What the Axolotl’s Limb-Regenerating Capabilities Have to Teach Us – Discover Magazine
Posted: February 3, 2020 at 11:48 am
As amphibians go, axolotls are pretty cute. These salamanders sport a Mona Lisa half-smile and red, frilly gills that make them look dressed up for a party. You might not want them at your soiree, though: Theyre also cannibals. While rare now in the wild, axolotls used to hatch en masse, and it was a salamander-eat-salamander world. In such a harsh nursery, they evolved or maybe kept the ability to regrow severed limbs.
Their regenerative powers are just incredible, says Joshua Currie, a biologist at the Lunenfeld-Tanenbaum Research Institute in Toronto whos been studying salamander regeneration since 2011. If an axolotl loses a limb, the appendage will grow back, at just the right size and orientation. Within weeks, the seam between old and new disappears completely.
And its not just legs: Axolotls can regenerate ovary and lung tissue, even parts of the brain and spinal cord.
The salamanders exceptional comeback from injury has been known for more than a century, and scientists have unraveled some of its secrets. It seals the amputation site with a special type of skin called wound epithelium, then builds a bit of tissue called the blastema, from which sprouts the new body part. But until recently, the fine details of the cells and molecules needed to create a leg from scratch have remained elusive.
With the recentsequencingandassemblyof the axolotls giant genome, though, and thedevelopment of techniques to modify the creatures genes in the lab,regeneration researchers are now poised to discover those details. In so doing, theyll likely identify salamander tricks that could be useful in human medicine
Already, studies are illuminating the cells involved, and defining the chemical ingredients needed. Perhaps, several decades from now, people, too, might regrow organs or limbs. In the nearer future, the findings suggest possible treatments for ways to promote wound-healing and treat blindness.
The idea of human regeneration has evolved from an if to a when in recent decades, says David Gardiner, a developmental biologist at the University of California, Irvine. Everybody now is assuming that its just a matter of time, he says. But, of course, theres still much to do.
In a working limb, cells and tissues are like the instruments in an orchestra: Each contributes actions, like musical notes, to create a symphony. Amputation results in cacophony, but salamanders can rap the conductors baton and reset the remaining tissue back to order and all the way back to the symphonys first movement, when they first grew a limb in the embryo.
The basic steps are known: When a limb is removed, be it by hungry sibling or curious experimenter, within minutes the axolotls blood will clot. Within hours, skin cells divide and crawl to cover the wound with a wound epidermis.
Next, cells from nearby tissues migrate to the amputation site, forming a blob of living matter. This blob, the blastema, is where all the magic happens, said Jessica Whited, a regenerative biologist at Harvard University, in a presentation in California last year. It forms a structure much like the developing embryos limb bud, from which limbs grow.
This movie shows immune cells, labeled to glow green, moving within a regenerating axolotl fingertip. Scientists know that immune cells such as macrophages are essential for regeneration: When they are removed, the process is blocked.
Finally, cells in the blastema turn into all the tissues needed for the new limb and settle down in the right pattern, forming a tiny but perfect limb. This limb then grows to full size. When all is done, you cant even tell where the amputation occurred in the first place, Whited tellsKnowable Magazine.
Scientists know many of the molecular instruments, and some of the notes, involved in this regeneration symphony. But its taken a great deal of work.
As Currie started as a new postdoc with Elly Tanaka, a developmental biologist at the Research Institute of Molecular Pathology in Vienna, he recalls wondering, Where do the cells for regeneration come from? Consider cartilage. Does it arise from the same cells as it does in the developing embryo, called chondrocytes, that are left over in the limb stump? Or does it come from some other source?
To learn more, Currie figured out a way to watch individual cells under the microscope right as regeneration took place. First, he used a genetic trick to randomly tag the cells he was studying in a salamander with a rainbow of colors. Then, to keep things simple, he sliced off just a fingertip from his subjects. Next, he searched for cells that stuck out say, an orange cell that ended up surrounded by a sea of other cells colored green, yellow and so on. He tracked those standout cells, along with their color-matched descendants, over the weeks of limb regeneration. His observations, reported in the journalDevelopmental Cellin 2016,illuminated several secrets to the regeneration process.
Regenerative biologist Joshua Currie labeled the cells in axolotls with a rainbow of colors, so that he could follow their migration after he amputated the tip of the salamanders fingertips. In this image, three days after amputation, the skin (uncolored) has already covered the wound. (Credit: Josh Currie)
For one thing, cell travel is key. Cells are really extricating themselves from where they are and crawling to the amputation plane to form this blastema, Currie says. The distance cells will journey depends on the size of the injury. To make a new fingertip, the salamanders drew on cells within about 0.2 millimeters of the injury. But in other experiments where the salamanders had to replace a wrist and hand, cells came from as far as half a millimeter away.
More strikingly, Currie discovered that contributions to the blastema were not what hed initially expected, and varied from tissue to tissue. There were a lot of surprises, he says.
Chondrocytes, so important for making cartilage in embryos, didnt migrate to the blastema (earlier in 2016, Gardiner and colleaguesreported similar findings). And certain cells entering the blastema pericytes, cells that encircle blood vessels were able to make more of themselves, but nothing else.
The real virtuosos in regeneration were cells in skin called fibroblasts and periskeletal cells, which normally surround bone. They seemed to rewind their development so they could form all kinds of tissues in the new fingertip, morphing into new chondrocytes and other cell types, too.
To Curries surprise, these source cells didnt arrive all at once. Those first on the scene became chondrocytes. Latecomers turned into the soft connective tissues that surround the skeleton.
How do the cells do it? Currie, Tanaka and collaborators looked at connective tissues further, examining the genes turned on and off by individual cells in a regenerating limb. In a 2018Sciencepaper, the team reported thatcells reorganized their gene activation profileto one almost identical, Tanaka says, to those in the limb bud of a developing embryo.
Muscle, meanwhile, has its own variation on the regeneration theme. Mature muscle, in both salamanders and people, contains stem cells called satellite cells. These create new cells as muscles grow or require repair. In a 2017 study inPNAS, Tanaka and colleagues showed (by tracking satellite cells that were made to glow red) that most, if not all, ofmuscle in new limbs comes from satellite cells.
If Currie and Tanaka are investigating the instruments of the regeneration symphony, Catherine McCusker is decoding the melody they play, in the form of chemicals that push the process along. A regenerative biologist at the University of Massachusetts Boston, she recently published arecipe of sorts for creating an axolotl limb from a wound site. By replacing two of three key requirements with a chemical cocktail, McCusker and her colleagues could force salamanders to grow a new arm from a small wound on the side of a limb, giving them an extra arm.
Using what they know about regeneration, researchers at the University of Massachusetts tricked upper-arm tissue into growing an extra arm (green) atop the natural one (red). (Credit: Kaylee Wells/McCusker Lab)
The first requirement for limb regeneration is the presence of a wound, and formation of wound epithelium. But a second, scientists knew, was a nerve that can grow into the injured area. Either the nerve itself, or cells that it talks to, manufacture chemicals needed to make connective tissue become immature again and form a blastema. In their 2019 study inDevelopmental Biology, McCusker and colleagues guided byearlier work by a Japanese team used two growth factors, called BMP and FGF, to fulfill that step in salamanders lacking a nerve in the right place.
The third requirement was for fibroblasts from opposite sides of a wound to find and touch each other. In a hand amputation, for example, cells from the left and right sides of the wrist might meet to correctly pattern and orient the new hand. McCusckers chemical replacement for this requirement was retinoic acid, which the body makes from vitamin A. The chemical plays a role in setting up patterning in embryos and has long been known to pattern tissues during regeneration.
In their experiment, McCuskers team removed a small square of skin from the upper arm of 38 salamanders. Two days later, once the skin had healed over, the researchers made a tiny slit in the skin and slipped in a gelatin bead soaked in FGF and BMP. Thanks to that cocktail, in 25 animals the tissue created a blastema no nerve necessary.
About a week later, the group injected the animals with retinoic acid. In concert with other signals coming from the surrounding tissue, it acted as a pattern generator, and seven of the axolotls sprouted new arms out of the wound site.
The recipe is far from perfected: Some salamanders grew one new arm, some grew two, and some grew three, all out of the same wound spot. McCusker suspects that the gelatin bead got in the way of cells that control the limbs pattern. The key actions produced by the initial injury and wound epithelium also remain mysterious.
Its interesting that you can overcome some of these blocks with relatively few growth factors, comments Randal Voss, a biologist at the University of Kentucky in Lexington. We still dont completely know what happens in the very first moments.
If we did know those early steps, humans might be able to create the regeneration symphony. People already possess many of the cellular instruments, capable of playing the notes. We use essentially the same genes, in different ways, says Ken Poss, a regeneration biologist at the Duke University Medical Center in Durham who describednew advances in regeneration, thanks to genetic tools, in the 2017Annual Review of Genetics.
Regeneration may have been an ability we lost, rather than something salamanders gained. Way back in our evolutionary past, the common ancestors of people and salamanders could have been regenerators, since at least one distant relative of modern-day salamanders could do it. Paleontologists have discovered fossils of300-million-year-old amphibians with limb deformities typically created by imperfect regeneration.Other members of the animal kingdom, such as certain worms, fish and starfish, can also regenerate but its not clear if they use the same symphony score, Whited says.
These fossils suggest that amphibians calledMicromelerpetonwere regenerating limbs 300 million years ago. Thats because the fossils show deformities, such as fused bones, that usually occur when regrowth doesnt work quite right. (Credit: Nadia B Frbisch et al./Proceedings of the Royal Society B, 2014)
Somewhere in their genomes, all animals have the ability, says James Monaghan, a regeneration biologist at Northeastern University in Boston. After all, he points out, all animals grow body parts as embryos. And in fact, people arent entirely inept at regeneration. We can regrow fingertips, muscle, liver tissue and, to a certain extent, skin.
But for larger structures like limbs, our regeneration music falls apart. Human bodies take days to form skin over an injury, and without the crucial wound epithelium, our hopes for regeneration are dashed before it even starts. Instead, we scab and scar.
Its pretty far off in the future that we would be able to grow an entire limb, says McCusker. I hope Im wrong, but thats my feeling.
She thinks that other medical applications could come much sooner, though such as ways to help burn victims. When surgeons perform skin grafts, they frequently transfer the top layers of skin, or use lab-grown skin tissue. But its often an imperfect replacement for what was lost.
Thats because skin varies across the body; just compare the skin on your palm to that on your calf or armpit. The tissues that help skin to match its body position, giving it features like sweat glands and hair as appropriate, lie deeper than many grafts. The replacement skin, then, might not be just like the old skin. But if scientists could create skin with better positional information, they could make the transferred skin a better fit for its new location.
Monaghan, for his part, is thinking about regenerating retinas for people who have macular degeneration or eye trauma. Axolotls can regrow their retinas (though, surprisingly, their ability to regenerate the lens is limited to hatchlings). He is working with Northeastern University chemical engineer Rebecca Carrier, whos been developing materials for use in transplantations. Her collaborators are testing transplants in pigs and people, but find most of the transplanted cells are dying. Perhaps some additional material could create a pro-regeneration environment, and perhaps axolotls could suggest some ingredients.
Carrier and Monaghan experimented with the transplanted pig cells in lab dishes, and found they were more likely to survive and develop into retinal cells if grown together with axolotl retinas. The special ingredientseems to be a distinct set of chemicals that exist on axolotl, but not pig, retinas.Carrier hopes to use this information to create a chemical cocktail to help transplants succeed. Even partially restoring vision would be beneficial, Monaghan notes.
Thanks to genetic sequencing and modern molecular biology, researchers can continue to unlock the many remaining mysteries of regeneration: How does the wound epithelium create a regeneration-promoting environment? What determines which cells migrate into a blastema, and which stay put? How does the salamander manage to grow a new limb of exactly the right size, no larger, no smaller? These secrets and more remain hidden behind that Mona Lisa smile at least for now.
10.1146/knowable-012920-1
This article originally appeared in Knowable Magazine, an independent journalistic endeavor from Annual Reviews.
Excerpt from:
What the Axolotl's Limb-Regenerating Capabilities Have to Teach Us - Discover Magazine
- Secret History of Diamonds Narrated for the Visually Impaired - Part 2 of 4 [Last Updated On: June 24th, 2011] [Originally Added On: June 24th, 2011]
- Skin Stem Cells: Their Biology [Last Updated On: June 24th, 2011] [Originally Added On: June 24th, 2011]
- Emerge Labs New Anti Aging Swiss Apple Stem Cell Skin Care [Last Updated On: June 25th, 2011] [Originally Added On: June 25th, 2011]
- No Avastin for Breast Cancer [Last Updated On: June 25th, 2011] [Originally Added On: June 25th, 2011]
- Signals Skincare System [Last Updated On: June 25th, 2011] [Originally Added On: June 25th, 2011]
- Signals Skincare System [Last Updated On: June 25th, 2011] [Originally Added On: June 25th, 2011]
- Growing Nerve Cells [Last Updated On: June 26th, 2011] [Originally Added On: June 26th, 2011]
- Elaine Fuchs Part 2: Tapping the Potential of Adult Stem Cells, and Summary [Last Updated On: June 26th, 2011] [Originally Added On: June 26th, 2011]
- A Major Breakthrough in Skin Care and Nutrition [Last Updated On: June 27th, 2011] [Originally Added On: June 27th, 2011]
- Stem Cell Facial At Metamorphosis Day Spa Using Emerge Labs Skin Care [Last Updated On: June 27th, 2011] [Originally Added On: June 27th, 2011]
- Come Back Kid [Last Updated On: June 28th, 2011] [Originally Added On: June 28th, 2011]
- PhytoCell.mp4 [Last Updated On: June 28th, 2011] [Originally Added On: June 28th, 2011]
- When Beauty Calls: The Link between Science and Skin Care [Last Updated On: June 29th, 2011] [Originally Added On: June 29th, 2011]
- Skin Stem Cells: Their Biology [Last Updated On: June 29th, 2011] [Originally Added On: June 29th, 2011]
- Come Back Kid [Last Updated On: July 1st, 2011] [Originally Added On: July 1st, 2011]
- PhytoCell.mp4 [Last Updated On: July 1st, 2011] [Originally Added On: July 1st, 2011]
- The Skin Gun stem cell research [Last Updated On: July 1st, 2011] [Originally Added On: July 1st, 2011]
- World's 1st Nutricosmetic with Stem Cell Nutrients [Last Updated On: July 2nd, 2011] [Originally Added On: July 2nd, 2011]
- NG Raccoon Attack [Last Updated On: July 3rd, 2011] [Originally Added On: July 3rd, 2011]
- No Avastin for Breast Cancer [Last Updated On: July 4th, 2011] [Originally Added On: July 4th, 2011]
- E'shee HBA Global Expo 2011, NYC. Skin Care Anti-Aging Symposium [Last Updated On: July 5th, 2011] [Originally Added On: July 5th, 2011]
- Growing Nerve Cells [Last Updated On: July 9th, 2011] [Originally Added On: July 9th, 2011]
- The Skin Gun [Last Updated On: July 9th, 2011] [Originally Added On: July 9th, 2011]
- E'shee HBA Global Expo 2011, NYC. Skin Care Anti-Aging Symposium [Last Updated On: July 14th, 2011] [Originally Added On: July 14th, 2011]
- A Major Breakthrough in Skin Care and Nutrition [Last Updated On: July 17th, 2011] [Originally Added On: July 17th, 2011]
- Elaine Fuchs Part 1: Introduction to Stem Cells [Last Updated On: July 20th, 2011] [Originally Added On: July 20th, 2011]
- World's 1st Nutricosmetic with Stem Cell Nutrients [Last Updated On: July 21st, 2011] [Originally Added On: July 21st, 2011]
- Stem cells acquired from human skin [Last Updated On: August 9th, 2011] [Originally Added On: August 9th, 2011]
- Stem cells acquired from human skin [Last Updated On: August 17th, 2011] [Originally Added On: August 17th, 2011]
- DermaStem Renewal Serum - Stem Cells for Your Skin from STEMTech - New Paradigm in Beauty! [Last Updated On: August 19th, 2011] [Originally Added On: August 19th, 2011]
- DermaStem Renewal Serum - Stem Cells for Your Skin from STEMTech - New Paradigm in Beauty! [Last Updated On: August 30th, 2011] [Originally Added On: August 30th, 2011]
- ReLuma-stemcells- skin rejuvenation [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Dr Nathan Newman- Formulator of Stem Cell Skin Care Line LUMINESCE [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Genetic Skin Disease (EB): Spotlight on Stem Cell Research - Patient Advocate [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Genetic Skin Disease (EB): Spotlight on Stem Cell Research - Patient Advocate [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Stem Cell Skin Care- What is the role of stem cells in Luminesce Featuring Dr Nathan Newman [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- Luminesce Stem Cell Skin Care - Leaders in Jeunesse [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- The Skin Gun (Stem Cell research to replace burnt off skin. Done in 3 days!) [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- Stem Cell Skin Care- What is the role of stem cells in Luminesce Featuring Dr Nathan Newman [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- Isolation and Culture of Adult Epithelial Stem Cells from Human Skin [Last Updated On: September 9th, 2011] [Originally Added On: September 9th, 2011]
- Genetic Skin Disease (EB): Spotlight on Stem Cell Research - Welcome [Last Updated On: September 9th, 2011] [Originally Added On: September 9th, 2011]
- Stem Cells Made From Human Skin [Last Updated On: September 9th, 2011] [Originally Added On: September 9th, 2011]
- Jeunesse Global Business Opportunity with Stem Cell Skin Care Developed by Dr Nathan Newman [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- Stem Cell Therapy Skin Repair and Anti-Wrinkle Cream [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- Stem Cells Made From Human Skin [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- Genetic Skin Disease (EB): Optimizing Embryonic Stem Cell Differentiation Protocols [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- Genetic Skin Disease (EB): Spotlight on Stem Cell Research - Introduction [Last Updated On: September 11th, 2011] [Originally Added On: September 11th, 2011]
- Isolation and Culture of Adult Epithelial Stem Cells from Human Skin [Last Updated On: September 11th, 2011] [Originally Added On: September 11th, 2011]
- Stem Cell Therapy - BioLogic Anti-Aging Skin Cream [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- Best natural skin care serum using stem cell technology [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- Jeunesse Global Business Opportunity with Stem Cell Skin Care Developed by Dr Nathan Newman [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- Genetic Skin Disease (EB): Optimizing Embryonic Stem Cell Differentiation Protocols [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- The Skin Gun (Stem Cell research to replace burnt off skin. Done in 3 days!) [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- Research on skin cancer: ERC funds studies on stem cells [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Skin engineering [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Stem Cell Banking: The Perspective of an iPS Donor Family [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Jeunesse Global Opportunity- Stem Cell Skin Care [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Dr Nathan Newman Repairs Laugh Lines With Stem Cell Face Lift [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Dr Nathan Newman MD Stem Cell Face lift On Extra TV.flv [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Dr Nathan Newman Stem Cell Face Lift on Entertainment Tonight [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Dr Nathan Newman MD Stem Cell Face lift On Good Morning LA.flv [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Ellis Martin Report with International Stem Cell Corp [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- Dr Nathan Newman MD Stem Cell Face lift on Channel 7 KABC.flv [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- Stem Cell Face Treatment - What People Are Saying | Beverly Hills | Los Angeles [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- How To Use Your Stem Cells For Facial Skin Rejuvenation [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- StemCellTV - From National Geographic - The Skin Gun - Healing Burns with Stem Cells [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- AMAZING - Stem Cell Skin Cream And Liquid Face Lift Revealed [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Care for Your Skin with Lifeline Skin Care [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- For Damaged Skin - Rejuvenate Your Own Stem Cells [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- Stem Cells: Fulfilling the Promise - 2011 CIRM Grantee Meeting [Last Updated On: September 28th, 2011] [Originally Added On: September 28th, 2011]
- Dr.Thomas Barnes' PRP Hair Growth and Skin Rejuvenation [Last Updated On: September 28th, 2011] [Originally Added On: September 28th, 2011]
- Stem Cell Face Lift - English (Part 5) [Last Updated On: September 28th, 2011] [Originally Added On: September 28th, 2011]
- Dr Amiya Prasad discusses ACell for Hair Regrowth and Skin Rejuvenation with EYES IN Magazine [Last Updated On: September 30th, 2011] [Originally Added On: September 30th, 2011]
- Brussels scientist close to discovering skin cancer origins [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- Cell Reprogramming Transformed [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- Cell Reprogramming Transformed [Last Updated On: October 7th, 2011] [Originally Added On: October 7th, 2011]
- Elaine Fuchs Part 1: Introduction to Stem Cells English Subtitle [Last Updated On: October 10th, 2011] [Originally Added On: October 10th, 2011]
- Elaine Fuchs Part 1: Introduction to Stem Cells English Subtitle [Last Updated On: October 13th, 2011] [Originally Added On: October 13th, 2011]
- Elaine Fuchs discusses research on skin and adult stem cells - Video [Last Updated On: October 13th, 2011] [Originally Added On: October 13th, 2011]
- Signals Stem Cell Skin Care Anti Aging Skin Care - Video [Last Updated On: October 13th, 2011] [Originally Added On: October 13th, 2011]