New studies show spinal cord injury and ALS respond to cell transplantation

Posted: July 19, 2012 at 6:13 pm

Public release date: 18-Jul-2012 [ | E-mail | Share ]

Contact: David Eve cellmedicinect@gmail.com Cell Transplantation Center of Excellence for Aging and Brain Repair

Tampa, Fla. (July. 18 , 2012) Two studies published in a recent issue of Cell Medicine [2(2)] report on the therapeutic efficacy of stem cell transplantation in animal models of amyotrophic lateral sclerosis (ALS) and spinal cord injury (SCI). Cell Medicine is freely available on-line at http://www.ingentaconnect.com/content/cog/cm.

Mensenchymal stem cell transplantation in spinal cord injured rats promotes functional recovery

Transplantation of mesenchymal stem cells (MSCs), multipotent stem cells with the ability to differentiate into a variety of cell types with renewal capacities, has been found to enhance laboratory animal function after induced spinal cord injury. However, the biological mechanism of the functional enhancement has not been clearly defined.

In an attempt to gain a clearer picture of the mechanism, a team of Korean researchers transplanted MSCs derived from human umbilical cord blood into the tail veins of laboratory rats immediately after spinal cord injury. The intravenous route was selected because the researchers felt that injection into the damaged site could further traumatize the injured spinal cord, although intravenously injected MSCs risk being eliminated by the host immune system.

"We found that MSCs express immunomodulatory effects during the acute phase following SCI," said study corresponding author Dr. Sung-Rae Cho of the Yonsei University College of Medicine in Seoul, Korea. "In our study, MSCs suppressed activated micoglia and inflammatory cytokines, increased anti-inflammatory cytokines and, consequently, promoted functional recovery in SCI rats." They reported "modest but significant improvement" in a number of functional test scores in the rats subjected to transplantation when compared with control group animals not subjected to cell transplantation. The researchers suggested that their study not only confirmed the established link between microglial activation and inflammatory cytokines, but also demonstrated that functional recovery might be attributed to immunomodulatory effects rather than cell replacement. They also recommended that autologous (self-donated) MSCs, rather than human-derived MSCs, should be used in subsequent studies to "suppress undesirable immune response."

Contact: Dr. Sung-Rae Cho, Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea 120-752 Tel: +82 2 2228-3715 Fax: +82 2 363-2795 Email: srcho918@yuhs.ac

Citation: Seo, J. H.; Jang, I. K.; Kim, H.; Yang, M. S.; Lee, J. E.; Kim, H. E.; Eom, Y-W.; Lee, D-H.; Yu, J. H.; Kim, J. Y.; Kim, H. O.; Cho, S-R. Early immunomodulation by intravenously transplanted mesenchymal stem cells promotes functional recovery in spinal cord injured rats. Cell Med. 2(2):55-67; 2011.

Bone marrow cell transplantation coupled with stimulating factor offers neuroprotective and angiogenic effects in ALS animal models

Continue reading here:
New studies show spinal cord injury and ALS respond to cell transplantation

Related Posts

Comments are closed.

Archives