Page 956«..1020..955956957958..970980..»

Laura Place: Regenerative Medicine and Tissue Engineering – Video


Laura Place: Regenerative Medicine and Tissue Engineering
Laura #39;s research involves regenerative medicine and tissue engineering. A large part of regenerative medicine involves growth factors which are commonly prot...

By: Science CSU: Your Radio Laboratory

Read the rest here:
Laura Place: Regenerative Medicine and Tissue Engineering - Video

Recommendation and review posted by sam

Autism treatment with stem cells – Video


Autism treatment with stem cells
Stem cell therapy for autism treatment in UCTC. Professor Smikodub introduced the method of fetal stem cell therapy on the basis of which autism treatment wa...

By: TheCellTreatment

View original post here:
Autism treatment with stem cells - Video

Recommendation and review posted by simmons

Mikhael Gromov – 4/4 Mathematical Structures arising from Genetics and Molecular Biology – Video


Mikhael Gromov - 4/4 Mathematical Structures arising from Genetics and Molecular Biology
Cours des professeurs permanents de l #39;IHS - Mikhael GROMOV (IHS) l #39;Institut Henri Poincar (IHP) Paris le 4 octobre 2013.

By: Institut des Hautes tudes Scientifiques (IHS)

See the original post here:
Mikhael Gromov - 4/4 Mathematical Structures arising from Genetics and Molecular Biology - Video

Recommendation and review posted by Bethany Smith

Biology Molecular Genetics Protein vs DNA – Video


Biology Molecular Genetics Protein vs DNA

By: Mallory Seals

See original here:
Biology Molecular Genetics Protein vs DNA - Video

Recommendation and review posted by Bethany Smith

Biochemical Genetics – Disorders of Metabolism – Video


Biochemical Genetics - Disorders of Metabolism
UEA lecture.

By: Stuart N

See the original post:
Biochemical Genetics - Disorders of Metabolism - Video

Recommendation and review posted by Bethany Smith

www.CLINICell.com “ACL TEAR alternative with PRP and Stem Cell Therapy” – Video


http://www.CLINICell.com "ACL TEAR alternative with PRP and Stem Cell Therapy"
http://www.CLINICell.com offers the latest alternative treatments with PRP and Stem Cell Therapy for an ACL Tear. Platelet Rich Plasma and Stem Cell treatments can ...

By: ClinicellTech

Visit link:
http://www.CLINICell.com "ACL TEAR alternative with PRP and Stem Cell Therapy" - Video

Recommendation and review posted by simmons

The Expanding Role of Transfusion Medicine in Personalized Medicine and Therapeutics – Video


The Expanding Role of Transfusion Medicine in Personalized Medicine and Therapeutics
"The Expanding Role of Transfusion Medicine in Personalized Medicine and Therapeutics" Basic research characterizing the molecular and cellular bases of a la...

By: UWTV

Original post:
The Expanding Role of Transfusion Medicine in Personalized Medicine and Therapeutics - Video

Recommendation and review posted by sam

Medical Minute: Regenerative Medicine – Video


Medical Minute: Regenerative Medicine

By: ProMedica

View post:
Medical Minute: Regenerative Medicine - Video

Recommendation and review posted by sam

www.CLINICell.com "ACL TEAR alternative with PRP and Stem Cell Therapy" – Video


http://www.CLINICell.com "ACL TEAR alternative with PRP and Stem Cell Therapy"

By: ClinicellTech

Here is the original post:
http://www.CLINICell.com "ACL TEAR alternative with PRP and Stem Cell Therapy" - Video

Recommendation and review posted by Bethany Smith

DNA Forensics Movie (Genetics Project) – Video


DNA Forensics Movie (Genetics Project)
Genetics Project about DNA Forensics November 2013.

By: Ashley Egyedy

Follow this link:
DNA Forensics Movie (Genetics Project) - Video

Recommendation and review posted by Bethany Smith

Genetics Exam Preparation – Video


Genetics Exam Preparation

By: wilsonsbiologylab

Go here to see the original:
Genetics Exam Preparation - Video

Recommendation and review posted by Bethany Smith

Unit 6 part 2 Genetics Honors Biology – Video


Unit 6 part 2 Genetics Honors Biology
Unit 6 part 2 Genetics Honors Biology.

By: Marango0721

View post:
Unit 6 part 2 Genetics Honors Biology - Video

Recommendation and review posted by Bethany Smith

Genetics Lab quiz 9 – Video


Genetics Lab quiz 9

By: guilherme corral

Originally posted here:
Genetics Lab quiz 9 - Video

Recommendation and review posted by Bethany Smith

Cancer More About Diet Than Genetics – Video


Cancer More About Diet Than Genetics

By: Healthy living

Go here to read the rest:
Cancer More About Diet Than Genetics - Video

Recommendation and review posted by Bethany Smith

Cardiac Stem Cells (CSCs) | University of Maryland Medical Center

For immediate release: September 10, 2012

Baltimore, MD --Researchers at the University of Maryland School of Medicine, who are exploring novel ways to treat serious heart problems in children, have conducted the first direct comparison of the regenerative abilities of neonatal and adult-derived human cardiac stem cells. Among their findings: cardiac stem cells (CSCs) from newborns have a three-fold ability to restore heart function to nearly normal levels compared with adult CSCs. Further, in animal models of heart attack, hearts treated with neonatal stem cells pumped stronger than those given adult cells. The study is published in the September 11, 2012, issue of Circulation.

The surprising finding is that the cells from neonates are extremely regenerative and perform better than adult stem cells, says the study's senor author, Sunjay Kaushal, M.D., Ph.D., associate professor of surgery at the University of Maryland School of Medicine and director, pediatric cardiac surgery at the University of Maryland Medical Center. We are extremely excited and hopeful that this new cell-based therapy can play an important role in the treatment of children with congenital heart disease, many of whom don't have other options.

Dr. Kaushal envisions cellular therapy as either a stand-alone therapy for children with heart failure or an adjunct to medical and surgical treatments. While surgery can provide structural relief for some patients with congenital heart disease and medicine can boost heart function up to two percent, he says cellular therapy may improve heart function even more dramatically. We're looking at this type of therapy to improve heart function in children by 10, 12, or 15 percent. This will be a quantum leap in heart function improvement.

Heart failure in children, as in adults, has been on the rise in the past decade and the prognosis for patients hospitalized with heart failure remains poor. In contrast to adults, Dr. Kaushal says heart failure in children is typically the result of a constellation of problems: reduced cardiac blood flow; weakening and enlargement of the heart; and various congenital malformations. Recent research has shown that several types of cardiac stem cells can help the heart repair itself, essentially reversing the theory that a broken heart cannot be mended.

Stem cells are unspecialized cells that can become tissue- or organ-specific cells with a particular function. In a process called differentiation, cardiac stem cells may develop into rhythmically contracting muscle cells, smooth muscle cells or endothelial cells. Stem cells in the heart may also secrete growth factors conducive to forming heart muscle and keeping the muscle from dying.

To conduct the study, researchers obtained a small amount of heart tissue during normal cardiac surgery from 43 neonates and 13 adults. The cells were expanded in a growth medium yielding millions of cells. The researchers developed a consistent way to isolate and grow neonatal stem cells from as little as 20 milligrams of heart tissue. Adult and neonate stem cell activity was observed both in the laboratory and in animal models. In addition, the animal models were compared to controls that were not given the stem cells.

Dr. Kaushal says it is not clear why the neonatal stem cells performed so well. One explanation hinges on sheer numbers: there are many more stem cells in a baby's heart than in the adult heart. Another explanation: neonate-derived cells release more growth factors that trigger blood vessel development and/or preservation than adult cells.

This research provides an important link in our quest to understand how stem cells function and how they can best be applied to cure disease and correct medical deficiencies, says E. Albert Reece, M.D., Ph.D., M.B.A., vice president for medical affairs, University of Maryland; the John Z. and Akiko K. Bowers Distinguished Professor; and dean, University of Maryland School of Medicine. Sometimes simple science is the best science. In this case, a basic, comparative study has revealed in stark terms the powerful regenerative qualities of neonatal cardiac stem cells, heretofore unknown.

Insights gained through this research may provide new treatment options for a life-threatening congenital heart syndrome called hypoplastic left heart syndrome (HLHS). Dr. Kaushal and his team will soon begin the first clinical trial in the United States to determine whether the damage to hearts of babies with HLHS can be reversed with stem cell therapy. HLHS limits the heart's ability to pump blood from the left side of the heart to the body. Current treatment options include either a heart transplant or a series of reconstructive surgical procedures. Nevertheless, only 50-60 percent of children who have had those procedures survive to age five.

Continue reading here:
Cardiac Stem Cells (CSCs) | University of Maryland Medical Center

Recommendation and review posted by Bethany Smith

Stem Cell Transplants and Bone Marrow Transplant to Treat Lymphoma

Surgeon performs bone marrow harvest

The terms "Hodgkin's Disease," "Hodgkin's Lymphoma," and "Hodgkin Lymphoma" are used interchangeably throughout this site.

Bone Marrow Transplants (BMT) and Peripheral Blood Stem Cell Transplants (PBSCT) are emerging as mainstream treatment for many cancers, including Hodgkin's Disease and Medium/High grade aggressive)Non-Hodgkin's lymphoma.

BMTs have been used to treat lymphoma for more than 10 years, but until recently they were used mostly within clinical trials. Now BMTs are being used in conjunction with high doses of chemotherapy as a mainstream treatment.

When high doses of chemotherapy are planned, which can destroy the patients bone marrow, physicians will typically remove marrow from the patients bone before treatment and freeze it. After chemotherapy, the marrow is thawed and injected into a vein to replace destroyed marrow. This type of transplant is called an autologous transplant. If the transplanted marrow is from another person, it is called an allogeneic transplant.

In PBSCTs, another type of autologous transplant, the patient's blood is passed through a machine that removes the stem cells the immature cells from which all blood cells develop. This procedure is called apheresis and usually takes three or four hours over one or more days. After treatment to kill any cancer cells, the stem cells are frozen until they are transplanted back to the patient. Studies have shown that PBSCTs result in shorter hospital stays and are safer and more cost effective than BMTs.

See the article here:
Stem Cell Transplants and Bone Marrow Transplant to Treat Lymphoma

Recommendation and review posted by Bethany Smith

Sources of stem cells for transplant – American Cancer Society

There are 3 possible sources of stem cells to use for transplants: bone marrow, the bloodstream (peripheral blood), and umbilical cord blood from newborns. Although bone marrow was the first source used in stem cell transplant, peripheral blood is used most often today.

Bone marrow is the spongy tissue in the center of bones. Its main job is to make blood cells that circulate in your body and immune cells that fight infection.

Bone marrow was the first source used for stem cell transplants because it has a rich supply of stem cells. The bones of the pelvis (hip) contain the most marrow and have large numbers of stem cells in them. For this reason, cells from the pelvic bone are used most often for a bone marrow transplant. Enough marrow must be removed to collect a large number of healthy stem cells.

For a bone marrow transplant, the donor gets general anesthesia (drugs are used to put the patient into a deep sleep so they dont feel pain). A large needle is put through the skin and into the back of the hip bone. The thick, liquid marrow is pulled out through the needle. This is repeated several times until enough marrow has been taken out (harvested). (For more on this, see the section called Whats it like to donate stem cells?)

The harvested marrow is filtered, stored in a special solution in bags, and then frozen. When the marrow is to be used, its thawed and then given just like a blood transfusion. The stem cells travel to the recipients bone marrow. There over time, they engraft or take and begin to make blood cells. Signs of the new blood cells usually can be measured in the patients blood tests in about 2 to 4 weeks.

Normally, few stem cells are found in the blood. But giving hormone-like substances called growth factors to stem cell donors a few days before the harvest causes their stem cells to grow faster and move from the bone marrow into the blood.

For a peripheral blood stem cell transplant, the stem cells are taken from blood. A very thin flexible tube (called a catheter) is put into one of the donors veins and attached to tubing that carries the blood to a special machine. The machine separates the blood, and keeps only the stem cells. The rest of the blood goes back to the donor. This takes several hours, and may need to be repeated for a few days to get enough stem cells. The stem cells are filtered, stored in bags, and frozen until the patient is ready for them. (For more on this, see the section called Whats it like to donate stem cells?)

After the patient is treated with chemo and/or radiation, the stem cells are given in an infusion much like a blood transfusion. The stem cells travel to the bone marrow, engraft, and then grow and make new, normal blood cells. The new cells are usually found in the patients blood a few days sooner than when bone marrow stem cells are used, usually in about 10 to 20 days.

Not everyone who needs an allogeneic stem cell transplant can find a well-matched donor among family members or among the people who have signed up to donate. For these patients, umbilical cord blood may be a source of stem cells. Around 30% of unrelated hematopoietic stem cell transplants are done with cord blood.

A large number of stem cells are normally found in the blood of newborn babies. After birth, the blood that is left behind in the placenta and umbilical cord (known as cord blood) can be taken and stored for later use in a stem cell transplant. The cord blood is frozen until needed.

Read this article:
Sources of stem cells for transplant - American Cancer Society

Recommendation and review posted by Bethany Smith

Stem Cells In Use – Learn Genetics

Leukemia is a cancer of white blood cells, or leukocytes. Like other blood cells, leukocytes develop from somatic stem cells. Mature leukocytes are released into the bloodstream, where they work to fight off infections in our bodies.

Leukemia results when leukocytes begin to grow and function abnormally, becoming cancerous. These abnormal cells cannot fight off infection, and they interfere with the functions of other organs.

Successful treatment for leukemia depends on getting rid of all the abnormal leukocytes in the patient, allowing healthy ones to grow in their place. One way to do this is through chemotherapy, which uses potent drugs to target and kill the abnormal cells. When chemotherapy alone can't eliminate them all, physicians sometimes turn to bone marrow transplants.

In a bone marrow transplant, the patient's bone marrow stem cells are replaced with those from a healthy, matching donor. To do this, all of the patient's existing bone marrow and abnormal leukocytes are first killed using a combination of chemotherapy and radiation. Next, a sample of donor bone marrow containing healthy stem cells is introduced into the patient's bloodstream.

If the transplant is successful, the stem cells will migrate into the patient's bone marrow and begin producing new, healthy leukocytes to replace the abnormal cells.

New evidence suggests that bone marrow stem cells may be able to differentiate into cell types that make up tissues outside of the blood, such as liver and muscle. Scientists are exploring new uses for these stem cells that go beyond diseases of the blood.

Read more:
Stem Cells In Use - Learn Genetics

Recommendation and review posted by Bethany Smith

Bone Marrow Transplants – How They Work – About.com Rare Diseases

A bone marrow transplant is when special cells (called stem cells) that are normally found in the bone marrow are taken out, filtered, and given back either to the same person or to another person.

In diseases such as leukemia and aplastic anemia, the bone marrow is unhealthy. The purpose of a bone marrow transplant is to replace unhealthy stem cells withhealthy ones. This can treat or even cure the disease.

If a family member does not match the recipient, the National Marrow Donor Program Registry database can be searched for an unrelated individual whose tissue type is a close match. It is more likely that a donor who comes from the same racial or ethnic group as the recipient will have the same tissue traits. The chances of a minority person in the United States finding a registry match are lower than that of a white person (see article, Marrow Matches For Minorities Are Harder to Find).

If stem cells are collected by bone marrow harvest (much less likely), the donor will go to the operating room and while asleep under anesthesia, a needle will be inserted into either the hip or the breastbone to take out some bone marrow. After awakening, he/she may feel some pain where the needle was inserted.

Serious problems can occur during the time that the bone marrow is gone or very low. Infections are common, as is anemia, and low platelets in the blood can cause dangerous bleeding internally. Recipients often receive blood transfusions to treat these problems while they are waiting for the new stem cells to start growing.

When a person volunteers to be a donor, his/her particular blood tissue traits, as determined by a special blood test (histocompatibility antigen test), are recorded in the Registry. This "tissue typing" is different than a person's A, B, or O blood type. The Registry record also contains contact information for the donor, should a tissue type match be made.

Note: The author has been a registered donor since 1993.

Source:

"The Donation Procedure." Donor Information. Oct 2005. National Marrow Donor Program. 25 Jul 2007.

Go here to see the original:
Bone Marrow Transplants - How They Work - About.com Rare Diseases

Recommendation and review posted by Bethany Smith

Apple Stem Cells Offer Hope for Aging and Damaged Skin – Life …

As we age, the reduced turnover of our cells means we can lose control over how our skin ages. Epidermal stem cells needed to create healthy new skin are significantly reduced and function less efficiently. A discovery based on promising plant stem cell research may allow you to regain control.

Scientists have found that a novel extract derived from the stem cells of a rare apple tree cultivated for its extraordinary longevity shows tremendous ability to rejuvenate aging skin. By stimulating aging skin stem cells, this plant extract has been shown to lessen the appearance of unsightly wrinkles. Clinical trials show that this unique formulation increases the longevity of skin cells, resulting in skin that has a more youthful and radiant appearance.

Cells in our bodies are programmed for specific functions. A skin cell, a brain cell, and a liver cell all contain the same DNA, or set of genes. However, each cells fate is determined by a set of epigenetic (able to change gene expression patterns) signals that come from inside it and from the surrounding cells as well. These signals are like command tags attached to the DNA that switch certain genes on or off.

This selective coding creates all of the different kinds of cells in our bodies, which are collectively known as differentiated (specialized) cells.

Although differentiated cells vary widely in purpose and appearance, they all have one thing in common: they all come with a built-in operational limit. After so many divisions, they lose their ability to divide and must be replaced. This is where stem cells come in.

Your body also produces other cells that contain no specific programming. These stem cells are blank, so your body can essentially format them any way it pleases. Two universal aspects shared by this type of cell are: (1) the ability to replenish itself through a process of self-renewal and (2) the capacity to produce a differentiated cell.

In animals and humans, two basic kinds of stem cells exist: embryonic and adult stem cells. Embryonic stem cells have the power to change into any differentiated cell type found anywhere in your body. Adult stem cells, on the other hand, are generally more limited. They can only evolve into the specific type of cell found in the tissue where they are located. The primary function of these adult stem cells is maintenance and repair.

But certain adult stem cells found in nature retain the unlimited developmental potential that embryonic stem cells possess. These cells have become the main focus for an exciting new wave of regenerative medicine (repairing damaged or diseased tissues and organs using advanced techniques like stem cell therapy and tissue engineering).

The basal (innermost) layer of the skins epidermis comprises two basic types of cells: (1) the slowly dividing epidermal stem cells (that represent about 2-7% of the basal cell population) and (2) their rapidly dividing offspring that supply new cells to replace those that are lost or dying.1-3

The slow self-renewal process of epidermal stem cells, however, creates a problem. Because each epidermal stem cell only lasts for a certain number of divisions, and because each division runs the risk of lethal DNA mutation, the epidermal stem cell population can become depleted. When this happens, lost or dying skin cells begin to outnumber their replacements and the skins health and appearance start to decline.

Originally posted here:
Apple Stem Cells Offer Hope for Aging and Damaged Skin - Life ...

Recommendation and review posted by Bethany Smith

Combining Stem Cell Therapy with Gene Therapy | Boston …

When pluripotent stem cells are made from a patients own cells, it may be also be possible to replace the faulty gene that caused their disease with a normal, healthy copy. The repaired stem cells could then be directed to form the tissue type needed, introduced into the body, allowed to divide, and used to reconstitute the diseased tissue. It's a treatment that should last a lifetime.

Boston Childrens Hospital researcher George Q. Daley, MD, PhD, then at the Whitehead Institute, was the first to demonstrate, in 2002, that pluripotent stem cells could successfully treat a disease. Working with mice that possess a genetic defect caused by an immune deficiency, the research team created genetically-matched embryonic stem cells through nuclear transfer, introduced corrective genes, then derived healthy blood stem cells and infused them into the mice, partially restoring their immune function. Daley, Director of Stem Cell Transplantation at Childrens, would like to do the same for his patients with blood diseases.

The rest is here:
Combining Stem Cell Therapy with Gene Therapy | Boston ...

Recommendation and review posted by Bethany Smith

genetic engineering — Encyclopedia Britannica

We welcome suggested improvements to any of our articles. You can make it easier for us to review and, hopefully, publish your contribution by keeping a few points in mind: Encyclopaedia Britannica articles are written in a neutral, objective tone for a general audience. You may find it helpful to search within the site to see how similar or related subjects are covered. Any text you add should be original, not copied from other sources. At the bottom of the article, feel free to list any sources that support your changes, so that we can fully understand their context. (Internet URLs are best.) Your contribution may be further edited by our staff, and its publication is subject to our final approval. Unfortunately, our editorial approach may not be able to accommodate all contributions.

genetic engineering,the artificial manipulation, modification, and recombination of DNA or other nucleic acid molecules in order to modify an organism or population of organisms.

The term genetic engineering initially meant any of a wide range of techniques for the modification or manipulation of organisms through the processes of heredity and reproduction. As such, the term embraced both artificial selection and all the interventions of biomedical techniques, among them artificial insemination, in vitro fertilization (e.g., test-tube babies), sperm banks, cloning, and gene manipulation. But the term now denotes the narrower field of recombinant DNA technology, or gene cloning (see Figure), in which DNA molecules from two or more sources are combined either within cells or in vitro and are then inserted into host organisms in which they are able to propagate. Gene cloning is used to produce new genetic combinations that are of value to science, medicine, agriculture, or industry.

DNA is the carrier of genetic information; it achieves its effects by directing the synthesis of proteins. Most recombinant DNA technology involves the insertion of foreign genes into the plasmids of common laboratory strains of bacteria. Plasmids are small rings of DNA; they are not part of the bacteriums chromosome (the main repository of the organisms genetic information). Nonetheless, they are capable of directing protein synthesis, and, like chromosomal DNA, they are reproduced and passed on to the bacteriums progeny. Thus, by incorporating foreign DNA (for example, a mammalian gene) into a bacterium, researchers can obtain an almost limitless number of copies of the inserted gene. Furthermore, if the inserted gene is operative (i.e., if it directs protein synthesis), the modified bacterium will produce the protein specified by the foreign DNA.

A key step in the development of genetic engineering was the discovery of restriction enzymes in 1968 by the Swiss microbiologist Werner Arber. However, type II restriction enzymes, which are essential to genetic engineering for their ability to cleave a specific site within the DNA (as opposed to type I restriction enzymes, which cleave DNA at random sites), were not identified until 1969, when the American molecular biologist Hamilton O. Smith purified this enzyme. Drawing on Smiths work, the American molecular biologist Daniel Nathans helped advance the technique of DNA recombination in 197071 and demonstrated that type II enzymes could be useful in genetic studies. Genetic engineering itself was pioneered in 1973 by the American biochemists Stanley N. Cohen and Herbert W. Boyer, who were among the first to cut DNA into fragments, rejoin different fragments, and insert the new genes into E. coli bacteria, which then reproduced.

Genetic engineering has advanced the understanding of many theoretical and practical aspects of gene function and organization. Through recombinant DNA techniques, bacteria have been created that are capable of synthesizing human insulin, human growth hormone, alpha interferon, a hepatitis B vaccine, and other medically useful substances. Plants may be genetically adjusted to enable them to fix nitrogen, and genetic diseases can possibly be corrected by replacing bad genes with normal ones. Nevertheless, special concern has been focused on such achievements for fear that they might result in the introduction of unfavourable and possibly dangerous traits into microorganisms that were previously free of theme.g., resistance to antibiotics, production of toxins, or a tendency to cause disease.

The new microorganisms created by recombinant DNA research were deemed patentable in 1980, and in 1986 the U.S. Department of Agriculture approved the sale of the first living genetically altered organisma virus, used as a pseudorabies vaccine, from which a single gene had been cut. Since then several hundred patents have been awarded for genetically altered bacteria and plants.

See the original post here:
genetic engineering -- Encyclopedia Britannica

Recommendation and review posted by Bethany Smith

Beyond the Headlines: Gym Genetics – Video


Beyond the Headlines: Gym Genetics
Don #39;t like going to the gym? It could be in your genes!

By: FOX47News

Read more from the original source:
Beyond the Headlines: Gym Genetics - Video

Recommendation and review posted by Bethany Smith

Genetics Disorder project – Video


Genetics Disorder project

By: wilsonsbiologylab

Go here to read the rest:
Genetics Disorder project - Video

Recommendation and review posted by Bethany Smith

Genetics Kaylah Cody Eddie – Video


Genetics Kaylah Cody Eddie

By: Meredith Kersting

Read more:
Genetics Kaylah Cody Eddie - Video

Recommendation and review posted by Bethany Smith


Archives