Planarian genes that control stem cell biology identified

Posted: March 2, 2012 at 9:09 am

Public release date: 1-Mar-2012 [ | E-mail | Share ]

Contact: Nicole Giese Rura rura@wi.mit.edu 617-258-6851 Whitehead Institute for Biomedical Research

FINDINGS: Devising a novel method to identify potential genetic regulators in planarian stem cells, Whitehead Institute scientists have determined which of those genes affect the two main functions of stem cells. Three of the genes are particularly intriguing because they code for proteins similar to those known to regulate mammalian embryonic stem cells. Such genetic similarity makes planarians an even more attractive model for studying stem cell biology in vivo.

RELEVANCE: Stem cells may hold the promise to regrow damaged, diseased, or missing tissues in humans, such as insulin-producing cells for diabetics and nerve cells for patients with spinal cord injuries. With its renowned powers of regeneration and more than half of its genes having human homologs, the planarian seems like a logical choice for studying stem cell behavior. Yet, until now, scientists have been unable to efficiently identify the genes that regulate the planarian stem cell system.

CAMBRIDGE, Mass. Despite their unassuming appearance, the planarian flatworms in Whitehead Institute Member Peter Reddien's lab are revealing powerful new insights into the biology of stem cellsinsights that may eventually help such cells deliver on a promising role in regenerative medicine.

In this week's issue of the journal Cell Stem Cell, Reddien and scientists in his lab report on their development of a novel approach to identify and study the genes that control stem cell behavior in planarians. Intriguingly, at least one class of these genes has a counterpart in human embryonic stem cells.

"This is a huge step forward in establishing planarians as an in vivo system for which the roles of stem cell regulators can be dissected," says Reddien, who is also an associate professor of biology at MIT and a Howard Hughes Medical Institute (HHMI) Early Career Scientist. "In the grand scheme of things for understanding stem cell biology, I think this is a beginning foray into seeking general principles that all animals utilize. I'd say we're at the beginning of that process."

Planarians (Schmidtea mediterranea) are tiny freshwater flatworms with the ability to reproduce through fission. After literally tearing themselves in half, the worms use stem cells, called cNeoblasts, to regrow any missing tissues and organs, ultimately forming two complete planarians in about a week.

Unlike muscle, nerve, or skin cells that are fully differentiated, certain stem cells, such as cNeoblasts and embryonic stem cells are pluripotent, having the ability to become almost cell type in the body. Researchers have long been interested in harnessing this capability to regrow damaged, diseased, or missing tissues in humans, such as insulin-producing cells for diabetics or nerve cells for patients with spinal cord injuries.

Several problems currently confound the therapeutic use of stem cells, including getting the stem cells to differentiate into the desired cell type in the appropriate location and having such cells successfully integrate with surrounding tissues, all without forming tumors. To solve these issues, researchers need a better understanding of how stem cells tick at the molecular level, particularly within the environment of a living organism. To date, a considerable amount of embryonic stem cell research has been conducted in the highly artificial environment of the Petri dish.

Read this article:
Planarian genes that control stem cell biology identified

Related Posts

Comments are closed.

Archives