laboratory of Hidde Ploegh of the Whitehead Institute in Cambridge, MA, USA.

Somatic gene therapy with CRISPR-Cas9 is a goal

The new CRISPR-Cas9 technology, developed in 2012, is already used in the laboratory to correct genetic defects in mice. Researchers also plan to modify the genetic set up of induced pluripotent stem cells (iPS), which can be differentiated into specialized cell types or tissues. That is, researchers are able to use the new tool to introduce patient-derived mutations into the genome of iPS cells for studying the onset of human diseases. "Another future goal, however, is to use CRISPR-Cas9 for somatic gene therapy in humans with severe diseases," Klaus Rajewsky pointed out.

See the rest here:
Researchers greatly increase precision of new genome editing tool

Recommendation and review posted by Bethany Smith

MDC researchers greatly increase precision of new genome editing tool

CRISPR-Cas9 is a powerful new tool for editing the genome. For researchers around the world, the CRISPR-Cas9 technique is an exciting innovation because it is faster and cheaper than previous methods. Now, using a molecular trick, Dr. Van Trung Chu and Professor Klaus Rajewsky of the Max Delbrck Center for Molecular Medicine (MDC) Berlin-Buch and Dr. Ralf Khn, MDC and Berlin Institute of Health (BIH), have found a solution to considerably increase the efficiency of precise genetic modifications by up to eightfold (Nature Biotechnology: doi:10.1038/nbt.3198)**.

"What we used to do in years, we can now achieve in months," said gene researcher and immunologist Klaus Rajewsky, indicating the power of this new genome-editing technology. CRISPR-Cas9 not only speeds up research considerably - at the same time it is much more efficient, cheaper and also easier to handle than the methods used so far.

The CRISPR-Cas9 technology allows researchers to transiently introduce DNA double-strand breaks into the genome of cells or model organisms at genes of choice. In these artificially produced strand breaks, they can insert or cut out genes and change the genetic coding according to their needs.

Mammalian cells are able to repair DNA damage in their cells using two different repair mechanisms. The homology-directed repair (HDR) pathway enables the insertion of preplanned genetic modifications using engineered DNA molecules that share identical sequence regions with the targeted gene and which are recognized as a repair template. Thus, HDR repair is very precise but occurs only at low frequency in mammalian cells.

The other repair system, called non-homologous end-joining (NHEJ) is more efficient in nature but less precise, since it readily reconnects free DNA ends without repair template, thereby frequently deleting short sequences from the genome. Therefore, NHEJ repair can only be used to create short genomic deletions, but does not support precise gene modification or the insertion and replacement of gene segments.

Many researchers, including Van Trung Chu, Klaus Rajewsky and Ralf Khn, are seeking to promote the HDR repair pathway to make gene modification in the laboratory more precise in order to avoid editing errors and to increase efficiency. The MDC researchers succeeded in increasing the efficiency of the more precisely working HDR repair system by temporarily inhibiting the most dominant repair protein of NHEJ, the enzyme DNA Ligase IV. In their approach they used various inhibitors such as proteins and small molecules.

"But we also used a trick of nature and blocked Ligase IV with the proteins of adeno viruses. Thus we were able to increase the efficiency of the CRISPR-Cas9 technology up to eightfold," Ralf Khn explained. For example, they succeeded in inserting a gene into a predefined position in the genome (knock-in) in more than 60 per cent of all manipulated mouse cells. Khn has just recently joined the MDC and is head of the research group for "iPS cell based disease modeling". Before coming to the MDC, he was on the research staff of Helmholtz Zentrum Mnchen. "The expertise of Ralf Khn is very important for gene research at MDC and especially for my research group," Klaus Rajewsky said.

Concurrent with the publication of the article by the MDC researchers, Nature Biotechnology published another, related paper on CRISPR-Cas9 technology. It comes from the laboratory of Hidde Ploegh of the Whitehead Institute in Cambridge, MA, USA.

Somatic gene therapy with CRISPR-Cas9 is a goal

The new CRISPR-Cas9 technology, developed in 2012, is already used in the laboratory to correct genetic defects in mice. Researchers also plan to modify the genetic set up of induced pluripotent stem cells (iPS), which can be differentiated into specialized cell types or tissues. That is, researchers are able to use the new tool to introduce patient-derived mutations into the genome of iPS cells for studying the onset of human diseases. "Another future goal, however, is to use CRISPR-Cas9 for somatic gene therapy in humans with severe diseases," Klaus Rajewsky pointed out.

Read the original here:
MDC researchers greatly increase precision of new genome editing tool

Recommendation and review posted by Bethany Smith

Stem Cell Therapy For Multiple Sclerosis – Video


Stem Cell Therapy For Multiple Sclerosis
Back for round 2. After treatment in 2014 Beverly had improvement in her energy level, balance, walking and had colors come into her vision for the first time in 10 years. Beverly went blind...

By: Stem Cell Patient

Read more from the original source:
Stem Cell Therapy For Multiple Sclerosis - Video

Recommendation and review posted by Bethany Smith

On stem cell therapy, benefits

Bobby Chia (Foto by Allan Defensor)

THERE is a lot of hype going on in some circles about stem cell therapy: Is it a cure-all? Is it the elusive fountain of youth?

Wikipedia definesstem cell therapy as the use of stem cells to treat or prevent a disease or condition.The process involves the administration of live whole cells or maturation of a specific cell population in a patient for the treatment of the disease as has been done in bone marrow transplants.

Bobby Chia, a Thai national who was in Cebu for a brief visit, said that stem cell therapy has been done in Villa Medica, Germany, since the 1960s. He learned about it 10 years ago when his mother had cancer and he looked around for the best medical care for her and found it in Villa Medica. It made her so much better (she can even play tennis now) that four years ago, Chia bought the clinic being run by Dr. Geoffrey Huertgen, a third generation doctor of that clinic.

The stem cell can be taken from the patient himself, but Chia says this stem source is naturally as old as the patient himself. Villa Medica chooses to use stem cells from fetuses of sheep (he said that stem cells from any mammal would be the same, but sheep stem cells are the ones more readily available). The process for Villa Medica, says Chia, involves the designing of a cocktail of stem cells to address whatever needs correction. If the eyes are not good, we choose the eyes. If the ears are not good, we choose the ears. If the heart is not good, we choose the heart. The procedure has been known to treat diseases and ailments like Parkinsons, diabetes, hypertension, migraine, allergies etc.

It (stem cell therapy) does not make you 18 years old all over again but it energizes you; from not being able to walk to walking again. It gives you a better quality of life. It is not a quick cure, but for a lot of people it is. We offer a choice for people who have no hope, Chia shares. But my main target is people who are not sick, Chia states, referring to athletes, models, professionals who want to have a better quality of life.

Chia says there are four doctors in Villa Medica. Since the cell therapy is patient-specific, the patient needs to stay four days and four nights at the clinic: for a detox program, for physical check-up, for interview, for determining the cocktail of stem cells to be used and how. The result, Chia says,is not immediate. It may take six weeks or even longer for the stem cells to do their work.

Chia says he has had about 150 patients coming from Cebu. Leaf through the pages of the local papers, one of them might just be there!

Published in the Sun.Star Cebu newspaper on March 27, 2015.

Read the rest here:
On stem cell therapy, benefits

Recommendation and review posted by Bethany Smith

No stem cell treatment for public servant's dodgy knee

A federal public servant has lost a legal bid to have taxpayers pay for experimental stem cell treatment on his dodgy knees.

The Administrative Appeals Tribunal has knocked back an appeal by Customs officer Vic Kaplicas to force insurer Comcare to pay $13,400 for the new treatment, instead saying he could have a tried-and-tested double knee replacement.

But the 49-year-old border official says he worries he cannot pass his department's fitness tests if he undergoes the knee replacements, which will leave him unable to run.

Advertisement

The former triathlete, who had to give up his sport because of his bad knees, said he was keen to avoid the "radical but effective" replacements for as long as possible.

Mr Kaplicas hurt his left knee working at Sydney's Mascot Airport in 2000, then injured his right knee 10 years later at Kingsford-Smith.

He managed the pain in his knees, which have since developed osteoarthritis, for years using over-the-counter painkillers, physio, exercises and injections but Mr Kaplicas' doctors say a more permanent solution is now needed.

In June 2012, Sydney knee specialist Sam Sorrenti asked Comcare to pay for bilateral knee stem cell assisted arthroscopic surgery for Mr Kaplicas.

The cost of the procedure was estimated at $13,464.00 for arthroscopy, stem cell harvesting and injection, and a "HiQCell procedure".

Dr Sorrenti said the knee replacements were not a good idea for a man of Mr Kaplicas' age, arguing the new knees would last 15 years at best, were intended for older people who are less concerned with physical activity, and left no further options.

Originally posted here:
No stem cell treatment for public servant's dodgy knee

Recommendation and review posted by Bethany Smith


Archives